Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.444
Filtrar
1.
Medicina (Kaunas) ; 60(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39064467

RESUMEN

Background and Objectives: An oral lichen planus (OLP) chronic lesion refers to a group of oral potentially malignant disorders (OPMDs) that still lack a proper understanding from the point of view of relevant biomarkers for diagnostics and prognosis. The aim of the study was to assess the salivary histamine levels in patients with oral lichen planus lesions. Materials and Methods: The study included a group of 76 patients with oral lichen planus. General diseases and medication taken, smoking habits, severity of pain assessed using a visual analogue scale (VAS), oral hygiene status, and duration of OLP were evaluated. ELISA diagnostics for histamines in saliva levels were assessed. Results: The histamine levels in the OLP group were higher (0.468) in comparison with the control group (0.056), without a statistically significant value p = 0.090 (Mann-Whitney U Test). The median age of 76 OLP patients was 63 years (min 22.0-max. 81), with the biological sex being 80.3% females and 15 19.7% males. The average duration of OLP lesion presence was 29.4 months (SD 37.1) and the median value was 14.5 months. The median of the VAS was 3.0. OLP assessment in accordance with the Malhotra methodology showed the highest frequency-30.3% for only two of the point areas involved and 17.1% for three points. Clinical assessment of the different OLP grades, severity, and oral site involvement and the VAS in correlation with histamine salivary levels showed a lack of statistical significance in the investigated population. Conclusions: Undertaking further research could provide further possibilities for searching for general factors in OLP development.


Asunto(s)
Histamina , Liquen Plano Oral , Saliva , Humanos , Femenino , Masculino , Histamina/análisis , Histamina/metabolismo , Liquen Plano Oral/metabolismo , Liquen Plano Oral/diagnóstico , Persona de Mediana Edad , Saliva/química , Anciano , Adulto , Anciano de 80 o más Años , Biomarcadores/análisis , Dimensión del Dolor/métodos
2.
Anal Chem ; 96(31): 12862-12874, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39045809

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) detection platforms with high signal-to-noise ratio in the "biological-silent" region (1800-2800 cm-1) are presently being developed for sensing and imaging applications, overcoming the limitations of traditional SERS studies in the "fingerprint" region. Herein, a series of cyano-programmable Raman reporters (RRs) operating in the "biological-silent" region were designed based on 4-mercaptobenzonitrile derivatives and then embedded in core-shell Au@Ag nanostars using a "bottom-up" strategy to provide SERS enhancement and encapsulation protection. The approach enabled the "one-pot" readout interference-free detection of multiple bioamines (histamine, tyramine, and ß-phenethylamine) based on aptamer-driven magnetic-induced technology. Three cyano-encoded SERS tags resulted in separate SERS signals for histamine, tyramine, and ß-phenethylamine at 2220, 2251, and 2150 cm-1, respectively. A target-specific aptamer-complementary DNA competitive binding strategy allowed the formation of microscale core-satellite assemblies between Fe3O4-based magnetic beads and the SERS tags, enabling multiple SERS signals to be observed simultaneously under a 785 nm laser excitation laser. The LODs for detection of the three bioamines were 0.61 × 10-5, 2.67 × 10-5, and 1.78 × 10-5 mg L-1, respectively. The SERS-encoded platform utilizing programmable reporters provides a fast and sensitive approach for the simultaneous detection of multiple biomarkers, paving the way for routine SERS analyses of multiple analytes in complex matrices.


Asunto(s)
Oro , Plata , Espectrometría Raman , Tiramina , Espectrometría Raman/métodos , Plata/química , Oro/química , Tiramina/química , Tiramina/análisis , Nanopartículas del Metal/química , Fenetilaminas/análisis , Aptámeros de Nucleótidos/química , Histamina/análisis , Límite de Detección , Nitrilos/química
3.
Talanta ; 278: 126531, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002262

RESUMEN

Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and ß-cyclodextrin-modified Ag nanoparticles (ß-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 µM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.


