Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.989
Filtrar
1.
J Exp Biol ; 227(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953226

RESUMEN

The Cape fur seal (Arctocephalus pusillus pusillus) is one of the most colonial mammals, with colonies of up to hundreds of thousands of individuals during the breeding season. During the lactation period, mothers and pups are regularly separated as females undertake multi-day foraging trips at sea. Mothers and pups use a mutual vocal recognition system to reunite after separation. Such communication is highly constrained by both high background noise and risk of individual confusion owing to the density of seals. This study aimed to experimentally assess the acoustic features relevant for mother-pup vocal identification and the propagation properties of their calls. Playback experiments revealed that mother and pup individual vocal signatures rely on both temporal and frequency parameters: amplitude and frequency modulations, timbre and fundamental frequency (f0). This is more parameters than in any colonial species studied so far. The combinational use of acoustic features reinforces the concept that both environmental and social constraints may have acted as selective pressures on the individual vocal recognition systems. Theoretical propagation distances of mother and pup vocalisations were estimated to be below the range of distances at which mother-pup reunions can occur. This suggests that Cape fur seals may have strong abilities to extract vocal signals from the background noise, as previously demonstrated in the highly colonial king penguin. Investigating the transmission of information throughout the propagation of the signal as well as the ability of the receiving individual to decipher vocal signatures is crucial to understanding vocal recognition systems in the wild.


Asunto(s)
Acústica , Lobos Marinos , Vocalización Animal , Animales , Lobos Marinos/fisiología , Femenino , Fenómenos de Retorno al Lugar Habitual
2.
BMC Ecol Evol ; 24(1): 82, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872087

RESUMEN

BACKGROUND: Tandem running is a recruitment method found in some species of ants where one ant follows another ant to reach a destination having maintained a physical contact with its antennae, throughout the journey. It is considered that the exchange of information regarding the destination among the nestmates happened during the process of tandem running. We examined the impact of restricting antennal movement on tandem running by using Diacamma indicum, a tandem-running ponerine ant by following 480 tandem runs across 9 treatment colonies and comparing it with 10 control relocating colonies. RESULT: Though all the 19 colonies relocated successfully, treatment colonies took significantly longer time to do so. Restricted antennal movement did not influence the ability to become tandem leaders, initiate tandem runs or the work organization significantly. However, antennae-restricted ants performed fewer tandem runs and took significantly longer time. Followers with single or both antennae-restriction performed significantly higher number of interruptions and the alignment between the leader and follower was impacted as antenna-restricted followers subtended a greater angle and walked more to the side of the leader as compared to the control followers. CONCLUSION: This study showed unhindered movement of the followers' antennae is important for tandem-running ants. In the next step, to gain a comprehensive understanding of this recruitment method, it is essential to individually delineate different sensory modalities.


Asunto(s)
Hormigas , Antenas de Artrópodos , Animales , Hormigas/fisiología , Antenas de Artrópodos/fisiología , Carrera/fisiología , Movimiento/fisiología , Conducta Social , Fenómenos de Retorno al Lugar Habitual/fisiología
3.
Proc Biol Sci ; 291(2024): 20232889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864336

RESUMEN

Food availability and distribution are key drivers of animal space use. Supplemental food provided by humans can be more abundant and predictable than natural resources. It is thus believed that supplementary feeding modifies the spatial behaviour of wildlife. Yet, such effects have not been tested quantitatively across species. Here, we analysed changes in home range size owing to supplementary feeding in 23 species of terrestrial mammals using a meta-analysis of 28 studies. Additionally, we investigated the moderating effect of factors related to (i) species biology (sex, body mass and taxonomic group), (ii) feeding regimen (duration, amount and purpose), and (iii) methods of data collection and analysis (source of data, estimator and spatial confinement). We found no consistent effect of supplementary feeding on changes in home range size. While an overall tendency of reduced home range was observed, moderators varied in the direction and strength of the trends. Our results suggest that multiple drivers and complex mechanisms of home range behaviour can make it insensitive to manipulation with supplementary feeding. The small number of available studies stands in contrast with the ubiquity and magnitude of supplementary feeding worldwide, highlighting a knowledge gap in our understanding of the effects of supplementary feeding on ranging behaviour.


