Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 930
1.
PLoS Biol ; 22(4): e3002304, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662791

Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.


Symbiosis , Animals , Host Microbial Interactions/physiology , Heteroptera/microbiology , Heteroptera/physiology , Genetic Variation , Biodiversity , Ecosystem , Microbiota
2.
Viruses ; 16(4)2024 04 10.
Article En | MEDLINE | ID: mdl-38675929

Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant-virus-vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant-omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato.


Begomovirus , Hemiptera , Insect Vectors , Plant Diseases , Solanum lycopersicum , Begomovirus/physiology , Solanum lycopersicum/virology , Animals , Plant Diseases/virology , Hemiptera/virology , Hemiptera/physiology , Insect Vectors/virology , Heteroptera/virology , Heteroptera/physiology , Plant Defense Against Herbivory
3.
Neotrop Entomol ; 53(2): 391-399, 2024 Apr.
Article En | MEDLINE | ID: mdl-38347318

The peanut thrips, Enneothrips enigmaticus (Thysanoptera: Thrypidae), is an important pest of the peanut (Arachis hypogaea) in South America. Due to concerns about the environment and human health induced by the extensive use of pesticides in the management control of pests, environmentally and friendlier tactics must be targeted. Thus, this study investigates, for the first time, the behavior of Xylocoris sordidus (Hemiptera: Anthocoridae) as a biological control agent for E. enigmaticus. The methodology included no-choice tests to assess whether the predation rate varies according to the developmental stage of the prey, as well as the predator's developmental stage with the highest predation capacity. Additionally, an analysis of the functional response of adult and 5th instar nymphs of X. sordidus exposed to different densities of E. enigmaticus nymphs (1, 2, 4, 8, 16, and 32) was conducted. The results confirm the predation of peanut thrips by X. sordidus, with a higher predation rate in the nymphal stages of the prey. There was no difference in predation capacity between predator nymphs and adults, and exhibiting a type II functional response. Therefore, the potential of X. sordidus as a biological control agent for E. enigmaticus is confirmed, showing the importance of adopting measures to preserve this predator in peanut crops.


Hemiptera , Heteroptera , Thysanoptera , Humans , Animals , Biological Control Agents , Heteroptera/physiology , Predatory Behavior , Nymph/physiology , Arachis , Pest Control, Biological
4.
Pest Manag Sci ; 80(6): 2892-2904, 2024 Jun.
Article En | MEDLINE | ID: mdl-38411441

BACKGROUND: Given the chemical diversity within stink bugs scent glands, they can be convenient models for bioprospecting novel pest control products. Preliminary behaviour observations indicated that adult Mictis fuscipes stink bugs secrete liquid droplets when defending against Solenopsis invicta fire ants, killing them within minutes. Hence, this study aimed to analyse the chemical composition of the metathoracic scent gland secretions of M. fuscipes adults, as well as assess their biological activities against fire ants. RESULTS: Bioassaying fire ants against secretions of several local stink bugs confirmed that the defensive secretions of two Mictis species are significantly more lethal, where M. fuscipes was the most lethal. Volatiles chromatography analysis indicated the secretions of female and male M. fuscipes stink bugs contains 20 and 26 components, respectively, chiefly hexanoic acid and hexyl hexanoate. Five compounds were consistently present in the secretion of female adults: hexyl hexanoate, hexanoic acid, hexyl acetate, hexyl butyrate, and eugenol. These yielded a strong electrophysiological antennal (EAD) response from S. invicta workers, female alates and males, where hexyl acetate showed the strongest response. The combination of these five compounds proved strongly repellent to S. invicta. When tested singly, hexanoic acid, hexyl butyrate, hexyl hexanoate, and eugenol were repellent to S. invicta, but hexyl acetate seemed slightly attractive. Additionally, the same mixture of five components exhibited strong contact and fumigant toxicity towards S. invicta workers, eugenol being the strongest. CONCLUSION: Defensive chemicals of M. fuscipes exhibit robust biological activity against S. invicta and could inspire the development of biopesticides. © 2024 Society of Chemical Industry.