Asunto(s)
Histamina , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Histamina/análisis , Histamina/química , Plata/química , Nanopartículas del Metal/química , Límite de Detección , Compuestos Azo/química , Ácidos Esteáricos/química , Animales , Peces , Propiedades de Superficie
4.
Food Res Int ; 190: 114558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945562

RESUMEN

Fermented beverages, including wine, can accumulate high concentrations of biogenic amines (BAs), which can pose potential health risks. BAs are produced by various yeasts and lactic acid bacteria (LAB) during winemaking. LAB are the main contributors to the formation of histamine and tyramine, the most toxic and food safety relevant biogenic amines. Numerous factors, ranging from agricultural and oenological practices to sanitation conditions, can contribute to the formation of BAs in wines. Moreover, organic and biodynamic wines impose limitations on the use of common food additives employed to control the proliferation of native and spoilage microorganisms during vinification and storage. To mitigate histamine production, commercial starter cultures incapable of synthesising histamine have been effectively utilised to reduce wine histamine content. Alternative fermentative microorganisms are currently under investigation to enhance the safety, quality, and typicity of wines, including indigenous LAB, non-Saccharomyces yeasts, and BAs degrading strains. Furthermore, exploration of extracts from BAs-degrading microorganisms and their purified enzymes has been undertaken to reduce BAs levels in wines. This review highlights microbial contributors to BAs in wines, factors affecting their growth and BA production, and alternative microorganisms that can degrade or avoid BAs. The aim is to lessen reliance on additives, providing consumers with safer wine choices.


Asunto(s)
Aminas Biogénicas , Fermentación , Vino , Levaduras , Vino/análisis , Vino/microbiología , Aminas Biogénicas/análisis , Levaduras/metabolismo , Microbiología de Alimentos , Histamina/análisis , Histamina/metabolismo , Tiramina/análisis , Lactobacillales/metabolismo
5.
ACS Appl Bio Mater ; 7(6): 4093-4101, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833550

RESUMEN

Detection of chemical substances is essential for living a healthy and cultural life in the modern world. One type of chemical sensing technology, biosensing, uses biological components with molecular recognition abilities, enabling a broad spectrum of sensing targets. Short single-stranded nucleic acids called aptamers are one of the biological molecules used in biosensing, and sensing methods combining aptamers and hydrogels have been researched for simple sensing applications. In this research, we propose a hydrogel-based biosensor that uses aptamer recognition and DNA-driven swelling hydrogels for the rapid detection of histamine. Aptamer recognition and DNA-driven swelling hydrogels are directly linked via DNA molecular reactions, enabling rapid sensing. We selected histamine, a major food poisoning toxin, as our sensing target and detected the existence of histamine within 10 min with significance. Because this sensing foundation uses aptamers, which have a vast library of targets, we believe this system can be expanded to various targets, broadening the application of hydrogel-based biosensors.


Asunto(s)
Aptámeros de Nucleótidos , Materiales Biocompatibles , Técnicas Biosensibles , Histamina , Hidrogeles , Ensayo de Materiales , Aptámeros de Nucleótidos/química , Hidrogeles/química , Histamina/análisis , Histamina/química , Materiales Biocompatibles/química , Tamaño de la Partícula , ADN/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124452, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761559

RESUMEN

Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 µmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 µmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.


Asunto(s)
Aptámeros de Nucleótidos , Histamina , Polímeros , Puntos Cuánticos , Histamina/análisis , Aptámeros de Nucleótidos/química , Polímeros/química , Puntos Cuánticos/química , Humanos , Límite de Detección , Análisis de los Alimentos/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Animales , Contaminación de Alimentos/análisis , Células HeLa , Espectrometría de Fluorescencia/métodos
7.
J Hazard Mater ; 470: 134271, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608593

