Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Toxicology ; 459: 152847, 2021 07.
Article En | MEDLINE | ID: mdl-34245815

Previous findings have confirmed that prenatal nicotine exposure (PNE) leads to retarded cartilage development in the fetal growth plate. It is characterized by insufficient matrix synthesis and decreased expression of matrix phenotype genes aggrecan (ACAN) and Col2A1 in the fetal growth plate chondrocytes; however, the specific molecular mechanism is yet unclear. This study intends to clarify the specific molecular mechanism of fetal osteochondral retardation caused by PNE through animal and cellular experiments. The present study demonstrated that in male offspring of the PNE group (the pregnant rats were subcutaneously administered nicotine 1.0 mg/kg twice per day (2.0 mg/kg.d) at GD11-20), the cartilage matrix of the fetal growth plate was lightly stained, the collagen was reduced, and expression of the matrix phenotype genes, ACAN and Col2A1, was significantly decreased. It was further found that PNE decreased histone acetylation (H3K9/H3K14) levels in the ACAN and Col2A1 promoter regions. Moreover, the expression of Snail and HDAC1/2 was increased in the PNE group. in vitro, the nicotine treatment at different concentrations elevated the expression of Snail/HDAC1/2 while decreasing the H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions. Snail-siRNA transfection partially abolished the nicotine-induced increase in HDAC1/2 expression and decreased the histone acetylation levels in the ACAN and Col2A1 promoter regions. Trichostatin A (TSA) treatment partially reversed the nicotine-induced changes in downstream parameters. In summary, PNE-induced decreased cartilage matrix synthesis in the fetal growth plate of male offspring is effectuated by Snail/HDAC1/2-mediated decreased H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions.


Fetal Growth Retardation/chemically induced , Histone Deacetylase 1/drug effects , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/metabolism , Nicotine/toxicity , Nicotinic Agonists/toxicity , Snail Family Transcription Factors/drug effects , Snail Family Transcription Factors/metabolism , Aggrecans/metabolism , Animals , Cartilage/drug effects , Cartilage/pathology , Chondrocytes/drug effects , Chondrocytes/pathology , Collagen/metabolism , Collagen Type II/metabolism , Female , Growth Plate/drug effects , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar , Transfection
2.
Neuroreport ; 32(6): 423-430, 2021 04 07.
Article En | MEDLINE | ID: mdl-33788811

Behavioral sensitization, an animal model of drug addiction, persists for a prolonged period after repeated exposure to drugs of abuse. The persistence of an addiction behavioral phenotype suggests long-lasting changes in gene regulation at the epigenetic level. We measured the expression of histone deacetylases (HDACs) isoforms in the prefrontal cortex and dorsal striatum following the development of sensitization to cocaine (15 mg/kg, administered five times) and ethanol (0.5 g/kg, administered 15 times) to investigate the epigenetic changes that mediate sensitization. Animals sensitized to ethanol exhibited augmented locomotor activity in response to the cocaine challenge. Similarly, those sensitized to cocaine exhibited increased locomotor activity in response to an ethanol challenge. These findings indicate cross-sensitization between ethanol and cocaine and suggest that a common molecular mechanism underlying the cross-sensitization. In animals sensitized to cocaine or ethanol, mRNA levels of class II HDACs (HDAC4 and HDAC5) were decreased in the prefrontal cortex and dorsal striatum, whereas acute treatments with either drug had no effect on the expression of class II HDACs. By contrast, class I HDACs (HDAC1 and HDAC2) responded to the acute cocaine challenge, whereas sensitization itself did not have a consistent effect on class I HDAC levels. These findings support the hypothesis of a common epigenetic mechanism underlying persistent behavioral sensitization induced by different drugs, which may be mediated by the altered expression of class II HDACs.