Ants , Scent Glands , Animals , Female , Male , Ants/drug effects , Scent Glands/chemistry , Heteroptera/drug effects , Heteroptera/physiology , Hemiptera/drug effects , Hemiptera/physiology , Fire Ants
5.
Neotrop Entomol ; 53(3): 531-540, 2024 Jun.
Article En | MEDLINE | ID: mdl-38329712

Anthocoris minki Dohrn (Hemiptera: Anthocoridae) is used as a biological control agent of various agricultural pests. This study determined the effect of different egg laying materials, i.e., faba bean, common bean, and pea on population parameters of A. minki using age-stage, two-sex life table. The longest (34.45 d) and the shortest (21.32 d) adult longevity was noted on common bean and pea, respectively. Likewise, the highest (92%) and the lowest (69%) preadult survival rate was recorded on faba bean and pea, respectively. The highest fecundity (93.74 eggs/female) was noted on faba bean followed by common bean (43.95 eggs/female) and pea (48.69 eggs/female). Oviposition period remained unaffected, while higher oviposition days (22 d) were noted on faba bean compared with common bean (10 d) and pea (14 d). The shortest and the longest adult pre-oviposition period and total pre-ovipositional period were calculated for common bean and pea, respectively. The highest intrinsic rate of increase (r) (0.1159 d-1) and finite rate of increase (λ) (1.1229 d-1) were noted on common bean, while the lowest (r = 0.0939 d-1; λ = 1.0985 d-1) were noted on pea. Paired bootstrap analyses indicated that the highest net reproductive rate (R0) (43.12 offspring) was recorded on faba bean. Egg hatching rate significantly differed among plants (P < 0.01) and it was 80.50%, 71.10%, and 38.90% on common bean, faba bean and pea, respectively. It is concluded that faba bean would be the most suitable host for mass rearing of A. minki, while pea proved unsuitable.


Oviposition , Phaseolus , Pisum sativum , Vicia faba , Animals , Female , Male , Fertility , Longevity , Heteroptera/physiology , Pest Control, Biological , Hemiptera/physiology
6.
Funct Plant Biol ; 512024 01.
Article En | MEDLINE | ID: mdl-38220246

Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .


Cyclopentanes , Glycine max , Heteroptera , Oxylipins , Animals , Lipoxygenases , Seeds , Heteroptera/physiology , Protein Isoforms , Enzyme Inhibitors , Scavenger Receptors, Class E
7.
New Phytol ; 242(1): 278-288, 2024 Apr.
Article En | MEDLINE | ID: mdl-37984873

Mimicry is the phenomenon in which one species (the mimic) closely resembles another (the model), enhancing its own fitness by deceiving a third party into interacting with it as if it were the model. In plants, mimicry is used primarily to gain fitness by withholding rewards from mutualists or deterring herbivores cost-effectively. While extensive work has been documented on putative defence mimicry, limited investigation has been conducted in the field of chemical mimicry. In this study, we used field experiments, chemical analyses, behavioural assays, and electrophysiology, to test the hypothesis that the birthwort Aristolochia delavayi employs chemical mimicry by releasing leaf scent that closely resembles stink bug defensive compounds and repels vertebrate herbivores. We show that A. delavayi leaf scent is chemically and functionally similar to the generalized defensive volatiles of stink bugs and that the scent effectively deters vertebrate herbivores, likely through the activation of TRPA1 channels via (E)-2-alkenal compounds. This study provides an unequivocal example of chemical mimicry in plants, revealing intricate dynamics between plants and vertebrate herbivores. Our study underscores the potency of chemical volatiles in countering vertebrate herbivory, urging further research to uncover their potentially underestimated importance.