RESUMEN

Rapid and sensitive monitoring of pH and histamine is crucial for bridging biological and food systems and identifying corresponding abnormal situations. Herein, N-doped carbon dots (CDs) are fabricated by a hydrothermal method employing dipicolinic acid and o-phenylenediamine as precursors. The CDs exhibit colorimetric and fluorescent dual-mode responses to track pH and histamine variations in living cells and food freshness, respectively. The aggregation-induced emission enhancement and intramolecular charge transfer result in a decrease in absorbance and an increase in fluorescence, which become readily apparent as the pH changes from acidic to neutral. This property enables precise differentiation between normal and cancerous cells. Furthermore, given the intrinsic basicity of histamine, pH-responsive CDs are advantageous for additional colorimetric and fluorescent monitoring of histamine in food freshness, achieving linearities of 25-1000 µM and 30-1000 µM, respectively, which are broader than those of alternative nanoprobes. Interestingly, the smartphone-integrated sensing platform can portably and visually evaluate pH and histamine changes due to sensitive color changes. Therefore, the sensor not only establishes a dynamic connection between pH and histamine for the purposes of biological and food monitoring, but also presents a novel approach for developing a multifunctional biosensor that can accomplish environmental monitoring and biosensing simultaneously.


Asunto(s)
Carbono , Colorimetría , Histamina , Puntos Cuánticos , Histamina/análisis , Carbono/química , Colorimetría/métodos , Concentración de Iones de Hidrógeno , Puntos Cuánticos/química , Humanos , Técnicas Biosensibles/métodos , Espectrometría de Fluorescencia , Teléfono Inteligente , Análisis de los Alimentos/métodos , Nitrógeno/química , Fluorescencia , Colorantes Fluorescentes/química
8.
Food Chem ; 451: 139446, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685180

RESUMEN

We reported the development of a smartphone-integrated microfluidic paper-based optosensing platform for in-situ detection and quantification of histamine in canned tuna. Molecularly imprinted polymers were synthesized via precipitation polymerization and utilized as dispersive solid phase extraction sorbent to selectively extract histamine from canned tuna. Carbon quantum dots functioning as a fluorescent probe were synthesized and introduced onto the microzones of the microfluidic paper device. This facilitated a noticeable fluorescence color change from dark red to vivid blue upon the addition of histamine. The change in fluorescence on the paper device was converted into specific RGB values using a portable UV light box combined with a smartphone. This assay achieved the limit of detection of 14.04 mg/kg with the linear range from 20 to 100 mg/kg of histamine in canned tuna. The entire molecular imprinting-microfluidic optosensing test could be completed in 45 min including sample preparation.


Asunto(s)
Histamina , Impresión Molecular , Teléfono Inteligente , Atún , Animales , Histamina/análisis , Contaminación de Alimentos/análisis , Papel , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Límite de Detección
9.
Pharmeur Bio Sci Notes ; 2024: 12-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533690

RESUMEN

For more than 50 years, in vivo assays have been used for testing pharmaceutical product safety due to their assumed ability to broadly detect potential unidentified contaminants. As part of these in vivo tests, the animal tests for depressor substances and histamine have been described in the European Pharmacopoeia since its first edition in 1977. Both tests measure the effect of histamine and histamine-like substances, using guinea-pigs and cats respectively. In 2024, the Histamine (2.6.10) general chapter is referenced in the Production section of four monographs and 10 monographs have variations of a sentence on designing the manufacturing process to eliminate or minimise substances lowering blood pressure in this same section, without referencing the chapter. The Depressor substances (2.6.11) chapter is referenced only in the Histamine (2.6.10) chapter as a next step if the histamine test is invalid. A historical search was performed and it has shown that the tests for histamine and for depressor substances were introduced by different groups of experts in an inconsistent way at different times, and for different reasons, leading to non-harmonised approaches across monographs. The control of histamine and other depressor substances has been the subject of numerous debates where their use was questioned. During these discussions, reports on positive cases or batches failing the test for histamine or depressor substances were anecdotal. In addition, in vivo tests can be considered non-specific, very variable, time-consuming, costly and ethically doubtful. More importantly, the majority of in vivo methods originate from a time when good manufacturing practice was not widely used and formal method validation requirements were not yet established. In view of the above, the removal of all references to animal tests for histamine or depressor substances from all texts still referring to them is proposed. Since the sentences in the Production section referring to the control of "substances lowering blood pressure", "vasoactive substances" or "hypotensive substances" appeared as remainders of the animal test without further guarantee of safety, it will also be proposed to remove all these sentences from the concerned monographs. Ultimately, the suppression of general chapters 2.6.10 and 2.6.11 from the Ph. Eur. is envisaged. Independently from the above, it is also envisaged to elaborate a new general chapter Histamine in active substances (2.5.47) to include physicochemical or immunochemical methods enabling the detection of histamine. This new text would aim at supporting manufacturers in their histamine control strategy following the inclusion of precaution statements in the general monograph on Products of fermentation (1468); these statements had been added in Ph. Eur. Supplements 9.6 and 10.4, following adverse events related to a GMP issue with gentamicin sulfate. This strategy has been endorsed by the European Pharmacopoeia Commission at its 177th Session in November 2023. The concerned monographs would be a subject of public consultation in Pharmeuropa 36.2 (April 2024).