Asunto(s)
Conducta Alimentaria , Fenómenos de Retorno al Lugar Habitual , Mamíferos , Animales , Mamíferos/fisiología , Masculino , Femenino
4.
PLoS One ; 19(6): e0305278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38857226

RESUMEN

Understanding the spatial ecology of translocated leopards (Panthera pardus fusca) is crucial for their conservation and the effective assessment of conflict management strategies. We investigated the home range and habitat preferences of five radio-collared leopards (n = 5; 2 males; 3 females) in the Gir landscape. Additionally, we examined the usefulness of the capture-release strategy for these animals. We assessed home range and habitat selection using kernel density estimation (at 95% and 50% levels) and compositional analysis. Our findings revealed that leopards exhibited distinct patterns of movement, often returning to their original capture site or nearby locations or exploring new areas within 3 to 25 days, covering distances ranging from 48 to 260 km. The average home range (95% FK) was estimated at 103.96±36.37 (SE) km2, with a core area usage (50% FK) of 21.38±5.95 km2. Seasonally, we observed the largest home ranges during summer and the smallest during winter. Males exhibited larger home ranges (95% FK, 151±64.28 km2) compared to females (56.18±14.22 km2). The habitat analysis indicated that agricultural areas were consistently preferred in the multi-use landscape at the 2nd order habitat selection level. Additionally, habitat around water bodies was highly favoured at the 3rd order, with distinct variations in habitat selection observed during day and night. This study highlights the significance of riverine and scrubland habitats, as leopards exhibited strong preferences for these habitats within their home ranges. We emphasize the importance of conserving natural habitat patches, particularly those surrounding water bodies. We also report on the characteristics of the capture-release strategy and provide our observations indicating no escalated aggression by leopards' post-release. In conclusion, this study evaluates widely employed approaches to conflict mitigation and suggests the continuous review and assessment of management strategies for mitigating human-leopard conflicts.


Asunto(s)
Ecosistema , Fenómenos de Retorno al Lugar Habitual , Panthera , Animales , Masculino , India , Femenino , Panthera/fisiología , Conservación de los Recursos Naturales/métodos , Estaciones del Año
5.
PLoS Biol ; 22(6): e3002644, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843108

RESUMEN

Homing pigeons (Columba livia) navigate by solar and magnetic compass, and fly home in idiosyncratic but stable routes when repeatedly released from the same location. However, when experienced pigeons fly alongside naive counterparts, their path is altered. Over several generations of turnover (pairs in which the most experienced individual is replaced with a naive one), pigeons show cumulative improvements in efficiency. Here, I show that such cumulative route improvements can occur in a much simpler system by using agent-based simulation. Artificial agents are in silico entities that navigate with a minimal cognitive architecture of goal-direction (they know roughly where the goal is), social proximity (they seek proximity to others and align headings), route memory (they recall landmarks with increasing precision), and continuity (they avoid erratic turns). Agents' behaviour qualitatively matched that of pigeons, and quantitatively fitted to pigeon data. My results indicate that naive agents benefitted from being paired with experienced agents by following their previously established route. Importantly, experienced agents also benefitted from being paired with naive agents due to regression to the goal: naive agents were more likely to err towards the goal from the perspective of experienced agents' memorised paths. This subtly biased pairs in the goal direction, resulting in intergenerational improvements of route efficiency. No cumulative improvements were evident in control studies in which agents' goal-direction, social proximity, or memory were lesioned. These 3 factors are thus necessary and sufficient for cumulative route improvements to emerge, even in the absence of sophisticated communication or thought.


Asunto(s)
Columbidae , Animales , Columbidae/fisiología , Navegación Espacial/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Simulación por Computador , Memoria/fisiología
6.
PLoS One ; 19(6): e0305369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865434

RESUMEN

Determining space use for species is fundamental to understanding their ecology, and tracking animals can reveal insights into their spatial ecology on home ranges and territories. Recent technological advances have led to GPS-tracking devices light enough for birds as small as ~30 g, creating novel opportunities to remotely monitor fine-scale movements and space use for these smaller species. We tested whether miniaturized GPS tags can allow us to understand space use of migratory birds away from their capture sites and sought to understand both pre-breeding space use as well as territory and habitat use on the breeding grounds. We used GPS tags to characterize home ranges on the breeding grounds for a migratory songbird with limited available breeding information, the Golden-crowned Sparrow (Zonotrichia atricapilla). Using GPS points from 23 individuals across 26 tags (three birds tagged twice), we found home ranges in Alaska and British Columbia were on average 44.1 ha (95% kernel density estimate). In addition, estimates of territory sizes based on field observations (mean 2.1 ha, 95% minimum convex polygon [MCP]) were three times smaller than 95% MCPs created using GPS tags (mean 6.5 ha). Home ranges included a variety of land cover classes, with shrubland particularly dominant (64-100% of home range cover for all but one bird). Three birds tracked twice returned to the same breeding area each year, supporting high breeding site fidelity for this species. We found reverse spring migration for five birds that flew up to 154 km past breeding destinations before returning. GPS-tracking technology allowed for critical ecological insights into this migratory species that breeds in very remote locations.


Asunto(s)
Migración Animal , Sistemas de Información Geográfica , Fenómenos de Retorno al Lugar Habitual , Estaciones del Año , Gorriones , Animales , Migración Animal/fisiología , Gorriones/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Cruzamiento , Ecosistema , Colombia Británica , Alaska , Comportamiento de Nidificación/fisiología
7.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771864

RESUMEN

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Asunto(s)
Aves , Vuelo Animal , Viento , Animales , Vuelo Animal/fisiología , Aves/fisiología , Orientación/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Orientación Espacial/fisiología , Migración Animal/fisiología
8.
Anim Cogn ; 27(1): 39, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789697

RESUMEN

The Australian red honey ant, Melophorus bagoti, stands out as the most thermophilic ant in Australia, engaging in all outdoor activities during the hottest periods of the day during summer months. This species of desert ants often navigates by means of path integration and learning landmark cues around the nest. In our study, we observed the outdoor activities of M. bagoti workers engaged in nest excavation, the maintenance of the nest structure, primarily by taking excess sand out of the nest. Before undertaking nest excavation, the ants conducted a single exploratory walk. Following their initial learning expedition, these ants then engaged in nest excavation activities. Consistent with previous findings on pre-foraging learning walks, after just one learning walk, the desert ants in our study demonstrated the ability to return home from locations 2 m away from the nest, although not from locations 4 m away. These findings indicate that even for activities like dumping excavated sand within a range of 5-10 cm outside the nest, these ants learn and utilize the visual landmark panorama around the nest.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Australia , Aprendizaje , Caminata , Comportamiento de Nidificación , Clima Desértico , Fenómenos de Retorno al Lugar Habitual , Señales (Psicología) , Navegación Espacial
9.
BMC Ecol Evol ; 24(1): 71, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811886

RESUMEN

Home range is a fundamental characteristic of an animal natural history. The study of home range provides information on the sites where organisms forage for food, find shelter, or locate mates. Home range size and shape can change throughout the lifespan of an organism, during the year, or across seasons, driven by resource availability and the basic needs for each organism. For freshwater and semi-aquatic turtles, home range is greatly affected by water availability, humidity, and temperature throughout the year, nevertheless demographic factors such age and sex are also important determinants of home range size. In this study we estimated home range and dispersal movements for Kinosternon creaseri, Terrapene yucatana, and Rhinoclemmys areolata in a semi-tropical dry forest in central Yucatán. For a two-year period, turtles were surveyed using hoop traps and visual encounters. Twenty-one individuals (5-8 per species) were equipped with radio transmitters to track them across the landscape. Distances between relocations and home range were compared across species seasons, sex, and interactions of these variables. Monthly average movements were positively correlated with rain in the three species studied. Home range of R. areolata was larger than those of K. creaseri and T. yucatana. Home range of the three studied species were larger during the wet season. Home range overlap index within same species individuals was higher during the rainy than dry season, but overall overlap is low between and within species.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Estaciones del Año , Tortugas , Tortugas/fisiología , Animales , Femenino , Masculino , México , Fenómenos de Retorno al Lugar Habitual/fisiología
10.
Ecol Lett ; 27(5): e14443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803140

RESUMEN

Recent proliferation of GPS technology has transformed animal movement research. Yet, time-series data from this recent technology rarely span beyond a decade, constraining longitudinal research. Long-term field sites hold valuable historic animal location records, including hand-drawn maps and semantic descriptions. Here, we introduce a generalised workflow for converting such records into reliable location data to estimate home ranges, using 30 years of sleep-site data from 11 white-faced capuchin (Cebus imitator) groups in Costa Rica. Our findings illustrate that historic sleep locations can reliably recover home range size and geometry. We showcase the opportunity our approach presents to resolve open questions that can only be addressed with very long-term data, examining how home ranges are affected by climate cycles and demographic change. We urge researchers to translate historical records into usable movement data before this knowledge is lost; it is essential to understanding how animals are responding to our changing world.