Brain/drug effects , Central Nervous System Depressants/pharmacology , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Ethanol/pharmacology , Histone Deacetylases/drug effects , RNA, Messenger/drug effects , Alcoholism/genetics , Alcoholism/metabolism , Animals , Brain/metabolism , Central Nervous System Sensitization/drug effects , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Disease Models, Animal , Epigenesis, Genetic , Histone Deacetylase 1/drug effects , Histone Deacetylase 1/genetics , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/genetics , Histone Deacetylases/genetics , Male , Neostriatum/drug effects , Neostriatum/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Rats , Transcriptome
3.
Acta Histochem ; 123(3): 151696, 2021 Apr.
Article En | MEDLINE | ID: mdl-33652374

Sensorineural hearing loss is a health problem with global prevalence. Aminoglycoside antibiotics, for instance gentamicin, may cause ototoxicity in mammals as a result of apoptosis and elevated oxidative stress in cochlear hair cells. Our study aimed to examine the potential effects of theophylline, an HDAC2 agonist, on gentamicin-induced cytotoxicity to sensory hair cells. Mouse cochlear explants and HEI-OC1 cells were in vitro cultured and challenged by gentamicin to induce ototoxicity, with or without theophylline. Cochlear hair cells were evaluated by fluorescent microscopy, and their mechanotransduction was assessed by electrophysiology. Expression levels of HDAC2 and apoptosis pathway factors were also evaluated following gentamicin and theophylline treatments. The functional role of HDAC2 in this setting was investigated by siRNA targeted silencing. Theophylline protected cochlear hair cells from ototoxicity induced by gentamicin, in terms of preserving cochlear structure and mechanotransduction ability, and preventing the activation of the intrinsic apoptosis pathway dose-dependently. HDAC2 expression was downregulated by gentamicin, which could be restored by theophylline. HDAC2 silencing in HEI-OC1 cells negated the beneficial effect of theophylline against gentamicin-induced growth defect and apoptosis activation. Theophylline protects sensory hair cells from gentamicin ototoxicity by maintaining HDAC2 expression. Our study thereby discovers a critical role of HDAC2 in gentamicin-induced ototoxicity, which could shine light on potential therapeutic options for treatment against sensorineural hearing loss.


Apoptosis/drug effects , Gentamicins/pharmacology , Histone Deacetylase 2/metabolism , Theophylline/pharmacology , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Gentamicins/metabolism , Hair Cells, Auditory/drug effects , Histone Deacetylase 2/drug effects , Mechanotransduction, Cellular/drug effects , Mice , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Theophylline/metabolism
4.
J Cereb Blood Flow Metab ; 41(5): 958-974, 2021 05.
Article En | MEDLINE | ID: mdl-32703113

Inhibition of histone deacetylases (HDACs) has been shown to reduce inflammation and white matter damage after various forms of brain injury via modulation of microglia/macrophage polarization. Previously we showed that the HDAC inhibitor scriptaid could attenuate white matter injury (WMI) after ICH. To access whether modulation of microglia/macrophage polarization might underlie this protection, we investigated the modulatory role of HDAC2 in microglia/macrophage polarization in response to WMI induced by intracerebral hemorrhage (ICH) and in primary microglia and oligodendrocyte co-cultures. HDAC2 activity was inhibited via conditional knockout of the Hdac2 gene in microglia or via administration of scriptaid. Conditional knockout of the Hdac2 gene in microglia and HDAC inhibition with scriptaid both improved neurological functional recovery and reduced WMI after ICH. Additionally, HDAC inhibition shifted microglia/macrophage polarization toward the M2 phenotype and reduced proinflammatory cytokine secretion after ICH in vivo. In vitro, a transwell co-culture model of microglia and oligodendrocytes also demonstrated that the HDAC inhibitor protected oligodendrocytes by modulating microglia polarization and mitigating neuroinflammation. Moreover, we found that scriptaid decreased the expression of pJAK2 and pSTAT1 in cultured microglia when stimulated with hemoglobin. Thus, HDAC inhibition ameliorated ICH-mediated neuroinflammation and WMI by modulating microglia/macrophage polarization.