Asunto(s)
Alternativas a las Pruebas en Animales , Histamina , Animales , Cobayas , Histamina/análisis , Gatos
10.
Int J Food Microbiol ; 415: 110641, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38432054

RESUMEN

The commercialization of processed fish products is rising in restaurants and small to medium enterprises. However, there is a lack of data related to the microbiological safety of such products. In this study total aerobic colony count and Enterobacteriaceae, as proxy of process hygiene criteria, and detection of Listeria monocytogenes and concentration of histamine, as food safety criteria, were investigated in Salmo salar (salmon), Xiphias gladius (swordfish) and Thunnus albacares (yellowfin tuna), before, during, and at the end of a dry-curing process, performed in a dedicated cabinet, at controlled temperature, relative humidity and ventilation, up to 240 h. The microbiological parameters were investigated in the tested fish products by culture methods and shotgun metagenomic, while the presence of histamine, and other biogenic amines, was quantified by High Performance Liquid Chromatography. In the raw material, and up to the end of the dry curing process, the concentration of Enterobacteriaceae was always lower than 10 CFU/g, while total aerobic colony counts ranged between 3.9 and 5.4 Log CFU/g in salmon; 5.5 and 5.9 Log CFU/g in swordfish; 4.4 and 4.8 Log CFU/g in tuna. The pH values were significantly different between fish species, in the raw materials and during processing except for T4, occurring 70 h after the start of the process for salmon and after 114 h for swordfish and tuna. Water activity was different at specific sampling points and at the end of processing. Overall, 79 % of the sequences identified in the tested fish samples were assigned to y bacteria. The most abundant phyla were Pseudomonadota, Bacillota and Mycoplasmatota. The microbial populations identified by shotgun metagenomic in the tested fish species clustered well separated one from the other. Moreover, the microbial richness was significantly higher in salmon and tuna in comparison to swordfish. Listeria monocytogenes was not detected in the raw material by using the reference cultural method and very few reads (relative abundance <0.007) were detected in swordfish and tuna by shotgun metagenomic. Histamine producing bacteria, belonging to the genera Vibrio, Morganella, Photobacterium and Klebsiella, were identified primarily in swordfish. However, histamine and other biogenic amines were not detected in any sample. To the best of our knowledge this is the first paper reporting time point determinations of microbiological quality and safety parameters in salmon, swordfish and tuna, before, during and at the end of a dry-curing process. The data collected in this paper can help to predict the risk profile of ready to eat dry-cured fish products during storage before consumption.


Asunto(s)
Microbiología de Alimentos , Histamina , Animales , Histamina/análisis , Alimentos Marinos/microbiología , Aminas Biogénicas/análisis , Enterobacteriaceae , Peces , Bacterias/genética , Atún/microbiología , Recuento de Colonia Microbiana
11.
Food Chem ; 442: 138407, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241999

RESUMEN

This study involved an investigation into the electrochemical characteristic of a few biogenic amines (BAs) occurring at the polarized interface between two immiscible electrolyte solutions (ITIES) with ion transfer voltammetry (ITV). The main focus of this research was the comprehensive electroanalytical and physicochemical analysis of phenylethylamine (PEA), allowing the determined of the formal Galvani potential of the ion transfer reaction (ΔorgaqΦ'), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (ΔG'aq→org) and water-1,2-dichloroethane partition coefficient (logPwater/DCEPEA). Furthermore, the collected data were employed to calculate analytical parameters, including voltametric detection sensitivity, limits of detection and the target analyte quantification. Moreover, the influence of the presence of 7 other BAs (histamine, spermine, spermidine, putrescine, cadaverine, tyramine and tryptamine) on the recorded signals originating from the PEA ion transfer was checked. The feasibility of the developed method was corroborated through experimentation with milk samples. Additionally, utilizing the devised methodology, an electrochemical assessment of the spoilage progression in milk samples was undertaken.