Aristolochia , Heteroptera , Animals , Herbivory , Aristolochia/chemistry , Aristolochia/physiology , Heteroptera/physiology , Vertebrates , Plants
8.
J Econ Entomol ; 117(1): 156-166, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-37978042

Insecticides have been known to reduce the predation efficacy of natural enemies. However, the mechanism of the sublethal effect of insecticides on the functional response of predators remains unclear. This study investigated the sublethal effects of the broad-spectrum insecticide chlorpyrifos on the predatory bug Eocanthecona furcellata (Wolff), which is a potential biological control agent against pests in integrated pest management (IPM) programs. After exposure to a sublethal concentration of chlorpyrifos, the predation capacity and the maximum predatory number of E. furcellata increased by 11.27 and 15.26%, respectively, with prey handling time decreased by 15.07%, and the searching efficiency increased by 5.88-12.61%. Additionally, the intraspecific interference effect was enhanced. Glutathione S-transferase (GST) activity was significantly decreased after 12- to 60-h treatment. At 12 h after treatment, the expression levels of GST gene (GST3), acetylcholinesterase gene (AChE), and cytochrome P450 monooxygenasegene (cyp6B1) were significantly up-regulated by 1.47-, 1.48-, and 2.05-fold, respectively, while GST gene (GST1) was significantly down-regulated by 16.67-fold. These results indicated that a sublethal chlorpyrifos concentration inhibited the GST activity and stimulated the predatory behavior of E. furcellata. The results will advance our understanding of the toxicological mechanism of predatory stink bug responses to insecticides and predict chlorpyrifos' effects on predators in an IPM program.


Chlorpyrifos , Hemiptera , Heteroptera , Insecticides , Animals , Chlorpyrifos/toxicity , Insecticides/pharmacology , Predatory Behavior , Acetylcholinesterase/pharmacology , Heteroptera/physiology
9.
Pest Manag Sci ; 80(3): 1240-1248, 2024 Mar.
Article En | MEDLINE | ID: mdl-37934463

BACKGROUND: Homing-based gene drives targeting sex-specific lethal genes have been used for genetic control. Additionally, understanding insect sex determination provides new targets for managing insect pests. While sex determination mechanisms in holometabolous insects have been thoroughly studied and employed in pest control, the study of the sex determination pathway in hemimetabolous insects is limited to only a few species. Riptortus pedestris (Fabricius; Hemiptera: Heteroptera), commonly known as the bean bug, is a significant pest for soybeans. Nonetheless, the mechanism of its sex determination and the target gene for genetic control are not well understood. RESULTS: We identified Rpfmd as the female determiner gene in the sex determination pathway of R. pedestris. Rpfmd encodes a female-specific serine/arginine-rich protein of 436 amino acids and one non-sex-specific short protein of 98 amino acids. Knockdown of Rpfmd in R. pedestris nymphs caused death of molting females with masculinized somatic morphology but did not affect male development. Knockdown of Rpfmd in newly emerged females inhibited ovary development, while maternal-mediated RNA interference (RNAi) knockdown of Rpfmd expression resulted in male-only offspring. Transcriptome sequencing revealed that Rpfmd regulates X chromosome dosage compensation and influences various biological processes in females but has no significant effect on males. Moreover, RNAi mediated knockdown of Rpfmd-C had no influence on the development of R. pedestris, suggesting that Rpfmd regulates sex determination through female-specific splicing isoforms. We also found that Rpfmd pre-mRNA alternative splicing regulation starts at the 24-h embryo stage, indicating the activation of sex differentiation. CONCLUSION: Our study confirms that Rpfmd, particularly its female-specific isoform (Rpfmd-F), is the female determiner gene that regulates sex differentiation in R. pedestris. Knockdown of Rpfmd results in female-specific lethality without affecting males, making it a promising target for genetic control of this soybean pest throughout its development stages. Additionally, our findings improve the understanding of the sex-determination mechanism in hemimetabolous insects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Heteroptera , Male , Female , Animals , Heteroptera/physiology , Glycine max , Gene Expression Regulation , Amino Acids/metabolism
10.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Article En | MEDLINE | ID: mdl-37769258

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Heteroptera , Symbiosis , Male , Animals , Symbiosis/physiology , Semen , Digestive System/microbiology , Insecta , Heteroptera/physiology , Bacteria/genetics , Metamorphosis, Biological
11.
Sci Rep ; 13(1): 11063, 2023 07 08.
Article En | MEDLINE | ID: mdl-37422493