Cerebral Hemorrhage/complications , Histone Deacetylase Inhibitors/pharmacology , Hydroxylamines/pharmacology , Quinolines/pharmacology , White Matter/injuries , Animals , Blood Coagulation Factors/drug effects , Blood Coagulation Factors/metabolism , Case-Control Studies , Coculture Techniques , Cytokines/drug effects , Disease Models, Animal , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Hydroxylamines/administration & dosage , Hydroxylamines/therapeutic use , Inflammation/metabolism , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Outcome Assessment, Health Care , Quinolines/administration & dosage , Quinolines/therapeutic use , Recovery of Function/physiology , White Matter/drug effects , White Matter/metabolism , White Matter/ultrastructure
5.
Exp Cell Res ; 395(2): 112208, 2020 10 15.
Article En | MEDLINE | ID: mdl-32758486

PURPOSE: Forkhead box f1 (FoxF1), a transcription factor, was implicated in lung development. However, the molecular mechanism of FoxF1 in lung injury, specifically in injury caused by paraquat (PQ), one of the most frequently used herbicides, is unknown. Accordingly, we performed this study to investigate whether FoxF1 attenuates PQ-induced lung injury and to determine the possible mechanism. METHODS: We used PQ-treated Beas-2B cells to measure the expression of FoxF1. Later, ChIP-qPCR was applied to detect the levels of histone acetylation in cells, followed by the validation of the relationship between histone deacetylase-2 (HDAC2) and FoxF1. Subsequently, the correlation between FoxF1 and microRNA (miR)-342 and the downstream mechanism of miR-342 were evaluated by bioinformatics analysis. The apoptosis and the content of reactive oxygen species (ROS) in PQ-treated cells were detected to evaluate the roles of HDAC2, FoxF1 and miR-342 in vitro. Finally, a rat model was developed to evaluate the effects of HDAC2, miR-342 and Krüppel-like factor 5 (KLF5) on PQ-induced lung injury in vivo. RESULTS: PQ treatment significantly enhanced FoxF1 promoter deacetylation, thereby inhibiting FoxF1 expression. After inhibition of HDAC2 activity, apoptosis and oxidative stress induced by PQ were significantly reversed. Nevertheless, further inhibition of miR-342 or overexpression of KLF5 promoted apoptosis and oxidative stress induced by PQ, and IκB/NF-κB p65 signaling was significantly activated after PQ treatment. CONCLUSION: PQ treatment inhibited miR-342 expression by promoting HDAC2-induced deacetylation of the FoxF1 promoter, thereby promoting KLF5 expression and the IκB/NF-κB p65 signaling activation, and finally exacerbating PQ-induced lung injury in rats.


Acute Lung Injury/metabolism , Histone Deacetylase 2/drug effects , Paraquat/metabolism , Transcription Factor RelA/metabolism , Acute Lung Injury/chemically induced , Animals , Histone Deacetylase 2/metabolism , Male , Paraquat/adverse effects , Protective Agents/pharmacology , Rats, Wistar , Reactive Oxygen Species/metabolism
6.
Addict Biol ; 25(3): e12760, 2020 05.
Article En | MEDLINE | ID: mdl-31056842

Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge-like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long-term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N-methyl-d-aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours. Here, we tested the hypothesis of EtOH-induced epigenetic alterations leading to modulation of GluN2B and GluN2A NMDA receptor subunits. Forty-two days old rats were treated with EtOH or the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB, 600 mg/kg, ip) injected alone or 30 minutes before EtOH. After 48 hours, learning was tested with novel object recognition while synaptic plasticity and the role of GluN2A and GluN2B subunits in NMDA-fEPSP were measured in CA1 field of hippocampus slices. LTD and memory were impaired 48 hours after EtOH and NMDA-fEPSP analysis unraveled changes in the GluN2A/GluN2B balance. These results were associated with an increase in histone deacetylase (HDAC) activity and HDAC2 mRNA and protein while Ac-H4K12 labelling was decreased. EtOH increases expression of HDAC2 and mRNA level for GluN2B subunit (but not GluN2A), while HDAC2 modulates the promoter of the gene encoding GluN2B. Interestingly, NaB pretreatment prevented all the cellular and memory-impairing effects of EtOH. In conclusion, the memory-impairing effects of two binge-like EtOH exposure involve NMDA receptor-dependent LTD deficits due to a GluN2A/GluN2B imbalance resulting from changes in GluN2B expression induced by HDAC2.


Binge Drinking/genetics , CA1 Region, Hippocampal/drug effects , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Histone Deacetylase 2/drug effects , Long-Term Synaptic Depression/drug effects , Memory/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , Binge Drinking/metabolism , Butyric Acid/pharmacology , CA1 Region, Hippocampal/metabolism , Epigenesis, Genetic/drug effects , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Neuronal Plasticity/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
7.
Neuropsychopharmacology ; 44(6): 1152-1162, 2019 05.
Article En | MEDLINE | ID: mdl-30647450

Chronic stress promotes depression in some individuals, but has no effect in others. Susceptible individuals exhibit social avoidance and anxious behavior and ultimately develop depression, whereas resilient individuals live normally. Exercise counteracts the effects of stress. Our objective was to examine whether lactate, a metabolite produced during exercise and known to reproduce specific brain exercise-related changes, promotes resilience to stress and acts as an antidepressant. To determine whether lactate promotes resilience to stress, male C57BL/6 mice experienced daily defeat by a CD-1 aggressor, for 10 days. On the 11th day, mice were subjected to behavioral tests. Mice received lactate before each defeat session. When compared with control mice, mice exposed to stress displayed increased susceptibility, social avoidance and anxiety. Lactate promoted resilience to stress and rescued social avoidance and anxiety by restoring hippocampal class I histone deacetylase (HDAC) levels and activity, specifically HDAC2/3. To determine whether lactate is an antidepressant, mice only received lactate from days 12-25 and a second set of behavioral tests was conducted on day 26. In this paradigm, we examined whether lactate functions by regulating HDACs using co-treatment with CI-994, a brain-permeable class I HDAC inhibitor. When administered after the establishment of depression, lactate behaved as antidepressant. In this paradigm, lactate regulated HDAC5 and not HDAC2/3 levels. On the contrary, HDAC2/3 inhibition was antidepressant-like. This indicates that lactate mimics exercise's effects and rescues susceptibility to stress by modulating HDAC2/3 activity and suggests that HDAC2/3 play opposite roles before and after establishment of susceptibility to stress.


Antidepressive Agents/pharmacology , Anxiety/prevention & control , Avoidance Learning , Depression/metabolism , Hippocampus/metabolism , Histone Deacetylases/metabolism , Lactic Acid/pharmacology , Resilience, Psychological , Social Behavior , Stress, Psychological/prevention & control , Animals , Antidepressive Agents/administration & dosage , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Benzamides , Depression/drug therapy , Disease Models, Animal , Disease Susceptibility , Hippocampus/drug effects , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/drug effects , Lactic Acid/administration & dosage , Male , Mice , Mice, Inbred C57BL , Phenylenediamines/pharmacology , Resilience, Psychological/drug effects
8.
Med Sci Monit ; 24: 6405-6413, 2018 Sep 12.
Article En | MEDLINE | ID: mdl-30208371

BACKGROUND Colorectal cancer is one of the leading causes of death in China, and the development of effective drugs is urgently needed. Here, we report on Paeoniflorin (PF), a product isolated from the roots of the peony plant, as a possible candidate because of its anti-tumor effects on epithelial-to-mesenchymal transition (EMT) of PF in human colorectal cancer (CRC). MATERIAL AND METHODS Cell proliferation, wound healing, and Transwell assays were used to analyze the effects of PF on in vitro cell migration and invasion of HCT116 and SW480, 2 colorectal cancer cell lines. The tumor xenograft model was used to verify the anti-metastasis effects of PF in vivo. The RNA and protein levels of epithelia-cadherin (E-cadherin), Vimentin, and histone deacetylase2 (HDAC2) were measured by qPCR and Western blot analysis to explore the mechanism involved. RESULTS Our results showed that PF inhibited colorectal cancer cell migration and invasion and suppressed the metastatic potential of the cancer cells in vivo. Moreover, PF significantly decreased the expression of HDAC2 and Vimentin, while increasing the expression of E-cadherin. CONCLUSIONS These results suggest that PF inhibits colorectal cancer cell migration and invasion ability and reverses the EMT process, through inhibiting the expression of HDAC2, and then affects the expression level of E-cadherin and Vimentin at the cell level. Our results were also verified in the tumor xenograft model. This indicates that PF may be a candidate for colorectal cancer treatment.


Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/drug effects , Glucosides/pharmacology , Monoterpenes/pharmacology , Animals , Cadherins/drug effects , Cell Line, Tumor/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , China , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 2/drug effects , Humans , Medicine, Chinese Traditional , Mice , Mice, Nude , Signal Transduction/drug effects , Vimentin/drug effects , Wound Healing/drug effects , Xenograft Model Antitumor Assays
9.
Am J Respir Crit Care Med ; 193(2): 143-53, 2016 Jan 15.
Article En | MEDLINE | ID: mdl-26426522

RATIONALE: Corticosteroid resistance is a major barrier to the effective treatment of chronic obstructive pulmonary disease (COPD). Several molecular mechanisms have been proposed, such as activations of the phosphoinositide-3-kinase/Akt pathway and p38 mitogen-activated protein kinase. However, the mechanism for corticosteroid resistance is still not fully elucidated. OBJECTIVES: To investigate the role of mammalian target of rapamycin (mTOR) in corticosteroid sensitivity in COPD. METHODS: The corticosteroid sensitivity of peripheral blood mononuclear cells collected from patients with COPD, smokers, and nonsmoking control subjects, or of human monocytic U937 cells exposed to cigarette smoke extract (CSE), was quantified as the dexamethasone concentration required to achieve 30% inhibition of tumor necrosis factor-α-induced CXCL8 production in the presence or absence of the mTOR inhibitor rapamycin. mTOR activity was determined as the phosphorylation of p70 S6 kinase, using Western blotting. MEASUREMENTS AND MAIN RESULTS: mTOR activity was increased in peripheral blood mononuclear cells from patients with COPD, and treatment with rapamycin inhibited this as well as restoring corticosteroid sensitivity. In U937 cells, CSE stimulated mTOR activity and c-Jun expression, but pretreatment with rapamycin inhibited both and also reversed CSE-induced corticosteroid insensitivity. CONCLUSIONS: mTOR inhibition by rapamycin restores corticosteroid sensitivity via inhibition of c-Jun expression, and thus mTOR is a potential novel therapeutic target for COPD.


Adrenal Cortex Hormones/pharmacology , Drug Resistance/drug effects , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-jun/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/drug effects , Adrenal Cortex Hormones/therapeutic use , Aged , Drug Resistance/immunology , Female , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/physiology , Humans , Immunosuppressive Agents/immunology , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Oxidative Stress/physiology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/physiology , Proto-Oncogene Proteins c-jun/physiology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/physiopathology , Sirolimus/immunology , Sirolimus/therapeutic use , Smoking/adverse effects , Smoking/physiopathology , TOR Serine-Threonine Kinases/physiology , U937 Cells/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/physiology
10.
Braz J Med Biol Res ; 48(7): 654-64, 2015 Jul.
Article En | MEDLINE | ID: mdl-25923460

Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3 might be useful as a novel HDAC2 activator in the treatment of asthma.


Asthma/drug therapy , Calcitriol/pharmacology , Histone Deacetylase 2/drug effects , NF-kappa B/drug effects , Vitamins/pharmacology , Animals , Asthma/chemically induced , Blotting, Western , Bronchoalveolar Lavage Fluid/chemistry , Calcitriol/therapeutic use , Cell Count , Cytokines/analysis , Cytokines/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Enzymologic/drug effects , Histone Deacetylase 2/metabolism , Immunohistochemistry , Lung/chemistry , Lung/drug effects , Male , NF-kappa B/analysis , Ovalbumin , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Treatment Outcome , Vitamins/therapeutic use
11.
Alcohol Clin Exp Res ; 35(8): 1550-6, 2011 Aug.
Article En | MEDLINE | ID: mdl-21447001