Asunto(s)
Aminas Biogénicas , Leche , Animales , Leche/química , Electroquímica , Aminas Biogénicas/análisis , Histamina/análisis , Agua
12.
Food Chem ; 443: 138509, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277940

RESUMEN

Biogenic amines (BAs) produced by microbial decarboxylation of amino acids are crucial toxic nitrogenous compounds in fish. An optimized ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method with simple pretreatment was established to detect 14 BAs in both raw (control check, CK) and deep-fried (DF) hairtails. This method exhibited a good linear relationship with average recoveries of 73.3-120.0 % and relative standard deviations of 2.5-10.0 %, respectively. The total BAs in CK and DF hairtails decreased sharply to 338.2 and 25.3 mg/kg on the 9th day, respectively. Four BAs, including cadaverine (CAD), histamine (HIS), tyramine (TYR), and putrescine (PUT) accounted for 92.5-99.9 % of total BAs were selected as the dominant BAs. Bacterial analysis showed that the abundance of DF was relatively low. Further correlation analysis proved that Vibrio had a significant (p < 0.05) positive correlation with total BAs and could be the main BA-producing bacterium in DF hairtail. This work provides new evidence of the accumulation of BAs in refrigerated hairtail.


Asunto(s)
Perciformes , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Aminas Biogénicas/análisis , Histamina/análisis , Cromatografía Líquida de Alta Presión/métodos
13.
Anal Bioanal Chem ; 416(4): 945-957, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051414

RESUMEN

Histamine causes allergic reactions and can serve as an indicator for assessing food quality. This study designed and developed a dispersive micro solid-phase extraction (D-µSPE) method that combined the advantages of dispersive liquid-liquid extraction and solid-phase extraction (SPE). Molecularly imprinted polymers (MIPs) were employed as the solid phase in the D-µSPE method to extract histamine in wine samples. We used microwave energy to significantly reduce the synthesis time, achieving an 11.1-fold shorter synthesis time compared to the conventional MIP synthetic method. Under optimized D-µSPE conditions, our results showed that the dispersive solvent could effectively increase the adsorption performance of MIPs in wine samples by 97.7%. To improve the sensitivity of histamine detection in gas chromatography-mass spectrometry, we employed the microwave-assisted tandem derivatization method to reuse excess derivatization reagents and reduce energy consumption and reaction time. Calibration curves were constructed for wine samples spiked with 0-400 nmol histamine using the standard addition method, resulting in good linearity with a coefficient of determination of 0.999. The intra- and inter-batch relative standard deviations of the slope and intercept were < 0.7% and < 5.3%, respectively. The limits of quantitation and detection were 0.4 nmol and 0.1 nmol, respectively. The developed method was successfully applied to analyze the histamine concentration in 10 commercial wine samples. In addition, the AGREEprep tool was used to evaluate the greenness performance of the developed method, which obtained a higher score than the other reported methods.


Asunto(s)
Impresión Molecular , Vino , Vino/análisis , Cromatografía Líquida de Alta Presión/métodos , Histamina/análisis , Polímeros/química , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos
14.
Food Res Int ; 175: 113777, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129064

