Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Cells ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38920699

RESUMEN

Alkaptonuria (AKU) is a genetic disorder that affects connective tissues of several body compartments causing cartilage degeneration, tendon calcification, heart problems, and an invalidating, early-onset form of osteoarthritis. The molecular mechanisms underlying AKU involve homogentisic acid (HGA) accumulation in cells and tissues. HGA is highly reactive, able to modify several macromolecules, and activates different pathways, mostly involved in the onset and propagation of oxidative stress and inflammation, with consequences spreading from the microscopic to the macroscopic level leading to irreversible damage. Gaining a deeper understanding of AKU molecular mechanisms may provide novel possible therapeutical approaches to counteract disease progression. In this review, we first describe inflammation and oxidative stress in AKU and discuss similarities with other more common disorders. Then, we focus on HGA reactivity and AKU molecular mechanisms. We finally describe a multi-purpose digital platform, named ApreciseKUre, created to facilitate data collection, integration, and analysis of AKU-related data.


Asunto(s)
Alcaptonuria , Estrés Oxidativo , Alcaptonuria/metabolismo , Alcaptonuria/genética , Humanos , Ácido Homogentísico/metabolismo , Inflamación/patología , Inflamación/metabolismo , Animales
2.
Life Sci ; 347: 122682, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38702025

RESUMEN

Thyroid cancer is one of the most common primary endocrine malignancies worldwide, and papillary thyroid carcinoma (PTC) is the predominant histological type observed therein. Although PTC has been studied extensively, our understanding of the altered metabolism and metabolic profile of PTC tumors is limited. We identified that the content of metabolite homogentisic acid (HGA) in PTC tissues was lower than that in adjacent non-cancerous tissues. We evaluated the potential of HGA as a novel molecular marker in the diagnosis of PTC tumors, as well as its ability to indicate the degree of malignancy. Studies have further shown that HGA contributes to reactive oxygen species (ROS) associated oxidative stress, leading to toxicity and inhibition of proliferation. In addition, HGA caused an increase in p21 expression levels in PTC cells and induced G1 arrest. Moreover, we found that the low HGA content in PTC tumors was due to the low expression levels of tyrosine aminotransferase (TAT) and p-hydroxyphenylpyruvate hydroxylase (HPD), which catalyze the conversion of tyrosine to HGA. The low expression levels of TAT and HPD are strongly associated with a higher probability of PTC tumor invasion and metastasis. Our study demonstrates that HGA could be used to diagnose PTC and provides mechanisms linking altered HGA levels to the biological behavior of PTC tumors.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ácido Homogentísico , Especies Reactivas de Oxígeno , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Ácido Homogentísico/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Estrés Oxidativo , Carcinoma Papilar/patología , Carcinoma Papilar/metabolismo , Adulto
3.
J Inherit Metab Dis ; 47(4): 664-673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38487984

RESUMEN

Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] µmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] µmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.


Asunto(s)
Alcaptonuria , Ciclohexanonas , Modelos Animales de Enfermedad , Ácido Homogentísico , Nitrobenzoatos , Alcaptonuria/orina , Alcaptonuria/metabolismo , Animales , Ácido Homogentísico/orina , Ácido Homogentísico/metabolismo , Ratones , Ciclohexanonas/orina , Masculino , Tirosina/metabolismo , Tirosina/orina , Hígado/metabolismo , Fenilalanina/metabolismo
4.
Nat Rev Dis Primers ; 10(1): 16, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453957

RESUMEN

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.


Asunto(s)
Alcaptonuria , Ocronosis , Masculino , Humanos , Femenino , Alcaptonuria/complicaciones , Alcaptonuria/diagnóstico , Alcaptonuria/terapia , Calidad de Vida , Ocronosis/complicaciones , Ocronosis/diagnóstico , Riñón/metabolismo , Ácido Homogentísico/metabolismo
5.
J Clin Lab Anal ; 37(21-22): e24976, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37877521

RESUMEN

OBJECTIVE: Homogentisic acid (HGA) is excreted in excessive amounts in the urine of patients with alkaptonuria, which is a hereditary metabolic disorder of phenylalanine and tyrosine. Therefore, the detection of HGA in urine is useful for the diagnosis of alkaptonuria. To evaluate the detection of HGA, we confirmed the color shift of HGA solutions and analyzed them by electrospray ionization mass spectrometry (ESI-MS). METHODS: We observed the color change of the HGA solutions under different pH conditions (pH 6.0, 7.0, and 8.0) and examined the influences of adding potassium hydroxide (KOH) and ascorbic acid (AA) to the HGA solutions. Then, we analyzed the chemical reaction in HGA solutions using ESI-MS. RESULTS: The HGA solution at pH 8.0 became brown after incubation at room temperature for 24 h and became darker brown with the addition of KOH; however, HGA solutions at pH 6.0 and 7.0 showed no color changes. The brown color change of the HGA solution at pH 8.0 was also inhibited by AA. Moreover, all HGA sample solutions showed the deprotonated molecular ion peak at m/z 167.035 in the negative ion mode after incubation at room temperature for 24 h and with the addition of KOH and AA. CONCLUSION: We identified the molecular ion of HGA in all sample solutions by ESI-MS, regardless of different pH conditions, color changes, or the presence of AA. These results suggest that spectral analysis by ESI-MS is suitable for the detection of HGA and the diagnosis of alkaptonuria.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/diagnóstico , Alcaptonuria/orina , Espectrometría de Masa por Ionización de Electrospray , Ácido Homogentísico/orina , Hidróxidos , Ácido Ascórbico
6.
BMJ Case Rep ; 16(10)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880174