Asunto(s)
Cebus , Cambio Climático , Animales , Costa Rica , Cebus/fisiología , Fenómenos de Retorno al Lugar Habitual , Sistemas de Información Geográfica , Dinámica Poblacional , Demografía
11.
PeerJ ; 12: e17159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562997

RESUMEN

Domestic cats (Felis catus) play a dual role in society as both companion animals and predators. When provided with unsupervised outdoor access, cats can negatively impact native wildlife and create public health and animal welfare challenges. The effective implementation of management strategies, such as buffer zones or curfews, requires an understanding of home range size, the factors that influence their movement, and the types of habitats they use. Here, we used a community/citizen scientist approach to collect movement and habitat use data using GPS collars on owned outdoor cats in the Kitchener-Waterloo-Cambridge-Guelph region, southwestern Ontario, Canada. Mean (± SD) 100% minimum convex polygon home range size was 8 ± 8 ha (range: 0.34-38 ha) and was positively associated with road density but not with intrinsic factors such as boldness, sex, or age. With regards to habitat selection, cats used greenspaces, roads, and agricultural land less often than predicted but strongly selected for impervious surfaces (urban areas other than greenspaces or roads). Our results suggest that wildlife near buildings and residential areas are likely at the greatest risk of cat predation and that a buffer size of 840 m would be needed to restrict cats from entering areas of conservation concern.


Asunto(s)
Animales Salvajes , Fenómenos de Retorno al Lugar Habitual , Animales , Gatos , Ontario , Ecosistema , Conducta Predatoria
12.
Anim Cogn ; 27(1): 37, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684551

RESUMEN

For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.


Asunto(s)
Gorilla gorilla , Animales , Gorilla gorilla/fisiología , Masculino , Femenino , Navegación Espacial , Luz Solar , Memoria Espacial , Movimiento , Fenómenos de Retorno al Lugar Habitual
13.
J Math Biol ; 88(5): 59, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589609

RESUMEN

Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.


Asunto(s)
Ecosistema , Fenómenos de Retorno al Lugar Habitual , Animales , Fenómenos de Retorno al Lugar Habitual/fisiología , Memoria , Movimiento
14.
J Anim Ecol ; 93(4): 488-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459628

RESUMEN

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Asunto(s)
Ecosistema , Fenómenos de Retorno al Lugar Habitual , Animales , Mamíferos , Temperatura
15.
Primates ; 65(3): 173-181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436838

RESUMEN

It is common that neighboring groups of the same species use some of the same areas, resulting in home-range overlap. Areas between the home ranges of neighboring groups not used by either group (no-use zone or NUZ) are rarely reported. Here, we report the existence of a NUZ between the home ranges of two Geoffroy's spider monkey groups, and examine its spatial changes over time and the ecological and behavioral underpinnings of such phenomenon. Although its size and location changed between 2017 and 2022, the NUZ was always present. We did not find any differences in the vegetation structure and composition between the NUZ and the ranging areas and in the monkeys' activity patterns between areas adjacent to the NUZ and the other parts of the ranging areas. The number of monkey vocalizations was lower and subgroup size was smaller (although the number of males did not differ) in areas adjacent to the NUZ than in the other parts of the ranging areas. Both changes possibly reflect the tendency to conceal their presence to the neighboring group. Our findings contribute to the understanding of primate space use and highlight the need to focus on the areas delimiting home ranges.


Asunto(s)
Ateles geoffroyi , Atelinae , Masculino , Animales , Fenómenos de Retorno al Lugar Habitual
16.
Am J Primatol ; 86(6): e23617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467494

RESUMEN

Primates are adept at dealing with fluctuating availability of resources and display a range of responses to minimize the effects of food scarcity. An important component of primate conservation is to understand how primates adapt their foraging and ranging patterns in response to fluctuating food resources. Animals optimize resource acquisition within the home range through the selection of resource-bearing patches and choose between contrasting foraging strategies (resource-maximizing vs. area-minimizing). Our study aimed to characterize the foraging strategy of a folivorous primate, Verreaux's sifaka (Propithecus verreauxi), by evaluating whether group home range size varied between peak and lean leaf seasons within a seasonally dry tropical forest in Madagascar. We hypothesized that Verreaux's sifaka used the resource maximization strategy to select high-value resource patches so that during periods of resource depression, the home range area did not significantly change in size. We characterized resource availability (i.e., primary productivity) by season at Kirindy Mitea National Park using remotely-sensed Enhanced Vegetation Index data. We calculated group home ranges using 10 years of focal animal sampling data collected on eight groups using both 95% and 50% kernel density estimation. We used area accumulation curves to ensure each group had an adequate number of locations to reach seasonal home range asymptotes. Neither 95% home ranges nor 50% core areas differed across peak and lean leaf resource seasons, supporting the hypothesis that Verreaux's sifaka use a resource maximization strategy. With a better understanding of animal space use strategies, managers can model anticipated changes under environmental and/or anthropogenic resource depression scenarios. These findings demonstrate the value of long-term data for characterizing and understanding foraging and ranging patterns. We also illustrate the benefits of using satellite data for characterizing food resources for folivorous primates.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Estaciones del Año , Strepsirhini , Animales , Strepsirhini/fisiología , Madagascar , Bosques , Conducta Alimentaria , Ecosistema
17.
Sci Rep ; 14(1): 6770, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514686