RESUMEN

Histamine is a biogenic amine synthesized through the enzymatic decarboxylation of the amino acid histidine. It can accumulate at high concentrations in foods through the metabolism of certain bacteria, sometimes leading to adverse reactions in consumers. In cheese, histamine can accumulate at toxic levels; Lentilactobacillus parabuchneri has been identified the major cause of this problem. Previous studies have shown some L. parabuchneri strains to form biofilms on different surfaces, posing a contamination risk during cheese production, particularly for cheeses that are processed post-ripening (e.g., grating or slicing). The food contamination they cause can result in economic losses and even foodborne illness if histamine accumulates in the final product. The aim of the present work was to identify the genes of L. parabuchneri involved in biofilm formation, and to determine their function. The genomes of six strains with different biofilm-production capacities (strong, moderate and weak) were sequenced and analysed. A cluster of four genes, similar to those involved in sortase-mediated pilus formation, was identified in the strong biofilm-producers, suggesting it to have a role in surface adhesion. Cloning and heterologous expression in Lactococcus cremoris NZ9000 confirmed its functionality and involvement in adhesion and, therefore, in biofilm formation. PacBio sequencing showed this cluster to be located on a 33.4 kb plasmid, which might increase its chances of horizontal transmission. These findings provide insight into the genetic factors associated with biofilm formation in histamine-producing L. parabuchneri, and into the risks associated with this bacterium in cheese production.


Asunto(s)
Microbiología de Alimentos , Histamina , Histamina/análisis , Plásmidos , Bacterias , Familia de Multigenes/genética , Biopelículas
15.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140945

RESUMEN

AIM: To investigate the inhibitory impact of chlorogenic acid (CGA) on the growth of Morganella psychrotolerans and its ability to form histamine. METHODS AND RESULTS: The antimicrobial effect of CGA on M. psychrotolerans was evaluated using the minimum inhibitory concentration (MIC) method, revealing an MIC value of 10 mg ml-1. The alkaline phosphatase (AKP) activity, cell membrane potential, and scanning electron microscopy images revealed that CGA treatment disrupted cell structure and cell membrane. Moreover, CGA treatment led to a dose-dependent decrease in crude histidine decarboxylase (HDC) activity and gene expression of histidine decarboxylase (hdc). Molecular docking analysis demonstrated that CGA interacted with HDC through hydrogen bonds. Furthermore, in situ investigation confirmed the efficacy of CGA in controlling the growth of M. psychrotolerans and significantly reducing histamine formation in raw tuna. CONCLUSION: CGA had good activity in controlling the growth of M. psychrotolerans and histamine formation.


Asunto(s)
Ácido Clorogénico , Histamina , Histamina/análisis , Ácido Clorogénico/farmacología , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Simulación del Acoplamiento Molecular , Alimentos Marinos
16.
J Food Sci ; 89(1): 566-580, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126118

RESUMEN

Histamine (HIS) is primarily formed from decarboxylated histidine by certain bacteria with histidine decarboxylase (hdc) activity and is the most toxic biogenic amine. Hdc, which is encoded by the hdc gene, serves as a key enzyme that controls HIS production in bacteria. In this paper, we characterized the changes in microbial and biogenic amines content of traditional Sichuan-style sausage before and after storage and demonstrated that Enterobacteriaceae play an important role in the formation of HIS. To screen for Enterobacteriaceae with high levels of HIS production, we isolated strain RH3 which has a HIS production of 2.27 mg/mL from sausages stored at 37°C for 180 days, using selective media and high-performance liquid chromatography. The strain RH3 can produce a high level of HIS after 28 h of fermentation with a significant hysteresis. Analysis of the physicochemical factors revealed that RH3 still retained its ability to partially produce HIS in extreme environments with pH 3.5 and 10.0. In addition, RH3 exhibited excellent salt tolerance (6.0% NaCl and 1.0% NaNO2 ). Subsequently, RH3 was confirmed as Enterobacter hormaechei with hdc gene deletion by PCR, western blot, and whole-genome sequencing analysis. Furthermore, RH3 exhibited pathogenicity rate of 75.60% toward the organism, indicating that it was not a food-grade safe strain, and demonstrated a high level of conservation in intraspecific evolution. The results of this experiment provide a new reference for studying the mechanism of HIS formation in microorganisms. PRACTICAL APPLICATION: This study provides a new direction for investigating the mechanism of histamine (HIS) formation by microorganisms and provides new insights for further controlling HIS levels in meat products. Further research can control the key enzymes that form HIS to control HIS levels in food.