RESUMEN

Alkaptonuria is a very rare disorder in which homogentisic acid accumulates due to a deficiency in the activity of homogentisic acid 1,2 dioxygenase. This deficiency results in deposition of a yellowish-brown pigment in connective tissue. Such deposition is termed 'ochronosis' and leads to deterioration in the formation and structure of proteoglycans in hyaline cartilage. These actions lead to fragmentation and rapid destructive arthritis. Often, ochronotic arthritis appears at 40-60 years of age, and many patients are treated symptomatically. Here, we report two patients (three ankles) with ochronotic arthritis who were treated with ankle arthrodesis. In all cases, the postoperative clinical score improved, but the time needed for fusion was prolonged and symptomatic subtalar arthropathy developed in the early postoperative period.


Asunto(s)
Alcaptonuria , Enfermedades de los Cartílagos , Osteoartritis , Humanos , Alcaptonuria/complicaciones , Alcaptonuria/cirugía , Tobillo , Ácido Homogentísico , Artrodesis
7.
Sci Rep ; 13(1): 14374, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658095

RESUMEN

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the homogentisate 1,2-dioxygenase (HGD) gene. This leads to a deficient HGD enzyme with the consequent accumulation of homogentisic acid (HGA) in different tissues causing complications in various organs, particularly in joints, heart valves and kidneys. The genetic basis of AKU in Egypt is completely unknown. We evaluated the clinical and genetic spectrum of six pediatric and adolescents AKU patients from four unrelated Egyptian families. All probands had a high level of HGA in urine by qualitative GC/MS before genetic confirmation by Sanger sequencing. Recruited AKU patients were four females and two males (median age 13 years). We identified four different pathogenic missense variants within HGD gene. Detected variants included a novel variant c.1079G > T;p.(Gly360Val) and three recurrent variants; c.1078G > C;p.(Gly360Arg), c.808G > A;p.(Gly270Arg) and c.473C > T;p.(Pro158Leu). All identified variants were properly segregating in the four families consistent with autosomal recessive inheritance. In this study, we reported the phenotypic and genotypic spectrum of alkaptonuria for the first time in Egypt. We further enriched the HGD-variant database with another novel pathogenic variant. The recent availability of nitisinone may promote the need for genetic confirmation at younger ages to start therapy earlier and prevent serious complications.


Asunto(s)
Alcaptonuria , Dioxigenasas , Adolescente , Femenino , Masculino , Humanos , Niño , Alcaptonuria/genética , Egipto , Homogentisato 1,2-Dioxigenasa/genética , Fenilacetatos , Ácido Homogentísico
8.
Cells ; 12(13)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37443717

RESUMEN

Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas , Ácido Homogentísico/metabolismo , Estudios Prospectivos
9.
Adv Clin Chem ; 114: 47-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268334

RESUMEN

Alkaptonuria (AKU) is an ultra-rare inherited inborn error of metabolism that afflicts the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid (HGA) in the circulation, and significant excretion in urine. Clinical manifestations, typically observed from the third decade of life, are lifelong and significantly affect the quality of life. This review provides a comprehensive overview of the natural history of AKU, including clinical, biochemical and genetic perspectives. An update on the major advances on studies in murine models and human subjects, providing mechanistic insight into the molecular and biochemical processes that underlie pathophysiology and its response to treatment are presented. The impact of treatment with nitisinone is also presented with a specific emphasis on hypertyrosinemia, as uncertainty on this topic remains. Future perspectives are explored, such as novel approaches to treat hypertyrosinemia including the use of binding agents and amino acid transporter inhibitors, as well as advanced potentially curative gene and cell therapy initiatives.


Asunto(s)
Alcaptonuria , Tirosinemias , Humanos , Animales , Ratones , Alcaptonuria/diagnóstico , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Calidad de Vida , Ácido Homogentísico/metabolismo , Tirosina/metabolismo , Tirosina/orina
10.
Mol Genet Metab ; 139(3): 107628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37354891

RESUMEN

A 6-yr-old female orangutan presented with a history of dark urine that turned brown upon standing since birth. Repeated routine urinalysis and urine culture were unremarkable. Urine organic acid analysis showed elevation in homogentisic acid consistent with alkaptonuria. Sequence analysis identified a homozygous missense variant, c.1081G>A (p.Gly361Arg), of the homogentisate 1,2-dioxygenase (HGD) gene. Familial studies, molecular modeling, and comparison to human variant databases support this variant as the underlying cause of alkaptonuria in this orangutan. This is the first report of molecular confirmation of alkaptonuria in a nonhuman primate.