RESUMEN

Many animals return to their home areas (i.e., 'homing') after translocation to sites further away. Such translocations have traditionally been used in behavioral ecology to understand the orientation and migration behavior of animals. The movement itself can then be followed by marking and recapturing animals or by tracking, for example, using GPS systems. Most detailed studies investigating this behavior have been conducted in smaller vertebrates (e.g., birds, amphibians, and mice), whereas information on larger mammals, such as red deer, is sparse. We conducted GPS-assisted translocation experiments with red deer at two sites in the Czech Republic. Individuals were translocated over a distance of approximately 11 km and their home journey was tracked. Circular statistics were used to test for significant homeward orientation at distances of 100, 500, 1000, and 5000 m from the release site. In addition, we applied Lavielle trajectory segmentation to identify the different phases of homing behavior. Thirty-one out of 35 translocations resulted in successful homing, with a median time of 4.75 days (range 1.23-100 days). Animals were significantly oriented towards home immediately after release and again when they came closer to home; however, they did not show a significant orientation at the distances in between. We were able to identify three homing phases, an initial 'exploratory phase', followed by a 'homing phase' which sometimes was again followed by an 'arrival phase'. The 'homing phase' was characterized by the straightest paths and fastest movements. However, the variation between translocation events was considerable. We showed good homing abilities of red deer after translocation. Our results demonstrate the feasibility of conducting experiments with environmental manipulations (e.g., to impede the use of sensory cues) close to the release site. The homing behavior of red deer is comparable to that of other species, and might represent general homing behavior patterns in animals. Follow-up studies should further dissect and investigate the drivers of the individual variations observed and try to identify the sensory cues used during homing.


Asunto(s)
Ciervos , Fenómenos de Retorno al Lugar Habitual , Animales , Ratones , Columbidae , Movimiento , Ecología , Translocación Genética
18.
Behav Brain Res ; 465: 114971, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38552743

RESUMEN

Within their familiar areas homing pigeons rely on familiar visual landscape features and landmarks for homing. However, the neural basis of visual landmark-based navigation has been so far investigated mainly in relation to the role of the hippocampal formation. The avian visual Wulst is the telencephalic projection field of the thalamofugal pathway that has been suggested to be involved in processing lateral visual inputs that originate from the far visual field. The Wulst is therefore a good candidate for a neural structure participating in the visual control of familiar visual landmark-based navigation. We repeatedly released and tracked Wulst-lesioned and control homing pigeons from three sites about 10-15 km from the loft. Wulst lesions did not impair the ability of the pigeons to orient homeward during the first release from each of the three sites nor to localise the loft within the home area. In addition, Wulst-lesioned pigeons displayed unimpaired route fidelity acquisition to a repeated homing path compared to the intact birds. However, compared to control birds, Wulst-lesioned pigeons displayed persistent oscillatory flight patterns across releases, diminished attention to linear (leading lines) landscape features, such as roads and wood edges, and less direct flight paths within the home area. Differences and similarities between the effects of Wulst and hippocampal lesions suggest that although the visual Wulst does not seem to play a direct role in the memory representation of a landscape-landmark map, it does seem to participate in influencing the perceptual construction of such a map.


Asunto(s)
Columbidae , Fenómenos de Retorno al Lugar Habitual , Animales , Orientación , Telencéfalo
19.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531398

RESUMEN

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Asunto(s)
Fungicidas Industriales , Abejas , Animales , Néctar de las Plantas , Fenómenos de Retorno al Lugar Habitual , Temperatura , Condicionamiento Clásico
20.
Curr Opin Neurobiol ; 86: 102870, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552546

RESUMEN

The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual-spatial perception.


Asunto(s)
Columbidae , Hipocampo , Fenómenos de Retorno al Lugar Habitual , Navegación Espacial , Animales , Columbidae/fisiología , Navegación Espacial/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Hipocampo/fisiología , Vías Olfatorias/fisiología , Percepción Visual/fisiología , Olfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...