Asunto(s)
Histamina , Productos de la Carne , Histamina/análisis , Histidina Descarboxilasa/genética , Productos de la Carne/análisis , Eliminación de Gen , Aminas Biogénicas , Enterobacteriaceae/genética , Enterobacter/genética
17.
J Dairy Sci ; 106(12): 8787-8808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678787

RESUMEN

The objective of this study was to improve understandings of the rumen microbial ecosystem during ruminal acidosis and responses to feed additives to improve prudent use strategies for ruminal acidosis control. Rumen bacterial and archaeal community composition (BCC) and its associations with rumen fermentation measures were examined in Holstein heifers fed feed additives and challenged with starch and fructose. Heifers (n = 40) were randomly allocated to 5 treatment groups: (1) control (no additives); (2) virginiamycin (VM; 200 mg/d); (3) monensin (MT; 200 mg/d) + tylosin (110 mg/d); (4) monensin (MLY; 220 mg/d) + live yeast (5.0 × 1012 cfu/d); (5) sodium bicarbonate (BUF; 200 g/d) + magnesium oxide (30 g/d). Heifers were fed twice daily a 62% forage:38% concentrate total mixed ration at 1.25% of body weight (BW) dry matter (DM)/d for a 20-d adaptation period with their additive(s). Fructose (0.1% of BW/d) was added to the ration for the last 10 d of adaptation. On d 21 heifers were challenged once with a ration consisting of 1.0% of BW DM wheat and 0.2% of BW fructose plus their additive(s). A rumen sample was collected from each heifer via stomach tube weekly (d 0, 7, 14) and 5 times over a 3.6 h period at 5, 65, 115, 165, and 215 min after consumption of the challenge ration (d 21) and analyzed for pH, and ammonia, d- and l-lactate, volatile fatty acids (VFA), and histamine concentrations and total bacteria and archaea. The 16S rRNA gene spanning the V4 region was PCR amplified and sequenced. Alpha and ß diversity and associations of relative abundances of taxa with rumen fermentation measures were evaluated. Rumen BCC shifted among treatment groups in the adaptation period and across the challenge sampling period, indicating the feed additives had different modes of action. The monensin-containing treatment groups, MT and MLY often had similar relative abundances of rumen bacterial phyla and families. The MLY treatment group was characterized in the challenge period by increased relative abundances of the lactate utilizing genera Anaerovibrio and Megasphaera. The MLY treatment group also had increased diversity of ruminal bacteria which may provide resilience to changes in substrates. The control and BUF treatment groups were most similar in BCC. A redundancy analysis showed the MLY treatment group differed from all other treatment groups and concentrations of histamine and valerate in the rumen were associated with the most variation in the microbiota, 5.3% and 4.8%, respectively. It was evident from the taxa common to all treatment groups that cattle have a core microbiota. Functional redundancy of rumen bacteria which was reflected in the greater sensitivity for the rumen BCC than rumen fermentation measures likely provide resilience to changes in substrate. This functional redundancy of microbes in cattle suggests that there is no single optimal ruminal microbial population and no universally superior feed additive(s). In summary, differences in modes of action suggest the potential for more targeted and improved prudent use of feed additives with no single feed additive(s) providing an optimal BCC in all heifers.


Asunto(s)
Acidosis , Archaea , Animales , Bovinos , Femenino , Acidosis/veterinaria , Alimentación Animal/análisis , Bacterias , Dieta/veterinaria , Fermentación , Fructosa/metabolismo , Histamina/análisis , Histamina/metabolismo , Concentración de Iones de Hidrógeno , Lactatos/análisis , Monensina/metabolismo , ARN Ribosómico 16S/genética , Rumen/metabolismo , Saccharomyces cerevisiae , Almidón/metabolismo
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123089, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37393671

RESUMEN

Biogenic amines (BAs), which naturally occur as chemicals in seafood, are indicators of food freshness and quality. High concentrations of BAs can cause an undesirable inflammatory response. However, traditional detection methods cannot meet the needs of rapid analysis nowadays. It is essential to explore a simple and valid method to monitor the food quality. Herein, we design and prepare a nanoclay-based turn on fluorescent material with BAs response, which could be used for the real-time and visual detection of raw fish freshness. As the concentration of BAs increase, the sensor of the fluorescence signal is significantly enhanced. The sensor demonstrated wonderful response and sensitivity which showed a detection limit of 0.935 mg/L for typical BAs histamine within a linear range of 2-14 mg/L in an aqueous solution. More importantly, we developed a responsive BAs device by doping the sensor into polyvinyl alcohol (PVA), which is well applied as a rapid-responsive fluorescent marker for visual monitoring the freshness of raw fish.