Several Eurydema species (Hemiptera: Pentatomidae) are considered as pests, however, reports on their chemical ecology are scarce. In the current study we focused on Eurydema ornata (Linnaeus) a pentatomid pest of several brassicaceous crops. Since the species is known to feed preferably on generative parts of plants, a series of floral and green leaf volatiles were tested by electroantennography and compounds eliciting remarkable responses were also tested in the field. Three compounds elicited the most outstanding responses from antennae of E. ornata: allyl isothiocyanate, phenylacetaldehyde and ± linalool. Field experiments were conducted in Hungary between 2017 and 2021 to test the potential attractive effects of the compounds. Three Eurydema species were caught in the experiments E. ornata, E. oleracea (Linnaeus) and E. ventralis Kolenati. In the experiments combinations containing allyl isothiocyanate attracted both males and females of E. ornata. The compound was also attractive on its own, in a positive, dose-dependent manner. When presented alone, neither phenylacetaldehyde nor ± linalool was attractive to the species, furthermore, addition of these compounds to allyl isothiocyanate did not affect attraction considerably. To our knowledge this is the first demonstration of field attration of an Eurydema species to a semiochemical and one of the few reports on trapping of a pentatomid species with a synthetic plant volatile in the field. Perspectives regarding research and potential practical applications are discussed in the paper.


Hemiptera , Heteroptera , Volatile Organic Compounds , Animals , Male , Female , Heteroptera/physiology , Acyclic Monoterpenes/pharmacology , Volatile Organic Compounds/pharmacology
12.
J Evol Biol ; 36(7): 1050-1064, 2023 07.
Article En | MEDLINE | ID: mdl-37428808

Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa - spiders and birds - to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa. The spiders were deterred by the defences of adult bugs, but the larval defences were ineffective against them. By contrast, birds attacked the larvae considerably less often than the adult bugs. The results indicate a predator-specific ontogenetic change in defence effectiveness of both Oxycarenus species. The change in defence is likely linked to the life-stage-specific composition of secretions in both species: whereas secretions of larvae are dominated by unsaturated aldehydes, secretions of adults are rich in terpenoids, which probably serve dual function of defensive chemicals and pheromones. Our results highlight the variation in defence between different life stages and the importance of testing responses of different types of predators.


Heteroptera , Animals , Heteroptera/physiology , Larva , Birds , Aldehydes , Predatory Behavior
13.
J Insect Sci ; 23(4)2023 Jul 01.
Article En | MEDLINE | ID: mdl-37428827

Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a zoophytophagous bug that can derive nutrients from 3 trophic levels: plants, herbivorous arthropods, and other predators. On tomato, besides damaging the plants as they feed, might the mirid also forage on pest species and repel pests. In greenhouse and laboratory experiments, we investigated the functional response of the bug, its prey preference, and its influence on the oviposition potentials of 2 major pest species Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and Phthorimaea absoluta Meyrick (Lepidoptera: Gelechiidae) on tomato Solanum lycopersicum L. (Solanaceae). Nesidiocoris tenuis showed a Type II functional response to both prey species. The estimated handling time was higher for H. armigera eggs than for P. absoluta yet N. tenuis attack rates did not differ between the 2 prey species. Nesidiocoris tenuis did not show a preference for 1 species when prey eggs were provided in equal proportions. The feeding on tomato plants by N. tenuis did not affect oviposition by the 2 moth species, as neither species showed a preference for clean or N. tenuis-adult-damaged plants and clean or N. tenuis-nymph-damaged plants. This study shows that N. tenuis can prey upon eggs of both moth species as the 3 species co-occur in tomato fields. However, because of the shorter handling time of P. absoluta eggs by the predator and the higher number of eggs laid by H. armigera, the co-occurrence might be less detrimental to the H. armigera populations compared to P. absoluta.


Heteroptera , Lepidoptera , Moths , Solanum lycopersicum , Female , Animals , Heteroptera/physiology , Predatory Behavior , Pest Control, Biological , Ovum , Moths/physiology
14.
J Econ Entomol ; 116(4): 1146-1154, 2023 08 10.
Article En | MEDLINE | ID: mdl-37267079

Mirid predators are increasingly used in biological control of multiple greenhouse crops pests. However, due to great morphological similarity and tiny body size, some mirid predators have been largely confused with their allied species. Nesidiocoris tenuis Reuter as a commercial mirid predator was confused largely with Nesidiocoris poppiusi Carvalho in China. To evaluate the biocontrol potential of N. poppiusi, its biological traits and the functional response to Bemisia tabaci Gennadius were studied compared with N. tenuis under laboratory conditions. The results showed that no significant differences of the developmental times from the first instar to adult stages between the 2 mirids fed on Corcyra cephalonica Stainton eggs were observed, while N. poppiusi had better population growth parameters than N. tenuis. Under the condition with prey, both female and male of N. poppiusi lived significantly longer than those of N. tenuis. It could lay 74.0 eggs, which was significantly higher than that of N. tenuis (30.2 eggs). Under the condition without prey, both N. poppiusi and N. tenuis couldn't complete development to adulthood on tomato, tobacco, muskmelon, and cabbage leaves, however, tobacco and tomato were more suitable than the other 2 plants. A type II functional response was observed for both males and females of the 2 predators. Nesidiocoris poppiusi females consumed significantly more B. tabaci pupae than N. tenuis when prey densities were large than 30. Our results indicated that N. poppiusi could be a promising candidate for biological control of B. tabaci.


Heteroptera , Solanum lycopersicum , Female , Male , Animals , Heteroptera/physiology , Predatory Behavior , Crops, Agricultural , China , Pest Control, Biological
15.
Insect Sci ; 30(6): 1637-1647, 2023 Dec.
Article En | MEDLINE | ID: mdl-37144452

Riptortus pedestris (Fabricius), one of the major piercing-sucking insects in soybeans, causes delayed plant senescence and abnormal pods, known as staygreen syndrome. Recent research has shown that direct feeding of this insect is the major cause of soybean staygreen syndrome. However, it remains unclear whether R. pedestris salivary proteins play vital roles in insect infestation. Here, we found that 4 secretory salivary proteins can induce cell death in Nicotiana benthamiana by transient heterologous expression. The cell death induced by Rp2155 relies on the nucleotide-binding leucine-rich repeat helper, HSP90. Tissue-specificity assays indicated that Rp2155 is specifically expressed in the salivary gland of R. pedestris and is significantly induced during insect feeding. The expression of salicylic acid (SA)-, jasmonic acid (JA)-related genes was increased in soybean when fed by Rp2155-silenced R. pedestris. More importantly, soybean staygreen symptoms caused by R. pedestris were significantly alleviated when Rp2155 was silenced. Together, these results suggest that the salivary effector Rp2155 is involved in promoting insect infestation by suppressing the JA and SA pathways, and it can be considered as a potential RNA interference target for insect control.


Glycine max , Heteroptera , Animals , Plant Growth Regulators , Heteroptera/physiology , Signal Transduction , Salivary Proteins and Peptides
16.
J Insect Physiol ; 147: 104508, 2023 06.
Article En | MEDLINE | ID: mdl-37011856

Many herbivorous insects not only cope with plant toxins but also sequester them as a defense against predators and parasitoids. Sequestration is a product of the evolutionary arms race between plants and herbivorous insects and has been hypothesized to incur physiological costs due to specific adaptations required. Contradictory evidence about these costs exists for insects sequestering only one class of toxin, but very little is known about the physiological implications for species sequestering structurally different classes of compounds. Spilostethus saxatilis is a milkweed bug belonging to the cardenolide-sequestering heteropteran subfamily Lygaeinae (Heteroptera: Lygaeidae) that has shifted to the colchicine-containing plant Colchicum autumnale, a resource of chemically unrelated alkaloids. Using feeding-assays on artificial diet and chemical analysis, we assessed whether S. saxatilis is still able to sequester cardenolides apart from colchicine and related metabolites (colchicoids), and tested the effect of (1) either a natural cardenolide concentration (using ouabain as a model compound) or a natural colchicine concentration, (2) an increased concentration of both toxins, and (3) seeds of either Asclepias syriaca (cardenolides) or C. autumnale (colchicoids) on a set of life-history traits. For comparison, we assessed the same life-history traits in the milkweed bug Oncopeltus fasciatus exposed to cardenolides only. Although cardenolides and colchicoids have different physiological targets (Na+/K+-ATPase vs tubulin) and thus require different resistance traits, chronic exposure and sequestration of both isolated toxins caused no physiological costs such as reduced growth, increased mortality, lower fertility, or shorter adult life span in S. saxatilis. Indeed, an increased performance was observed in O. fasciatus and an according trend was found in S. saxatilis when feeding on isolated ouabain and isolated colchicine, respectively. Positive effects were even more pronounced when insects were provided with natural toxic seeds (i.e. C. autumnale for S. saxatilis and A. syriaca for O. fasciatus), especially in O. fasciatus. Our findings suggest, that S. saxatilis can sequester two chemically unrelated classes of plant compounds at a cost-free level, and that colchicoids may even play a beneficial role in terms of fertility.


