Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 8, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616545

RESUMEN

BACKGROUND: Although the wound response of plants has been extensively studied, little is known of the rapid occlusion of wounded cell itself. The laticifer in rubber tree is a specific type of tissue for natural rubber biosynthesis and storage. In natural rubber production, tapping is used to harvest the latex which flows out from the severed laticifer in the bark. Therefore, study of the rapid wound-occlusion of severed laticifer cells is important for understanding the rubber tree being protected from the continuously mechanical wounding. RESULTS: Using cytological and biochemical techniques, we revealed a biochemical mechanism for the rapid occlusion of severed laticifer cells. A protein-network appeared rapidly after tapping and accumulated gradually along with the latex loss at the severed site of laticifer cells. Triple immunofluorescence histochemical localization showed that the primary components of the protein-network were chitinase, ß-1,3-glucanase and hevein together with pro-hevein (ProH) and its carboxyl-terminal part. Molecular sieve chromatography showed that the physical interactions among these proteins occurred under the condition of neutral pH. The interaction of ß-1,3-glucanase respectively with hevein, chitinase and ProH was testified by surface plasmon resonance (SPR). The interaction between actin and ß-1,3-glucanase out of the protein inclusions of lutoids was revealed by pull-down. This interaction was pharmacologically verified by cytochalasin B-caused significant prolongation of the duration of latex flow in the field. CONCLUSIONS: The formation of protein-network by interactions of the proteins with anti-pathogen activity released from lutoids and accumulation of protein-network by binding to the cytoskeleton are crucial for the rapid occlusion of laticifer cells in rubber tree. The protein-network at the wounded site of laticifer cells provides not only a physical barrier but also a biochemical barrier to protect the wounded laticifer cells from pathogen invasion.


Asunto(s)
Hevea/fisiología , Corteza de la Planta/fisiología , Proteínas de Plantas/fisiología , Western Blotting , Cromatografía en Gel , Producción de Cultivos , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Hevea/citología , Hevea/metabolismo , Hevea/ultraestructura , Microscopía Electrónica , Corteza de la Planta/citología , Corteza de la Planta/metabolismo , Corteza de la Planta/ultraestructura , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Goma/metabolismo , Resonancia por Plasmón de Superficie
2.
Biomed Res Int ; 2013: 268349, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167813

RESUMEN

Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%). The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.


Asunto(s)
Biocombustibles/microbiología , Biotecnología/métodos , Celulasa/metabolismo , Coriolaceae/fisiología , Etanol/metabolismo , Hevea/microbiología , Madera/microbiología , Cristalización , Hevea/ultraestructura , Hidrólisis , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Madera/ultraestructura , beta-Glucosidasa/metabolismo
3.
Plant Physiol Biochem ; 60: 207-13, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22995218

RESUMEN

The rubber particle is a specialized organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis (para rubber tree). It has been demonstrated that the small rubber particles (SRPs) has higher rubber biosynthesis ratio than the large rubber particles (LRPs), but the underlying molecular mechanism still remains unknown. In this study, LRPs and SRPs were firstly separated from the fresh latex using differential centrifugation, and two-dimensional difference in-gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF was then applied to investigate the proteomic alterations associated with the changed rubber biosynthesis capacity between LRPs and SRPs. A total of 53 spots corresponding to 22 gene products, were significantly altered with the |ratio|≥2.0 and T value ≤0.05, among which 15 proteins were up-regulated and 7 were down-regulated in the SRPs compared with the LRPs. The 15 up-regulated proteins in the SRPs included small rubber particle protein (SRPP), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), phospholipase D alpha (PLD α), ethylene response factor 2, eukaryotic translation initiation factor 5A isoform IV (eIF 5A-4), 70-kDa heat shock cognate protein (HSC 70), several unknown proteins, etc., whereas the 7 up-regulated proteins in the LRPs were rubber elongation factor (REF, 19.6kDa), ASR-like protein 1, REF-like stress-related protein 1, a putative phosphoglyceride transfer family protein, ß-1,3-glucanase, a putative retroelement, and a hypothetical protein. Since several proteins related to rubber biosynthesis were differentially expressed between LRPs and SRPs, the comparative proteome data may provide useful insights into understanding the mechanism involved in rubber biosynthesis and latex coagulation in H. brasiliensis.


Asunto(s)
Hevea/química , Látex/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Goma/aislamiento & purificación , Electroforesis Bidimensional Diferencial en Gel/métodos , Regulación hacia Abajo , Hevea/metabolismo , Hevea/ultraestructura , Látex/metabolismo , Microscopía Electrónica de Rastreo , Orgánulos/metabolismo , Orgánulos/ultraestructura , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Goma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Regulación hacia Arriba
4.
Ultramicroscopy ; 104(3-4): 290-301, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15990230

RESUMEN

Environmental scanning electron microscopy (ESEM) enables wet samples to be observed without potentially damaging sample preparation through the use of partial water vapour pressure in the microscope specimen chamber. However, in the case of latices in colloidal state or microorganisms, samples are not only wet, but made of objects totally submerged in a liquid phase. In this case, under classical ESEM imaging conditions only the top surface of the liquid is imaged, with poor contrast, and possible drifting of objects. The present paper describes experiments using a powerful new Scanning Transmission Electron Microscopy (STEM) imaging system, that allows transmission observations of wet samples in an ESEM. A special device, designed to observe all sorts of objects submerged in a liquid under annular dark-field imaging conditions, is described. Specific features of the device enable to avoid drifting of floating objects which occurs in the case of a large amount of water, thus allowing slow-scan high-definition imaging of particles with a diameter down to few tens of nm. The large potential applications of this new technique are then illustrated, including the imaging of different nano-objects in water. The particular case of grafted latex particles is discussed, showing that it is possible to observe details on their surface when submerged in water. All the examples demonstrate that images acquired in wet STEM mode show particularly good resolution and contrast, without adding enhancing contrast objects, and without staining.


Asunto(s)
Monitoreo del Ambiente/métodos , Microscopía Electrónica de Transmisión de Rastreo/métodos , Agua , Oro/análisis , Hevea/ultraestructura , Microscopía Electrónica de Transmisión de Rastreo/instrumentación , Nanoestructuras/ultraestructura , Polímeros/análisis , Pseudomonas syringae/ultraestructura
5.
J Exp Bot ; 54(384): 985-92, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12598569

RESUMEN

Rubber biosynthesis takes place on the surface of rubber particles. These particles are surrounded by a monolayer membrane in which the rubber transferase is anchored. In order to gain better insight into whether rubber particles from different plant species share common structural characteristics, the micromorphology of rubber particles from Ficus carica, Ficus benghalensis, and Hevea brasiliensis was examined by electron microscopy. Rubber particles of all three species were spherical in shape, and the size of rubber particles of H. brasiliensis was much smaller than those of F. carica and F. benghalensis. In addition, investigations were undertaken to compare the cross-reactivity of the antibody raised against either the H. brasiliensis small rubber particle protein (SRPP) which is suggested to be involved in rubber biosynthesis, or the cis-prenyltransferase (CPT) which has an activity similar to rubber transferase. Both western analysis and TEM-immunogold labelling studies showed that rubber particles of F. carica and F. benghalensis do not contain the SRPP. None of the rubber particles in F. carica, F. benghalensis and H. brasiliensis contained the CPT, suggesting that the CPT itself could not catalyse the formation of high molecular weight rubber. These results indicate that rubber particles in the three different plant species investigated share some degree of similarity in architecture, and that the SRPP and CPT themselves are not the core proteins necessary for rubber biosynthesis.


Asunto(s)
Ficus/metabolismo , Hevea/metabolismo , Proteínas de Plantas/metabolismo , Goma/metabolismo , Western Blotting , Ficus/ultraestructura , Hevea/ultraestructura , Inmunohistoquímica , Microscopía Inmunoelectrónica , Tamaño de la Partícula , Goma/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA