Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.030
1.
Nat Commun ; 15(1): 4047, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744873

Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.


Hippocampus , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/cytology , Hippocampus/cytology , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/cytology , Metals/chemistry , Transcriptome , Dentate Gyrus/cytology , Dentate Gyrus/metabolism
2.
Front Neural Circuits ; 18: 1358570, 2024.
Article En | MEDLINE | ID: mdl-38715983

A morphologically present but non-functioning synapse is termed a silent synapse. Silent synapses are categorized into "postsynaptically silent synapses," where AMPA receptors are either absent or non-functional, and "presynaptically silent synapses," where neurotransmitters cannot be released from nerve terminals. The presence of presynaptically silent synapses remains enigmatic, and their physiological significance is highly intriguing. In this study, we examined the distribution and developmental changes of presynaptically active and silent synapses in individual neurons. Our findings show a gradual increase in the number of excitatory synapses, along with a corresponding decrease in the percentage of presynaptically silent synapses during neuronal development. To pinpoint the distribution of presynaptically active and silent synapses, i.e., their positional information, we employed Sholl analysis. Our results indicate that the distribution of presynaptically silent synapses within a single neuron does not exhibit a distinct pattern during synapse development in different distance from the cell body. However, irrespective of neuronal development, the proportion of presynaptically silent synapses tends to rise as the projection site moves farther from the cell body, suggesting that synapses near the cell body may exhibit higher synaptic transmission efficiency. This study represents the first observation of changes in the distribution of presynaptically active and silent synapses within a single neuron.


Hippocampus , Neurons , Synapses , Animals , Hippocampus/cytology , Hippocampus/physiology , Neurons/physiology , Synapses/physiology , Cells, Cultured , Presynaptic Terminals/physiology , Excitatory Postsynaptic Potentials/physiology , Rats , Synaptic Transmission/physiology
3.
Methods Mol Biol ; 2799: 29-46, 2024.
Article En | MEDLINE | ID: mdl-38727901

The expression and activity of ionotropic glutamate receptors control signal transduction at the excitatory synapses in the CNS. The NMDAR comprises two obligatory GluN1 subunits and two GluN2 or GluN3 subunits in different combinations. Each GluN subunit consists of four domains: the extracellular amino-terminal and agonist-binding domains, the transmembrane domain, and the intracellular C-terminal domain (CTD). The CTD interaction with various classes of intracellular proteins is critical for trafficking and synaptic localization of NMDARs. Amino acid mutations or the inclusion of premature stop codons in the CTD could contribute to the emergence of neurodevelopmental and neuropsychiatric disorders. Here, we describe the method of preparing primary hippocampal neurons and lentiviral particles expressing GluN subunits that can be used as a model to study cell surface expression and synaptic localization of NMDARs. We also show a simple method of fluorescence immunostaining of eGFP-tagged GluN2 subunits and subsequent microscopy technique and image analysis to study the effects of disease-associated mutations in the CTDs of GluN2A and GluN2B subunits.


Hippocampus , Neurons , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Hippocampus/metabolism , Hippocampus/cytology , Neurons/metabolism , Animals , Protein Subunits/metabolism , Protein Subunits/genetics , Cells, Cultured , Rats , Humans , Lentivirus/genetics , Primary Cell Culture/methods , Gene Expression
4.
Methods Cell Biol ; 187: 57-72, 2024.
Article En | MEDLINE | ID: mdl-38705630

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Hippocampus , Receptors, AMPA , Synapses , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Receptors, AMPA/metabolism , Synapses/metabolism , Synapses/ultrastructure , Membrane Proteins/metabolism , Gold/chemistry , Microscopy, Electron/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
5.
Nature ; 629(8011): 384-392, 2024 May.
Article En | MEDLINE | ID: mdl-38600385

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
6.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Article En | MEDLINE | ID: mdl-38570661

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Astrocytes , Calcium Signaling , Hippocampus , Locus Coeruleus , Animals , Locus Coeruleus/physiology , Locus Coeruleus/cytology , Astrocytes/physiology , Mice , Hippocampus/physiology , Hippocampus/cytology , Male , Calcium Signaling/physiology , Female , Optogenetics , Mice, Transgenic , Neurons/physiology , Mice, Inbred C57BL , Calcium/metabolism
7.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Article En | MEDLINE | ID: mdl-38589666

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Hippocampus , Microglia , Synapses , Animals , Microglia/metabolism , Synapses/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Dendritic Spines/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Neuronal Plasticity , Neurons/metabolism , Glutamic Acid/metabolism
8.
Nature ; 629(8011): 393-401, 2024 May.
Article En | MEDLINE | ID: mdl-38632400