Asunto(s)
Aminas Biogénicas , Histamina , Animales , Histamina/análisis , Fluorescencia , Aminas Biogénicas/análisis , Calidad de los Alimentos , Peces , Alimentos Marinos/análisis
19.
Food Chem ; 424: 136462, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37263095

RESUMEN

In the present study, naphthalene-2,3-dicarboxaldehyde (NDA) was used in on-line post column derivatization (PCD) coupled to liquid chromatography under the new concept of Pulsed-PCD. In Pulsed-PCD, the reagents are introduced into the flowing stream of the mobile phase under precise timing overlapping the eluted analyte. The consumption of the reagents is minimized to a few microliters, resulting in a significant advantage, that is the use of expensive reagents in PCD. For this reason, NDA-CN chemistry was used for the determination of histamine in food samples, such as eggplant and spinach. Two additional methods were developed based on the reaction of histamine with o-phthalaldehyde (OPA), namely the classic OPA - nucleophilic compound reaction and the specific OPA - histamine reaction in alkaline medium. The chromatographic conditions and the Pulsed-PCD conditions were investigated, while the analytical figures of merit were satisfactory. In all three methods, a pulse of 50 µL was used (OPA/NDA + Buffer), reducing dramatically the consumption of PCD reagents.


Asunto(s)
Histamina , o-Ftalaldehído , Histamina/análisis , o-Ftalaldehído/química , Indicadores y Reactivos , Cromatografía Líquida de Alta Presión/métodos
20.
Microbiol Spectr ; 11(4): e0472022, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37310253

RESUMEN

Scombrotoxin (histamine) fish poisoning is a common seafood-borne illness attributed to toxin production by histamine-producing bacteria (HPB) in fish tissues during decomposition. In laboratory studies, growth of HPB and other bacterial species is affected by physical and chemical attributes, but natural communities of HPB are not well understood. To determine how in situ environmental and water quality variables may affect density of HPB in the natural aquatic environment, we compared presence and abundance of HPB to ambient temperature, salinity, dissolved oxygen, fecal coliforms, male-specific coliphage, nutrient concentrations, carbon and nitrogen stable isotope ratios, and C:N in water samples collected from July 2017 to February 2018 along a natural salinity gradient in a tidal river on the coast of northern Gulf of Mexico. HPB in water samples were quantified using a real-time PCR, most probable number method. HPB species were identified via 16S rRNA gene sequences. Temperature and salinity were determined to be the main factors driving HPB presence and concentration. Canonical correspondence analysis revealed that different HPB were associated with different environmental conditions. Photobacterium damselae was found under warmer, higher-salinity conditions; Raoultella planticola was found at colder, lower-salinity conditions; Enterobacter aerogenes was found at warmer, lower-salinity conditions; and Morganella morganii was found at most sites, independent of environmental conditions. These results showed that naturally occurring HPB abundance and species composition can be affected by environmental conditions, which could manifest in various potentials for histamine formation and scombrotoxin fish poisoning risk based on environmental factors. IMPORTANCE This study determined the effects of environmental conditions on presence and abundance of naturally occurring histamine-producing bacteria in the northern Gulf of Mexico. Here, we show that HPB abundance and species composition are related to in situ ambient temperature and salinity, with the magnitude of this effect dependent on the particular HPB species. This finding suggests that environmental conditions at fishing sites could affect the risk of human illness from scombrotoxin (histamine) fish poisoning.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Histamina , Animales , Masculino , Humanos , Histamina/análisis , Golfo de México , ARN Ribosómico 16S , Calidad del Agua , Bacterias/genética , Enfermedades Transmitidas por los Alimentos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA