Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.194
1.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747912

BACKGROUND: The goal was to study the difference of virological, immunologic, and inflammatory indicators between Epstein-Barr associated infectious mononucleosis (EBV-IM) and EBV associated hemophagocytic lymphohistiocytosis (EBV-HLH) and to explore the evaluation indicators for monitoring the therapeutic efficacy of EBV-HLH. METHODS: Twenty children with EBV-IM (IM group) and 10 children with EBV-HLH (HLH group) were selected. Virology indicators were detected; the absolute count of lymphocyte, and lymphocyte subsets were detected; the levels of immunoglobulin and ferritin were assayed. RESULTS: Compared to the IM group, the HLH group showed a decrease in EBV-specific VCA-IgM antibody levels (U = 29.0, p = 0.006) and an increase in EBV-specific NA-IgG antibody levels (U = 17.0, p = 0.001), while there was no significant difference in EB-DNA loads (t = 0.417, p = 0.680). The counts of lymphocytes, and various lymphocyte subsets in the HLH group were lower than those in the IM group. Inflammatory markers in the HLH group were significantly higher than those in IM group. Dynamic monitoring of virological, immunological, and inflammatory indicators in HLH patients during treatment showed that EBV DNA gradually decreased in patients with good prognosis. Inflammatory indicators significantly decreased and returned to normal, lymphocyte count significantly increased and returned to normal during treatment. However, patients with poor prognosis showed rebound increase in EBV DNA and inflammatory indicators in the later stage of treatment, while lymphocyte count further decreased with the recurrence of the disease. CONCLUSIONS: Exhausted and damaged immune function in host by persistent stimulation of EB viral antigen is one of the main pathogeneses of EB-HLH. Lymphocyte count and serum ferritin level are effective indicators to monitor the therapeutic efficacy during the treatment to HLH.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Infectious Mononucleosis , Lymphohistiocytosis, Hemophagocytic , Humans , Child , Male , Female , Child, Preschool , Herpesvirus 4, Human/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/virology , Lymphohistiocytosis, Hemophagocytic/blood , Infectious Mononucleosis/immunology , Infectious Mononucleosis/blood , Infectious Mononucleosis/virology , Infectious Mononucleosis/diagnosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , DNA, Viral/blood , Inflammation/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Load , Ferritins/blood , Lymphocyte Count , Adolescent , Infant , Lymphocyte Subsets/immunology
2.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690731

Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.


Herpesvirus Vaccines , Humans , Herpesvirus Vaccines/immunology , Herpesvirus Vaccines/therapeutic use , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , Herpesvirus 4, Human/immunology , Animals , Herpesviridae/immunology , Virus Activation/immunology , Cytomegalovirus/immunology
3.
Viruses ; 16(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38675906

The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Signal Transduction , Viral Matrix Proteins , Humans , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Cytokines/metabolism , Cytokines/immunology , Animals , Immunomodulation , Host-Pathogen Interactions/immunology , NF-kappa B/metabolism , Virus Latency/immunology
4.
J Neuroimmunol ; 390: 578343, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615370

Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/immunology , Animals , Autoantigens/immunology
5.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200250, 2024 Jul.
Article En | MEDLINE | ID: mdl-38662990

