Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.665
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731936

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Humans , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Mice , Cell Line, Tumor , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Xenograft Model Antitumor Assays , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Membrane Glycoproteins/metabolism , Drug Synergism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Up-Regulation/drug effects
2.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Article En | MEDLINE | ID: mdl-38707675

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Histocompatibility Antigens Class I , Kidney Diseases , Receptors, Fc , Humans , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Receptors, Fc/metabolism , Receptors, Fc/immunology , Receptors, Fc/genetics , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/therapy , Kidney Diseases/immunology , Animals , Kidney/metabolism , Kidney/immunology , Kidney/pathology , Podocytes/metabolism , Podocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism
3.
PLoS One ; 19(5): e0302817, 2024.
Article En | MEDLINE | ID: mdl-38743659

BACKGROUND: IgG subclass levels in hemochromatosis are incompletely characterized. METHODS: We characterized IgG subclass levels of referred hemochromatosis probands with HFE p.C282Y/p.C282Y (rs1800562) and human leukocyte antigen (HLA)-A and -B typing/haplotyping and compared them with IgG subclass levels of eight published cohorts of adults unselected for hemochromatosis. RESULTS: There were 157 probands (82 men, 75 women; mean age 49±13 y). Median serum ferritin, mean body mass index (BMI), median IgG4, and median phlebotomy units to achieve iron depletion were significantly higher in men. Diabetes, cirrhosis, and HLA-A*03,-B*44, -A*03,B*07, and -A*01,B*08 prevalences and median absolute lymphocyte counts in men and women did not differ significantly. Mean IgG subclass levels [95% confidence interval] were: IgG1 5.31 g/L [3.04, 9.89]; IgG2 3.56 g/L [1.29, 5.75]; IgG3 0.61 g/L [0.17, 1.40]; and IgG4 0.26 g/L [<0.01, 1.25]. Relative IgG subclasses were 54.5%, 36.6%, 6.3%, and 2.7%, respectively. Median IgG4 was higher in men than women (0.34 g/L [0.01, 1.33] vs. 0.19 g/L [<0.01, 0.75], respectively; p = 0.0006). A correlation matrix with Bonferroni correction revealed the following positive correlations: IgG1 vs. IgG3 (p<0.01); IgG2 vs. IgG3 (p<0.05); and IgG2 vs. IgG4 (p<0.05). There was also a positive correlation of IgG4 vs. male sex (p<0.01). Mean IgG1 was lower and mean IgG2 was higher in probands than seven of eight published adult cohorts unselected for hemochromatosis diagnoses. CONCLUSIONS: Mean IgG subclass levels of hemochromatosis probands were 5.31, 3.56, 0.61, and 0.26 g/L, respectively. Median IgG4 was higher in men than women. There were positive associations of IgG subclass levels. Mean IgG1 may be lower and mean IgG2 may be higher in hemochromatosis probands than adults unselected for hemochromatosis.


Hemochromatosis Protein , Hemochromatosis , Immunoglobulin G , Humans , Male , Hemochromatosis/blood , Hemochromatosis/genetics , Hemochromatosis/immunology , Female , Immunoglobulin G/blood , Middle Aged , Hemochromatosis Protein/genetics , Adult , Aged , Membrane Proteins/immunology , Membrane Proteins/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology
4.
J Exp Clin Cancer Res ; 43(1): 138, 2024 May 08.
Article En | MEDLINE | ID: mdl-38715057

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has proven to be extremely effective at managing certain cancers, its efficacy in treating pancreatic ductal adenocarcinoma (PDAC) has been limited. Therefore, enhancing the effect of ICB could improve the prognosis of PDAC. In this study, we focused on the histamine receptor H1 (HRH1) and investigated its impact on ICB therapy for PDAC. METHODS: We assessed HRH1 expression in pancreatic cancer cell (PCC) specimens from PDAC patients through public data analysis and immunohistochemical (IHC) staining. The impact of HRH1 in PCCs was evaluated using HRH1 antagonists and small hairpin RNA (shRNA). Techniques including Western blot, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarray analyses were performed to identify the relationships between HRH1 and major histocompatibility complex class I (MHC-I) expression in cancer cells. We combined HRH1 antagonism or knockdown with anti-programmed death receptor 1 (αPD-1) therapy in orthotopic models, employing IHC, immunofluorescence, and hematoxylin and eosin staining for assessment. RESULTS: HRH1 expression in cancer cells was negatively correlated with HLA-ABC expression, CD8+ T cells, and cytotoxic CD8+ T cells. Our findings indicate that HRH1 blockade upregulates MHC-I expression in PCCs via cholesterol biosynthesis signaling. In the orthotopic model, the combined inhibition of HRH1 and αPD-1 blockade enhanced cytotoxic CD8+ T cell penetration and efficacy, overcoming resistance to ICB therapy. CONCLUSIONS: HRH1 plays an immunosuppressive role in cancer cells. Consequently, HRH1 intervention may be a promising method to amplify the responsiveness of PDAC to immunotherapy.


Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Animals , Receptors, Histamine H1/metabolism , Receptors, Histamine H1/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Cell Line, Tumor , Female , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Male
5.
HLA ; 103(4): e15440, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605657

Single nucleotide polymorphisms (SNPs) of HLA-E are related to the occurrence of many diseases, but their functions remain unclear. In this study, the function of SNPs at HLA-E rs76971248 and rs1264457 on the myeloid leukemia cells was analyzed by a progressive procedure, included genotyping, mRNA transcription, regulatory element, protein expression, and anti-tumor effect. The frequencies of rs76971248 G and rs1264457 G were found higher in myeloid leukemia patients than those in healthy blood donors (p < 0.05). For myeloid leukemia, rs76971248 T was protective, while rs1264457 G was susceptible. We also found that rs76971248 affected HLA-E mRNA transcription and membrane HLA-E (mHLA-E) expression in K562 cells through differently binding to transcription factor HOXA5 (p < 0.0001), while rs1264457 affected mHLA-E expression by changing mRNA transcription and an encoding amino acid (p < 0.01). In contrast, the expression of soluble HLA-E (sHLA-E) was not influenced by both rs1264457 and rs76971248. The higher HLA-E expression was detected among myeloid leukemia patients, and the K562 cells with higher HLA-E molecules played a significant inhibitory effect on the killing activity of NK-92MI cells (p < 0.05). In conclusion, the higher HLA-E expression of myeloid leukemia cells is promoted by rs76971248 G and rs1264457 G, which helps escape from NK-92MI cells' killing.


Leukemia, Myeloid , Polymorphism, Single Nucleotide , Humans , HLA-E Antigens , Alleles , Histocompatibility Antigens Class I/genetics , Leukemia, Myeloid/genetics , RNA, Messenger/genetics
6.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200221, 2024 May.
Article En | MEDLINE | ID: mdl-38579189

BACKGROUND AND OBJECTIVES: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS: We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS: Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQß1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION: Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.


Anti-N-Methyl-D-Aspartate Receptor Encephalitis , HLA-DQ beta-Chains , Interferon-Induced Helicase, IFIH1 , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Genome-Wide Association Study , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , Interferon-Induced Helicase, IFIH1/genetics
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38602320

Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.


Brain Neoplasms , Colorectal Neoplasms , Histocompatibility Antigens Class I , Neoplastic Syndromes, Hereditary , Triple Negative Breast Neoplasms , Humans , Gene Expression Profiling , Histocompatibility Antigens Class I/genetics , Mutation , Triple Negative Breast Neoplasms/metabolism
8.
Front Immunol ; 15: 1349030, 2024.
Article En | MEDLINE | ID: mdl-38590523

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Parkinson Disease , Retroelements , Humans , Retroelements/genetics , Parkinson Disease/genetics , Dopamine , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genotype
9.
PLoS One ; 19(4): e0281698, 2024.
Article En | MEDLINE | ID: mdl-38593173

Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.


Hematologic Diseases , Histocompatibility Antigens Class I , Humans , Gene Frequency , Alleles , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Genotype , Histocompatibility Antigens Class I/genetics , Hematologic Diseases/genetics , Haplotypes , Genetic Predisposition to Disease
10.
HLA ; 103(4): e15457, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575368

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


DNA , NK Cell Lectin-Like Receptor Subfamily K , Humans , 3' Untranslated Regions , Alleles , NK Cell Lectin-Like Receptor Subfamily K/genetics , Exons/genetics , Histocompatibility Antigens Class I/genetics , Carrier Proteins/genetics , Membrane Proteins/metabolism
11.
Sci Rep ; 14(1): 7966, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575727

The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.