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Hippocampus , Memory, Short-Term , Neurons , Theta Rhythm , Memory, Short-Term/physiology , Humans , Hippocampus/physiology , Hippocampus/cytology , Neurons/physiology , Theta Rhythm/physiology , Male , Frontal Lobe/physiology , Frontal Lobe/cytology , Female , Cognition/physiology , Gamma Rhythm/physiology , Temporal Lobe/physiology , Temporal Lobe/cytology , Adult
9.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670072

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Neurons , Animals , Mice , Rats , Neurons/metabolism , Neurons/cytology , Neurons/physiology , Blastocyst/metabolism , Blastocyst/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Brain/cytology , Brain/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Species Specificity , Mice, Inbred C57BL , Male
10.
BMC Microbiol ; 24(1): 134, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654189

BACKGROUND: The incidence of exertional heat stroke (EHS) escalates during periods of elevated temperatures, potentially leading to persistent cognitive impairment postrecovery. Currently, effective prophylactic or therapeutic measures against EHS are nonexistent. METHODS: The selection of days 14 and 23 postinduction for detailed examination was guided by TEM of neuronal cells and HE staining of intestinal villi and the hippocampal regions. Fecal specimens from the ileum and cecum at these designated times were analyzed for changes in gut microbiota and metabolic products. Bioinformatic analyses facilitated the identification of pivotal microbial species and metabolites. The influence of supplementing these identified microorganisms on behavioral outcomes and the expression of functional proteins within the hippocampus was subsequently assessed. RESULTS: TEM analyses of neurons, coupled with HE staining of intestinal villi and the hippocampal region, indicated substantial recovery in intestinal morphology and neuronal injury on Day 14, indicating this time point for subsequent microbial and metabolomic analyses. Notably, a reduction in the Lactobacillaceae family, particularly Lactobacillus murinus, was observed. Functional annotation of 16S rDNA sequences suggested diminished lipid metabolism and glycan biosynthesis and metabolism in EHS models. Mice receiving this intervention (EHS + probiotics group) exhibited markedly reduced cognitive impairment and increased expression of BDNF/TrKB pathway molecules in the hippocampus during behavioral assessment on Day 28. CONCLUSION: Probiotic supplementation, specifically with Lactobacillus spp., appears to mitigate EHS-induced cognitive impairment, potentially through the modulation of the BDNF/TrKB signaling pathway within the hippocampus, illustrating the therapeutic potential of targeting the gut-brain axis.


Cognitive Dysfunction , Gastrointestinal Microbiome , Heat Stroke , Animals , Female , Male , Mice , Brain-Gut Axis , Cognitive Dysfunction/diet therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/psychology , Gastrointestinal Microbiome/physiology , Heat Stroke/complications , Heat Stroke/metabolism , Heat Stroke/physiopathology , Hippocampus/cytology , Hippocampus/physiopathology , Lactobacillus/metabolism , Neurons/ultrastructure , Probiotics , Behavior, Animal , Fatty Acids, Volatile/metabolism
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 335-341, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38686415

Place cell with location tuning characteristics play an important role in brain spatial cognition and navigation, but there is relatively little research on place cell screening and its influencing factors. Taking pigeons as model animals, the screening process of pigeon place cell was given by using the spike signal in pigeon hippocampus under free activity. The effects of grid number and filter kernel size on the place field of place cells during the screening process were analyzed. The results from the real and simulation data showed that the proposed place cell screening method presented in this study could effectively screen out place cell, and the research found that the size of place field was basically inversely proportional to the number of grids divided, and was basically proportional to the size of Gaussian filter kernel in the overall trend. This result will not only help to determine the appropriate parameters in the place cell screening process, but also promote the research on the neural mechanism of spatial cognition and navigation of birds such as pigeons.


Columbidae , Hippocampus , Columbidae/physiology , Animals , Hippocampus/cytology , Hippocampus/physiology , Place Cells/physiology , Spatial Navigation/physiology , Cognition , Action Potentials
12.
Cell ; 187(8): 1922-1935.e20, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38554707

The hippocampus is critical for episodic memory. Although hippocampal activity represents place and other behaviorally relevant variables, it is unclear how it encodes numerous memories of specific events in life. To study episodic coding, we leveraged the specialized behavior of chickadees-food-caching birds that form memories at well-defined moments in time whenever they cache food for subsequent retrieval. Our recordings during caching revealed very sparse, transient barcode-like patterns of firing across hippocampal neurons. Each "barcode" uniquely represented a caching event and transiently reactivated during the retrieval of that specific cache. Barcodes co-occurred with the conventional activity of place cells but were uncorrelated even for nearby cache locations that had similar place codes. We propose that animals recall episodic memories by reactivating hippocampal barcodes. Similarly to computer hash codes, these patterns assign unique identifiers to different events and could be a mechanism for rapid formation and storage of many non-interfering memories.


Birds , Hippocampus , Memory, Episodic , Animals , Birds/physiology , Feeding Behavior , Food , Hippocampus/cytology , Hippocampus/physiology , Neurons/cytology
13.
Nature ; 627(8005): 821-829, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448584

Animals in the natural world constantly encounter geometrically complex landscapes. Successful navigation requires that they understand geometric features of these landscapes, including boundaries, landmarks, corners and curved areas, all of which collectively define the geometry of the environment1-12. Crucial to the reconstruction of the geometric layout of natural environments are concave and convex features, such as corners and protrusions. However, the neural substrates that could underlie the perception of concavity and convexity in the environment remain elusive. Here we show that the dorsal subiculum contains neurons that encode corners across environmental geometries in an allocentric reference frame. Using longitudinal calcium imaging in freely behaving mice, we find that corner cells tune their activity to reflect the geometric properties of corners, including corner angles, wall height and the degree of wall intersection. A separate population of subicular neurons encode convex corners of both larger environments and discrete objects. Both corner cells are non-overlapping with the population of subicular neurons that encode environmental boundaries. Furthermore, corner cells that encode concave or convex corners generalize their activity such that they respond, respectively, to concave or convex curvatures within an environment. Together, our findings suggest that the subiculum contains the geometric information needed to reconstruct the shape and layout of naturalistic spatial environments.


Environment , Form Perception , Hippocampus , Neurons , Animals , Female , Male , Mice , Calcium/analysis , Calcium/metabolism , Form Perception/physiology , Hippocampus/cytology , Hippocampus/physiology , Neurons/metabolism , Neurons/physiology , Surface Properties
14.
Nature ; 625(7993): 101-109, 2024 Jan.
Article En | MEDLINE | ID: mdl-38093010

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 µm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.


DNA Barcoding, Taxonomic , Genomics , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Barcoding, Taxonomic/methods , Epigenesis, Genetic , Gene Expression Profiling , Genomics/methods , Melanoma/genetics , Melanoma/pathology , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Receptors, Antigen, T-Cell/genetics , RNA/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , Tumor Microenvironment , Hippocampus/cytology , Hippocampus/metabolism , Single-Cell Gene Expression Analysis , Organ Specificity , Ligands , Response Elements/genetics , Transcription Factors/metabolism
15.
Science ; 382(6668): 262-263, 2023 10 20.
Article En | MEDLINE | ID: mdl-37856580

Hierarchical organization of memory is observed in the brains of rats.


Hippocampus , Memory, Episodic , Neurons , Animals , Rats , Neurons/physiology , Hippocampus/cytology , Hippocampus/physiology
16.
Science ; 382(6668): eadi8237, 2023 10 20.
Article En | MEDLINE | ID: mdl-37856604

Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).


Hippocampus , Memory, Episodic , Mental Recall , Animals , Rats , Conditioning, Classical , Hippocampus/cytology , Hippocampus/physiology , Optogenetics , Theta Rhythm , Male , Rats, Long-Evans , Association Learning
17.
Science ; 382(6669): 417-423, 2023 10 27.
Article En | MEDLINE | ID: mdl-37883535

Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.


Callithrix , Facial Recognition , Hippocampus , Neurons , Social Identification , Voice Recognition , Animals , Hippocampus/cytology , Hippocampus/physiology , Callithrix/physiology , Callithrix/psychology , Facial Recognition/physiology , Voice Recognition/physiology , Neurons/physiology , Social Networking
18.
Science ; 382(6669): 372-373, 2023 10 27.
Article En | MEDLINE | ID: mdl-37883556

Hippocampal cells integrate multisensory input to represent the identity of others.


Callithrix , Hippocampus , Identity Recognition , Animals , Callithrix/physiology , Callithrix/psychology , Hippocampus/cytology , Hippocampus/physiology , Identity Recognition/physiology
19.
Nature ; 622(7981): 120-129, 2023 Oct.
Article En | MEDLINE | ID: mdl-37674083

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Astrocytes , Central Nervous System , Glutamic Acid , Signal Transduction , Adult , Humans , Astrocytes/classification , Astrocytes/cytology , Astrocytes/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Neurons/metabolism , Synaptic Transmission , Calcium/metabolism , Exocytosis , Single-Cell Gene Expression Analysis , Vesicular Glutamate Transport Protein 1/deficiency , Vesicular Glutamate Transport Protein 1/genetics , Gene Deletion , Cerebral Cortex/cytology , Cerebral Cortex/metabolism
20.
Nature ; 621(7978): 381-388, 2023 Sep.
Article En | MEDLINE | ID: mdl-37648849

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Hippocampus , Neural Pathways , Orexins , Humans , Body Mass Index , Cohort Studies , Cues , Electrophysiology , Evoked Potentials/physiology , Feeding and Eating Disorders/metabolism , Feeding Behavior , Food , Hippocampus/anatomy & histology , Hippocampus/cytology , Hippocampus/metabolism , Obesity/metabolism , Orexins/metabolism
...