BACKGROUND: Previous studies have implicated histone deacetylases (HDACs) and HDAC inhibitors (HDIs) such as trichostatin A (TSA) in the regulation of gene expression during drug addiction. Furthermore, an increase in HDAC activity has been linked to neurodegeneration. Alcohol has also been shown to promote abundant generation of reactive oxygen species (ROS) resulting in oxidative stress. TSA inhibits HDACs and has been shown to be neuroprotective in other neurodegenerative disease models. Although HDACs and HDIs have been associated with drug addiction, there is no evidence of the neurodegenerative role of HDAC2 and neuroprotective role of TSA in alcohol addiction. Therefore, we hypothesize that alcohol modulates HDAC2 through mechanisms involving oxidative stress. METHODS: To test our hypothesis, the human neuronal cell line, SK-N-MC, was treated with different concentrations of ethanol (EtOH); HDAC2 gene and protein expression were assessed at different time points. Pharmacological inhibition of HDAC2 with TSA was evaluated at the gene level using qRT-PCR and at the protein level using Western blot and flow cytometry. ROS production was measured with a fluorescence microplate reader and fluorescence microscopy. RESULTS: Our results showed a dose-dependent increase in HDAC2 expression with EtOH treatment. Additionally, alcohol significantly induced ROS, and pharmacological inhibition of HDAC2 with TSA was shown to be neuroprotective by significantly inhibiting HDAC2 and ROS. CONCLUSIONS: These results suggest that EtOH can upregulate HDAC2 through mechanisms involving oxidative stress and HDACs may play an important role in alcohol use disorders (AUDs). Moreover, the use of HDIs may be of therapeutic significance for the treatment of neurodegenerative disorders including AUDs.


Central Nervous System Depressants/toxicity , Ethanol/toxicity , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Neuroprotective Agents/pharmacology , Cell Line , Dose-Response Relationship, Drug , Gene Expression/drug effects , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/genetics , Humans , Hydroxamic Acids/metabolism , Neuroprotective Agents/metabolism , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
12.
Stem Cells ; 28(3): 431-42, 2010 Mar 31.
Article En | MEDLINE | ID: mdl-20073046

In human endothelial cells, nitric oxide (NO) results in class IIa histone deacetylases (HDACs) activation and marked histone deacetylation. It is unknown whether similar epigenetic events occur in embryonic stem cells (ESC) exposed to NO and how this treatment could influence ESC therapeutic potential during tissue regeneration.This study reports that the NO-dependent class IIa HDACs subcellular localization and activity decreases the global acetylation level of H3 histones in ESC and that this phenomenon is associated with the inhibition of Oct4, Nanog, and KLF4 expression. Further, a NO-induced formation of macromolecular complexes including HDAC3, 4, 7, and protein phosphatase 2A (PP2A) have been detected. These processes correlated with the expression of the mesodermal-specific protein brachyury (Bry) and the appearance of several vascular and skeletal muscle differentiation markers. These events were abolished by the class IIa-specific inhibitor MC1568 and by HDAC4 or HDAC7 short interfering RNA (siRNA). The ability of NO to induce mesodermic/cardiovascular gene expression prompted us to evaluate the regenerative potential of these cells in a mouse model of hindlimb ischemia. We found that NO-treated ESCs injected into the cardiac left ventricle selectively localized in the ischemic hindlimb and contributed to the regeneration of muscular and vascular structures. These findings establish a key role for NO and class IIa HDACs modulation in ESC mesodermal commitment and enhanced regenerative potential in vivo.


Cell Differentiation/physiology , Embryonic Stem Cells/enzymology , Histone Deacetylase 2/metabolism , Ischemia/therapy , Mesoderm/enzymology , Nitric Oxide/metabolism , Animals , Biomarkers/metabolism , Cell Line , Cell Proliferation , Disease Models, Animal , Embryonic Stem Cells/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Graft Survival/drug effects , Graft Survival/genetics , Histone Deacetylase 2/drug effects , Histone Deacetylase 2/genetics , Histones/drug effects , Histones/metabolism , Kruppel-Like Factor 4 , Macromolecular Substances/metabolism , Male , Mesoderm/drug effects , Mice , Mice, Inbred C57BL , Nitric Oxide/pharmacology , Recovery of Function/drug effects , Recovery of Function/genetics , Regeneration/drug effects , Regeneration/genetics , Stem Cell Transplantation/methods
...