Alkaloids , Asclepias , Heteroptera , Animals , Heteroptera/physiology , Asclepias/chemistry , Ouabain , Colchicine
17.
mBio ; 14(2): e0052223, 2023 04 25.
Article En | MEDLINE | ID: mdl-37017516

Microbial mutualists are pivotal for insect adaptation, which often entails the evolution of elaborate organs for symbiosis. Addressing what mechanisms underpin the development of such organs is of evolutionary interest. Here, we investigated the stinkbug Plautia stali, whose posterior midgut is transformed into a specialized symbiotic organ. Despite being a simple tube in newborns, it developed numerous crypts in four rows, whose inner cavity hosts a specific bacterial symbiont, during the 1st to 2nd nymphal instar stages. Visualization of dividing cells revealed that active cell proliferation was coincident with the crypt formation, although spatial patterns of the proliferating cells did not reflect the crypt arrangement. Visualization of visceral muscles in the midgut, consisting of circular muscles and longitudinal muscles, uncovered that, strikingly, circular muscles exhibited a characteristic arrangement running between the crypts specifically in the symbiotic organ. Even in the early 1st instar stage, when no crypts were seen, two rows of epithelial areas delineated by bifurcated circular muscles were identified. In the 2nd instar stage, crossing muscle fibers appeared and connected the adjacent circular muscles, whereby the midgut epithelium was divided into four rows of crypt-to-be areas. The crypt formation proceeded even in aposymbiotic nymphs, revealing the autonomous nature of the crypt development. We propose a mechanistic model of crypt formation wherein the spatial arrangement of muscle fibers and the proliferation of epithelial cells underpin the formation of crypts as midgut evaginations. IMPORTANCE Diverse organisms are associated with microbial mutualists, in which specialized host organs often develop for retaining the microbial partners. In light of the origin of evolutionary novelties, it is important to understand what mechanisms underpin the elaborate morphogenesis of such symbiotic organs, which must have been shaped through interactions with the microbial symbionts. Using the stinkbug Plautia stali as a model, we demonstrated that visceral muscular patterning and proliferation of intestinal epithelial cells during the early nymphal stages are involved in the formation of numerous symbiont-harboring crypts arranged in four rows in the posterior midgut to constitute the symbiotic organ. Strikingly, the crypt formation occurred normally even in symbiont-free nymphs, revealing that the crypt development proceeds autonomously. These findings suggest that the crypt formation is deeply implemented into the normal development of P. stali, which must reflect the considerably ancient evolutionary origin of the midgut symbiotic organ in stinkbugs.


Heteroptera , Symbiosis , Infant, Newborn , Animals , Humans , Symbiosis/physiology , Intestines/microbiology , Bacteria , Insecta , Heteroptera/microbiology , Heteroptera/physiology
18.
Bull Entomol Res ; 113(3): 293-298, 2023 Jun.
Article En | MEDLINE | ID: mdl-36883785

Juvenile hormone (JH) plays a pivotal role in almost every aspect of insect development and reproduction. The chemical structure of the JH in heteropteran species has long remained elusive until methyl (2R,3S,10R)-2,3;10,11-bisepoxyfarnesoate, commonly named as juvenile hormone III skipped bisepoxide (JHSB3), was isolated from Plautia stali (Hemiptera: Heteroptera: Pentatomidae). Recently, several groups reported the presence of JHSB3 in other heteropteran species. However, most of the studies paid no attention to the determination of the relative and absolute structure of the JH. In this study, we investigated the JH of the cabbage bug Eurydema rugosa (Hemiptera: Heteroptera: Pentatomidae), known as a pest for wild and cultivated crucifers. JHSB3 was detected in the hexane extract from the corpus allatum (CA) product using a chiral ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) which can inform the absolute stereochemistry of the JH. Its stereoisomers were not detected. Topical application of the synthetic JHSB3 to the last instar nymphs inhibited their metamorphosis and induced nymphal-type colouration of the dorsal abdomen in a dose-dependent manner. Additionally, the topical application of JHSB3 effectively terminated summer and winter diapauses in females. These results indicate that the JH of E. rugosa is JHSB3. Although individuals in summer and winter diapauses are physiologically distinct in E. rugosa, the results suggest that the physiological differences between these diapauses are based, not on the responsiveness to JH, but on the processes governing activation of the CA or on its upstream cascades.


Brassica , Heteroptera , Female , Animals , Juvenile Hormones , Chromatography, Liquid , Tandem Mass Spectrometry , Heteroptera/physiology
19.
Bull Entomol Res ; 113(3): 315-325, 2023 Jun.
Article En | MEDLINE | ID: mdl-36539340

Non-cultivated areas are resting, overwintering, feeding, and/or reproducing habitats for insects, and also places from where crop areas are colonized; thus, they are essential for understanding the biological control programs in agroecosystems. We developed a simulation model for a non-cultivated area of Buenos Aires province (Argentina), and we analyzed the control of Nezara viridula achieved by the action of two parasitoids: the oophagous Trissolcus basalis and the tachinid Trichopoda giacomellii, which attack older nymphs and adults. The model is a discrete time, deterministic, phenomenological, spatially homogeneous with a 1-week time interval simulation model, based on the age-structure and/or stage-structure of N. viridula and its two parasitoids. The host-parasitoid interactions were combined with a degree-day model affecting development times of T. giacomellii pupae and T. basalis pre-imaginal stages. The simultaneous attack of both parasitoid species enables the persistence of the system at low host densities, mediated by the functional response of the parasitoids, identified as population regulation factors. However, if only one parasitoid exists (i.e., only T. basalis or only T. giacomellii) the interaction N. viridula-parasitoid persisted but at higher density of N. viridula. These results explain the successful biological control of N. viridula after the introduction of T. basalis in the 1980s, when T. giacomellii was the only parasitoid present, unable to control N. viridula. Our model shows an indirect competition when both parasitoids are present: the attack of one of them diminished the potential number of hosts available to the other parasitoid species. In the field this interaction is obscured by the hibernation period which acted as a reset mechanism affecting the density and age/stage structure of all three populations. Our model was supported by field observations, and never exhibited the extinction of any of the parasitoids from the interaction.


Diptera , Heteroptera , Hymenoptera , Pest Control, Biological , Animals , Diptera/physiology , Ecosystem , Heteroptera/parasitology , Heteroptera/physiology , Host-Parasite Interactions , Hymenoptera/physiology
20.
New Phytol ; 237(5): 1876-1890, 2023 03.
Article En | MEDLINE | ID: mdl-36404128

Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R. pedestris, not transmission of a pathogen by this pest, is the primary cause of typical soybean staygreen syndrome and that critical feeding damage occurs at the early pod stage. Transcriptome profiling of soybean indicated that many signal transduction pathways, including photoperiod, hormone, defense response, and photosynthesis, respond to R. pedestris infestation. Importantly, we discovered that members of the FLOWERING LOCUS T (FT) gene family were suppressed by R. pedestris infestation, and overexpression of floral inducer GmFT2a attenuates staygreen symptoms by mediating soybean defense response and photosynthesis. Together, our findings systematically illustrate the association between pest infestation and soybean staygreen syndrome and provide the basis for establishing a targeted soybean pest prevention and control system.


Glycine max , Heteroptera , Plant Diseases , Plant Leaves , Animals , Heteroptera/pathogenicity , Heteroptera/physiology , Photoperiod , Plant Leaves/genetics , Reproduction , Glycine max/genetics , Plant Diseases/etiology , Plant Diseases/genetics , Feeding Behavior
...