BACKGROUND AND OBJECTIVES: The role of B cells in the pathogenic events leading to relapsing multiple sclerosis (R-MS) has only been recently elucidated. A pivotal step in defining this role has been provided by therapeutic efficacy of anti-CD20 monoclonal antibodies. Indeed, treatment with anti-CD20 can also alter number and function of other immune cells not directly expressing CD20 on their cell surface, whose activities can contribute to unknown aspects influencing therapeutic efficacy. We examined the phenotype and function of cytotoxic lymphocytes and Epstein-Barr virus (EBV)-specific immune responses in people with R-MS before and after ocrelizumab treatment. METHODS: In this prospective study, we collected blood samples from people with R-MS (n = 41) before and 6 and 12 months after initiating ocrelizumab to assess the immune phenotype and the indirect impact on cytotoxic functions of CD8+ T and NK cells. In addition, we evaluated the specific anti-EBV proliferative responses of both CD8+ T and NK lymphocytes as surrogate markers of anti-EBV activity. RESULTS: We observed that while ocrelizumab depleted circulating B cells, it also reduced the expression of activation and migratory markers on both CD8+ T and NK cells as well as their in vitro cytotoxic activity. A comparable pattern in the modulation of immune molecules by ocrelizumab was observed in cytotoxic cells even when patients with R-MS were divided into groups based on their prior disease-modifying treatment. These effects were accompanied by a significant and selective reduction of CD8+ T-cell proliferation in response to EBV antigenic peptides. DISCUSSION: Taken together, our findings suggest that ocrelizumab-while depleting B cells-affects the cytotoxic function of CD8+ and NK cells, whose reduced cross-activity against myelin antigens might also contribute to its therapeutic efficacy during MS.


Antibodies, Monoclonal, Humanized , CD8-Positive T-Lymphocytes , Herpesvirus 4, Human , Immunologic Factors , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Female , Adult , Male , Herpesvirus 4, Human/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Immunologic Factors/pharmacology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Prospective Studies , Cell Proliferation/drug effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects
6.
Biochem Biophys Res Commun ; 715: 149984, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38688056

Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.


Epstein-Barr Virus Infections , Mice, Inbred NOD , Mice, SCID , Osteoclasts , Animals , Mice , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoclasts/virology , Osteoclasts/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/pathology , RANK Ligand/metabolism , Herpesvirus 4, Human/immunology , Osteogenesis , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Arthritis, Rheumatoid/metabolism
7.
Rev Alerg Mex ; 71(1): 29-39, 2024 Feb 01.
Article Es | MEDLINE | ID: mdl-38683066

Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.


El virus Epstein-Barr es una variante del herpes virus que afecta exclusivamente a humanos; fue el primer virus oncogénico descrito y se ha relacionado con más de siete diferentes tipos de cáncer. Curiosamente, el intercambio de genes debido a infecciones virales ha permitido la evolución de los organismos celulares, favoreciendo el desarrollo de nuevas funciones y supervivencia del hospedero. El virus Epstein-Barr comparte cientos de millones de años de coevolución con la especie humana y más del 95% de la población adulta mundial se ha infectado en algún momento de su vida. La infección se adquiere principalmente durante la infancia, y en la mayoría de los casos aparece sin ninguna manifestación grave aparente. Sin embargo, en los adolescentes y la población joven-adulta, alrededor de un 10 a 30% evolucionan a mononucleosis infecciosa. Las células NK y T CD8+ son células citotóxicas cruciales durante las respuestas antivirales y se ha demostrado que que controlan y eliminan la infección por el virus Epstein-Barr. No obstante, cuando se afecta su función efectora, el desenlace puede ser fatal. El objetivo de esta revisión es describir la infección por el virus Epstein-Barr y el papel decisivo de las células NK y T CD8+ durante el control y eliminación de la infección. Además, se discuten brevemente los principales defectos genéticos que afectan a estas células y conllevan a la incapacidad para eliminar el virus. Finalmente, se resalta la necesidad de elaborar una vacuna efectiva contra el virus Epstein-Barr y cómo podrían evitarse los procesos neoplásicos y enfermedades autoinmunes.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Killer Cells, Natural , Humans , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology
9.
JAMA Neurol ; 81(5): 515-524, 2024 May 01.
Article En | MEDLINE | ID: mdl-38497939

Importance: It remains unclear why only a small proportion of individuals infected with the Epstein-Barr virus (EBV) develop multiple sclerosis (MS) and what the underlying mechanisms are. Objective: To assess the serologic response to all EBV peptides before the first symptoms of MS occur, determine whether the disease is associated with a distinct immune response to EBV, and evaluate whether specific EBV epitopes drive this response. Design, Setting, and Participants: In this prospective, nested case-control study, individuals were selected among US military personnel with serum samples stored in the US Department of Defense Serum Repository. Individuals with MS had serum collected at a median 1 year before onset (reported to the military in 2000-2011) and were matched to controls for age, sex, race and ethnicity, blood collection, and military branch. No individuals were excluded. The data were analyzed between September 1, 2022, and August 31, 2023. Exposure: Antibodies (enrichment z scores) to the human virome measured using VirScan (phage-displayed immunoprecipitation and sequencing). Main Outcome and Measure: Rate ratios (RRs) for MS for antibodies to 2263 EBV peptides (the EBV peptidome) were estimated using conditional logistic regression, adjusting for total anti-EBV nuclear antigen 1 (EBNA-1) antibodies, which have consistently been associated with a higher MS risk. The role of antibodies against other viral peptides was also explored. Results: A total of 30 individuals with MS were matched with 30 controls. Mean (SD) age at sample collection was 27.8 (6.5) years; 46 of 60 participants (76.7%) were male. The antibody response to the EBV peptidome was stronger in individuals with MS, but without a discernible pattern. The antibody responses to 66 EBV peptides, the majority mapping to EBNA antigens, were significantly higher in preonset sera from individuals with MS (RR of highest vs lowest tertile of antibody enrichment, 33.4; 95% CI, 2.5-448.4; P for trend = .008). Higher total anti-EBNA-1 antibodies were also associated with an elevated MS risk (top vs bottom tertile: RR, 27.6; 95% CI, 2.3-327.6; P for trend = .008). After adjusting for total anti-EBNA-1 antibodies, risk estimates from most EBV peptides analyses were attenuated, with 4 remaining significantly associated with MS, the strongest within EBNA-6/EBNA-3C, while the association between total anti-EBNA-1 antibodies and MS persisted. Conclusion and Relevance: These findings suggest that antibody response to EBNA-1 may be the strongest serologic risk factor for MS. No single EBV peptide stood out as being selectively targeted in individuals with MS but not controls. Larger investigations are needed to explore possible heterogeneity of anti-EBV humoral immunity in MS.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Female , Male , Herpesvirus 4, Human/immunology , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Case-Control Studies , Adult , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/blood , Military Personnel , Antibodies, Viral/blood , Prospective Studies , Young Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Epstein-Barr Virus Nuclear Antigens/blood , Peptides/immunology , Peptides/blood
10.
Curr Opin Neurol ; 37(3): 228-236, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38511407

PURPOSE OF REVIEW: Epidemiological evidence implicates Epstein-Barr virus (EBV) as the cause of multiple sclerosis (MS). However, its biological role in the pathogenesis of MS is uncertain. The article provides an overview of the role of EBV in the pathogenesis of MS and makes a case for targeting EBV as a treatment strategy for MS. RECENT FINDINGS: EBV potentially triggers autoimmunity via molecular mimicry or immune dysregulation. Another hypothesis, supported by immunological and virological data, indicates that active EBV infection via latent-lytic infection cycling within the central nervous system or periphery drives MS disease activity. This supports testing small molecule anti-EBV agents targeting both latent and lytic infection, central nervous system-penetrant B-cell therapies and EBV-targeted immunotherapies in MS. Immunotherapies may include EBV-specific cytotoxic or chimeric antigen receptors T-cells, therapeutic EBV vaccines and immune reconstitution therapies to boost endogenous EBV-targeted cytotoxic T-cell responses. SUMMARY: EBV is the probable cause of MS and is likely to be driving MS disease activity via latent-lytic infection cycling. There is evidence that all licensed MS disease-modifying therapies target EBV, and there is a compelling case for testing other anti-EBV strategies as potential treatments for MS.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , Immunotherapy/methods
11.
Curr Opin Infect Dis ; 37(3): 157-163, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38529804

PURPOSE OF REVIEW: Infectious mononucleosis (IM) is an infectious disease that presents clinically in only a small percentage of individuals despite almost universal infection with the causative agent. Here, we review the latest concepts in the clinical presentation, epidemiology, and host response of this disease. RECENT FINDINGS: Several recently published papers/reviews describe IM as a condition caused by one of several etiologic agents including, cytomegalovirus (HHV-5), Roseola virus (HHV-6) and Toxoplasmosis amongst others; this review focuses on IM as solely caused by the human herpes virus 4 (HHV-4). Since the initial discovery of the virus in the 1960s and its subsequent discovery as the primary etiologic agent for IM it has been associated with several human cancers and autoimmune disorders. Recent published findings show a correlation between HHV-4 and the autoimmune disorder, multiple sclerosis (MS), suggesting earlier IM could possibly act as a causative factor. Considering the important links being made with IM to so many cancers and autoimmune disorders it is surprising that a standard investigative procedure has yet to be determined for this disease. A standard approach to the investigation of IM would ensure more cases are diagnosed, particularly atypical cases, this would benefit epidemiological studies, and more immediately help practitioners distinguish viral from bacterial throat infections, enabling them to treat accordingly. SUMMARY: The understanding of the latest concepts in clinical presentation, epidemiology and host response to IM would benefit greatly from the introduction of a standard procedure for its investigation and diagnosis.


Infectious Mononucleosis , Humans , Infectious Mononucleosis/epidemiology , Infectious Mononucleosis/diagnosis , Herpesvirus 4, Human/immunology , Autoimmune Diseases/epidemiology
12.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200217, 2024 May.
Article En | MEDLINE | ID: mdl-38547427

BACKGROUND AND OBJECTIVES: Epstein-Barr virus (EBV) has been strongly implicated in the pathogenesis of multiple sclerosis (MS). Despite this, there are no routinely used tests to measure cellular response to EBV. In this study, we analyzed the cellular response to EBV nuclear antigen-1 (EBNA-1) in people with MS (pwMS) using a whole blood assay. METHODS: This cross-sectional study took place in a dedicated MS clinic in a university hospital. We recruited healthy controls, people with epilepsy (PWE), and pwMS taking a range of disease-modifying treatments (DMTs) including natalizumab, anti-CD20 monoclonal antibodies (mAbs), dimethyl fumarate (DMF), and also treatment naïve. Whole blood samples were stimulated with commercially available PepTivator EBNA1 peptides and a control virus-cytomegalovirus (CMV) peptide. We recorded the cellular response to stimulation with both interferon gamma (IFN-γ) and interleukin-2 (IL-2). We also compared the cellular responses to EBNA1 with IgG responses to EBNA1, viral capsid antigen (VCA), and EBV viral load. RESULTS: We recruited 86 pwMS, with relapsing remitting MS, in this group, and we observed a higher level of cellular response recorded with IFN-γ (0.79 IU/mL ± 1.36) vs healthy controls (0.29 IU/mL ± 0.90, p = 0.0048) and PWE (0.17 IU/mL ± 0.33, p = 0.0088). Treatment with either anti-CD20 mAbs (0.28 IU/mL ± 0.57) or DMF (0.07 IU/mL ± 0.15) resulted in a cellular response equivalent to control levels or in PWE (p = 0.26). The results of recording IL-2 response were concordant with IFN-γ: with suppression also seen with anti-CD20 mAbs and DMF. By contrast, we did not record any differential effect of DMTs on the levels of IgG to either EBNA-1 or VCA. Nor did we observe differences in cellular response to cytomegalovirus between groups. DISCUSSION: This study demonstrates how testing and recording the cellular response to EBNA-1 in pwMS may be beneficial. EBNA-1 stimulation of whole blood samples produced higher levels of IFN-γ and IL-2 in pwMS compared with controls and PWE. In addition, we show a differential effect of currently available DMTs on this response. The functional assay deployed uses whole blood samples with minimal preprocessing suggesting that employment as a treatment response measure in clinical trials targeting EBV may be possible.


Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Antibodies, Viral , Antigens, Viral , Capsid Proteins , Cross-Sectional Studies , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/immunology , Immunity, Cellular , Immunoglobulin G , Interferon-gamma , Interleukin-2 , Multiple Sclerosis/drug therapy , Multiple Sclerosis/virology
13.
Nature ; 623(7985): 139-148, 2023 Nov.
Article En | MEDLINE | ID: mdl-37748514

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
14.
J Infect Dis ; 228(12): 1675-1679, 2023 12 20.
Article En | MEDLINE | ID: mdl-37562051

The use of soluble recombinant angiotensin-converting enzyme 2 (rACE2) as a decoy capable of blocking SARS-CoV-2 entry into cells has been envisaged as a therapeutic strategy to reduce viral loads in patients with severe COVID-19. We engineered a novel form of rACE2, fused to the Epstein-Barr virus antigen P18F3 (rACE2-P18F3), to reorient a preexisting humoral response toward Epstein-Barr virus against SARS-CoV-2 particles. Recombinant ACE2-P18F3 was able to bind to the SARS-CoV-2 spike protein, neutralize viral entry into cells, and promote the phagocytosis of spheres coated with different spike variants by monocytic cells. The results position rACE2-P18F3 as a promising therapeutic candidate to universally block coronavirus cell entry and clear viral particles.


Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19 , Herpesvirus 4, Human , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Herpesvirus 4, Human/immunology , Peptidyl-Dipeptidase A/genetics , Protein Binding , Recombinant Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
15.
N Engl J Med ; 389(9): 808-819, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37646678

BACKGROUND: Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS: We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS: P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS: Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).


Antibodies, Viral , Early Detection of Cancer , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Viral Proteins , Humans , Antibodies, Viral/immunology , Case-Control Studies , Herpesvirus 4, Human/immunology , Immunoglobulin A , Mass Screening , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Prospective Studies , Retrospective Studies , Biomarkers/analysis , Viral Proteins/immunology , Epitopes/immunology
17.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35917353

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Proteins , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Cryoelectron Microscopy , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , Humans , Membrane Fusion , Mice , Viral Proteins/immunology
20.
Front Immunol ; 13: 829943, 2022.
Article En | MEDLINE | ID: mdl-35154153

Tumor cells of classic Hodgkin lymphoma (cHL) are derived from antigen presenting B cells that are infected by Epstein Barr virus (EBV) in ~30% of patients. Polymorphic Killer cell immunoglobulin-like receptors (KIRs) expressed on NK cells interact with human leukocyte antigen (HLA) class I and play a key role in immune surveillance against virally infected cells and tumor cells. We investigated the effect of KIR types on cHL susceptibility overall (n=211) and in EBV-stratified subgroups using the Dutch GoNL cohort as controls (n=498). The frequency of the KIR haplotype B subgroup was significantly different between EBV+ and EBV- cHL patients (62% vs. 77%, p=0.04) and this difference was more pronounced in nodular sclerosis (NS) cHL (49% vs. 79%, p=0.0003). The frequency of KIR haplotype B subgroup was significantly lower in EBV+ NS cHL compared to controls (49% vs. 67%, p=0.01). Analyses of known KIR - HLA interaction pairs revealed lower carrier frequencies of KIR2DS2 - HLA-C1 (29% vs. 46%, p=0.03) and KIR2DL2 - HLA-C1 (29% vs. 45%, p=0.04) in EBV+ NS cHL patients compared to controls. Carriers of the KIR haplotype B subgroup are less likely to develop EBV+ NS cHL, probably because of a more efficient control over EBV-infected B cells.


Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Hodgkin Disease/immunology , Receptors, KIR2DL2/immunology , Receptors, KIR/immunology , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Female , Haplotypes/immunology , Humans , Male , Middle Aged , Young Adult
...