COVID-19 , T-Lymphocytes , Humans , Australia , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genetic Variation , COVID-19/genetics , Histocompatibility Antigens Class II/genetics , Major Histocompatibility Complex , Alleles
12.
Int J Biol Macromol ; 267(Pt 2): 131665, 2024 May.
Article En | MEDLINE | ID: mdl-38636758

Micropolymorphism significantly shapes the peptide-binding characteristics of major histocompatibility complex class I (MHC-I) molecules, affecting the host's resistance to pathogens, which is particularly pronounced in avian species displaying the "minimal essential MHC" expression pattern. In this study, we compared two duck MHC-I alleles, Anpl-UAA*77 and Anpl-UAA*78, that exhibit markedly different peptide binding properties despite their high sequence homology. Through mutagenesis experiments and crystallographic analysis of complexes with the influenza virus-derived peptide AEAIIVAMV (AEV9), we identified a critical role for the residue at position 62 in regulating hydrogen-bonding interactions between the peptide backbone and the peptide-binding groove. This modulation affects the characteristics of the B pocket and the stability of the loop region between the 310 helix and the α1 helix, leading to significant changes in the structure and stability of the peptide-MHC-I complex (pMHC-I). Moreover, the proportion of different residues at position 62 among Anpl-UAAs may reflect the correlation between pAnpl-UAA stability and duck body temperature. This research not only advances our understanding of the Anpl-UAA structure but also deepens our insight into the impact of MHC-I micropolymorphism on peptide binding.


Ducks , Histocompatibility Antigens Class I , Animals , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Peptides/genetics , Polymorphism, Genetic , Protein Stability , Amino Acid Sequence , Protein Binding , Alleles , Antigen Presentation , Models, Molecular
13.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Article En | MEDLINE | ID: mdl-38623763

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Bortezomib , CD8-Positive T-Lymphocytes , Dendritic Cells , Hypertension , Mice, Inbred C57BL , Mice, Knockout , Proteasome Endopeptidase Complex , Animals , Proteasome Endopeptidase Complex/metabolism , Hypertension/metabolism , Hypertension/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , Bortezomib/pharmacology , Angiotensin II , Male , Oxidative Stress , Proteasome Inhibitors/pharmacology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Lymphocyte Activation , Cells, Cultured , Fibroblasts/metabolism , Endothelial Cells/metabolism , Endothelial Cells/immunology , Oligopeptides
14.
Immunogenetics ; 76(3): 155-164, 2024 Jun.
Article En | MEDLINE | ID: mdl-38478091

Multiple myeloma (MM) is a hematological malignancy caused by the clonal expansion of malignant plasma cells in the bone marrow. Myeloma cells are susceptible to killing by natural killer (NK) cells, but NK cells fail to control disease progression, suggesting immunosuppression. The activation threshold of NK-effector function is regulated by interaction between KIRs and self-HLA class I, during a process called "education" to ensure self-tolerance. NK cells can respond to diseased cells based on the absence of HLA class I expression ("Missing-self" hypothesis). The HLA and KIR repertoire is extremely diverse; thus, the present study aimed to characterize potential variances in genotypic composition of HLA Class I NK-epitopes and KIRs between MM patients and healthy controls. Genotypic expression of KIR and HLA (HLA-C group-C1/C2 and Bw4 motifs (including HLA-A*23, A*24, A*32) were analyzed in 172 MM patients and 195 healthy controls. Compared to healthy controls, we did not observe specific KIR genes or genotypes, or HLA NK-epitopes with higher prevalence among MM patients. The presence of all three HLA NK-epitopes (C1+C2+Bw4+) was not associated with MM occurrence. However, MM patients were more likely to be C1-/C2+/Bw4+ (p = 0.049, OR 1.996). In line with this, there was a trend of increased genetic co-occurrence of Bw4 and KIR3DL1 in MM patients (p = 0.05, OR 1.557). Furthermore, MM patients were more likely to genetically express both C2/KIR2DL1 and Bw4/KIR3DL1 (p = 0.019, OR 2.453). Our results reveal an HLA NK-epitope combination that is associated with the occurrence of MM. No specific KIR genotypes were associated with MM.


Epitopes , Killer Cells, Natural , Multiple Myeloma , Receptors, KIR , Humans , Multiple Myeloma/immunology , Multiple Myeloma/genetics , Receptors, KIR/genetics , Killer Cells, Natural/immunology , Male , Female , Middle Aged , Epitopes/immunology , Aged , Genotype , Adult , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology
15.
Expert Rev Hematol ; 17(4-5): 145-152, 2024.
Article En | MEDLINE | ID: mdl-38551816

BACKGROUND: Patients with p.C282Y homozygous (p.C282Y) HFE mutations are more likely to develop hemochromatosis (HC) than p.C282Y/p.H63D compound heterozygotes (p.C282Y/H63D). RESEARCH DESIGN AND METHODS: We conducted a retrospective chart review of 90 p.C282Y and 31 p.C282Y/H63D patients at a referral practice to illustrate the differences in the natural history of the disease in these two HC cohorts. RESULTS: Over a median follow-up of 17 years, p.C282Y had higher mean serum ferritin (1105 mg/dL vs. 534 mg/dL, p = 0.001) and transferrin saturations (75.3% vs. 49.5%, p = 0.001) at diagnosis. p.C282Y underwent more therapeutic phlebotomies (TP) till de-ironing (mean 24 vs. 10), had higher mean mobilized iron stores (4759 mg vs. 1932 mg), and required more annual maintenance TP (1.9/year vs. 1.1/year, p = 0.039). p.C282Y/H63D were more likely to have obesity (45.2% vs. 20.2%, p = 0.007) at diagnosis, with a non-significant trend toward consuming more alcohol. There was no significant difference in the development of HC-related complications between the two cohorts. CONCLUSIONS: p.C282Y have a higher mobilizable iron and require more TP. p.C282Y/H63D likely require additional insults such as obesity or alcohol use to develop elevated ferritin. De-ironing may mitigate the risk of developing HC-related complications.


Hemochromatosis Protein , Hemochromatosis , Heterozygote , Homozygote , Humans , Hemochromatosis Protein/genetics , Hemochromatosis/genetics , Hemochromatosis/diagnosis , Hemochromatosis/therapy , Female , Male , Middle Aged , Retrospective Studies , Adult , Ferritins/blood , Aged , Mutation , Iron/metabolism , Histocompatibility Antigens Class I/genetics
16.
Nat Commun ; 15(1): 2288, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480730

Human leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS). In addition, we train a timsTOF-specific peak intensity MS2PIP model for tryptic and non-tryptic peptides and implement it in MS2Rescore (v3) together with the CCS predictor from ionmob. The optimized method, Thunder-DDA-PASEF, semi-selectively fragments singly and multiply charged HLAIps based on their IMS and m/z. Moreover, the method employs the high sensitivity mode and extended IMS resolution with fewer MS/MS frames (300 ms TIMS ramp, 3 MS/MS frames), doubling the coverage of immunopeptidomics analyses, compared to the proteomics-tailored DDA-PASEF (100 ms TIMS ramp, 10 MS/MS frames). Additionally, rescoring boosts the HLAIps identification by 41.7% to 33%, resulting in 5738 HLAIps from as little as one million JY cell equivalents, and 14,516 HLAIps from 20 million. This enables in-depth profiling of HLAIps from diverse human cell lines and human plasma. Finally, profiling JY and Raji cells transfected to express the SARS-CoV-2 spike protein results in 16 spike HLAIps, thirteen of which have been reported to elicit immune responses in human patients.


Peptides , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Peptides/chemistry , Spike Glycoprotein, Coronavirus , Chromatography, Liquid , Histocompatibility Antigens Class I/genetics
17.
Front Immunol ; 15: 1285049, 2024.
Article En | MEDLINE | ID: mdl-38455061

Background: Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods: Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results: Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion: Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.


Neoplasms , beta 2-Microglobulin , Humans , beta 2-Microglobulin/genetics , Histocompatibility Antigens Class I/genetics , Immunotherapy , HLA-A Antigens
18.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38542306

Common variants in the iron regulatory protein HFE contribute to systematically increased iron levels, yet the effects in the brain are not fully characterized. It is commonly believed that iron dysregulation is a key contributor to neurodegenerative disease due to iron's ability to catalyze reactive oxygen species production. However, whether HFE variants exacerbate or protect against neurodegeneration has been heavily debated. Some claim that mutated HFE exacerbates oxidative stress and neuroinflammation, thus predisposing carriers to neurodegeneration-linked pathologies. However, H63D HFE has also been shown to slow the progression of multiple neurodegenerative diseases and to protect against environmental toxins that cause neurodegeneration. These conflicting results showcase the need to further understand the contribution of HFE variants to neurodegenerative disease heterogeneity. Data from mouse models consistently demonstrate robust neuroprotection against toxins known to increase the risk of neurodegenerative disease. This may represent an adaptive, or hormetic, response to increased iron, which leaves cells better protected against future stressors. This review describes the current research regarding the contribution of HFE variants to neurodegenerative disease prognosis in the context of a hormetic model. To our knowledge, this is the first time that a hormetic model for neurodegenerative disease has been presented.


Neurodegenerative Diseases , Mice , Animals , Neurodegenerative Diseases/genetics , Hemochromatosis Protein/genetics , Histocompatibility Antigens Class I/genetics , Hormesis , Mutation , Iron/metabolism
19.
Vet Microbiol ; 292: 110036, 2024 May.
Article En | MEDLINE | ID: mdl-38458048

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
20.
Front Immunol ; 15: 1360022, 2024.
Article En | MEDLINE | ID: mdl-38469309

Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.


Histocompatibility Antigens Class II , Histocompatibility Antigens Class I , Swine , Humans , Animals , Swine, Miniature/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Haplotypes
...