Asunto(s)
Alcaptonuria , Pongo abelii , Animales , Humanos , Femenino , Alcaptonuria/diagnóstico , Alcaptonuria/genética , Pongo abelii/genética , Ácido Homogentísico , Mutación Missense , Homocigoto
11.
Curr Protein Pept Sci ; 24(5): 380-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36880186

RESUMEN

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs, which occurs because the homogentisate 1,2-dioxygenase (HGD) enzyme is not functional due to gene variants. Over time, HGA oxidation and accumulation cause the formation of the ochronotic pigment, a deposit that provokes tissue degeneration and organ malfunction. Here, we report a comprehensive review of the variants so far reported, the structural studies on the molecular consequences of protein stability and interaction, and molecular simulations for pharmacological chaperones as protein rescuers. Moreover, evidence accumulated so far in alkaptonuria research will be re-proposed as the bases for a precision medicine approach in a rare disease.


Asunto(s)
Alcaptonuria , Homogentisato 1,2-Dioxigenasa , Humanos , Alcaptonuria/genética , Alcaptonuria/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Estudios de Asociación Genética , Homogentisato 1,2-Dioxigenasa/genética , Homogentisato 1,2-Dioxigenasa/metabolismo , Ácido Homogentísico/metabolismo , Enfermedades Raras , Relación Estructura-Actividad
12.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985595

RESUMEN

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Alcaptonuria , Ocronosis , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/genética , Alcaptonuria/metabolismo , Simulación del Acoplamiento Molecular , Ocronosis/tratamiento farmacológico , Ácido Homogentísico/metabolismo
13.
Endocr Regul ; 57(1): 61-67, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966367

RESUMEN

Alkaptonuria (AKU, OMIM, No. 203500) is a rare, slow-progressing, irreversible, multisystemic disease resulting from a deficiency of the homogentisate 1,2-dioxygenase enzyme, which leads to the accumulation of homogentisic acid (HGA) and subsequent deposition as pigment in connective tissues called ochronosis. As a result, severe arthropathy of large joints and spondyloarthropathy with frequent fractures, ligament ruptures, and osteoporosis develops in AKU patients. Since 2020, the first-time treatment with nitisinone has become available in the European Union. Nitisinone significantly reduces HGA production and arrests ochronosis in AKU patients. However, blocking of the tyrosine metabolic pathway by the drug leads to tyrosine plasma and tissue concentrations increase. The nitisinone-induced hypertyrosinemia can lead to the development of corneal keratopathy, and once it develops, the treatment needs to be interrupted. A decrease in overall protein intake reduces the risk of the keratopathy during nitisinone-induced hypertyrosinemia in AKU patients. The low-protein diet is not only poorly tolerated by patients, but over longer periods, leads to a severe muscle loss and weight gain due to increased energy intake from carbohydrates and fats. Therefore, the development of novel nutritional approaches is required to prevent the adverse events due to nitisinone-induced hypertyrosinemia and the negative impact on skeletal muscle metabolism in AKU patients.


Asunto(s)
Alcaptonuria , Ocronosis , Tirosinemias , Humanos , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/metabolismo , Ocronosis/tratamiento farmacológico , Tirosina/uso terapéutico , Ácido Homogentísico/metabolismo
14.
Gastroenterology ; 164(7): 1165-1179.e13, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36813208

RESUMEN

BACKGROUND & AIMS: Aberrant epigenetic events mediated by histone methyltransferases and demethylases contribute to malignant progression of colorectal cancer (CRC). However, the role of the histone demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in CRC remains poorly understood. METHODS: UTX conditional knockout mice and UTX-silenced MC38 cells were used to investigate UTX function in tumorigenesis and development of CRC. We performed time of flight mass cytometry to clarify the functional role of UTX in remodeling immune microenvironment of CRC. To investigate metabolic interaction between myeloid-derived suppressor cells (MDSCs) and CRC, we analyzed metabolomics data to identify metabolites secreted by UTX-deficient cancer cells and taken up by MDSCs. RESULTS: We unraveled a tyrosine-mediated metabolic symbiosis between MDSC and UTX-deficient CRC. Loss of UTX in CRC resulted in methylation of phenylalanine hydroxylase, preventing its degradation and subsequently increasing tyrosine synthesis and secretion. Tyrosine taken up by MDSCs was metabolized to homogentisic acid by hydroxyphenylpyruvate dioxygenase. Homogentisic acid modified protein inhibitor of activated STAT3 via carbonylation of Cys 176, and relieved the inhibitory effect of protein inhibitor of activated STAT3 on signal transducer and activator of transcription 5 transcriptional activity. This in turn, promoted MDSC survival and accumulation, enabling CRC cells to acquire invasive and metastatic traits. CONCLUSIONS: Collectively, these findings highlight hydroxyphenylpyruvate dioxygenase as a metabolic checkpoint to restrict immunosuppressive MDSCs and to counteract malignant progression of UTX-deficient CRC.


Asunto(s)
Neoplasias Colorrectales , Dioxigenasas , Animales , Ratones , Dioxigenasas/metabolismo , Ácido Homogentísico , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Metilación , Microambiente Tumoral
15.
Am J Med Sci ; 365(4): 368-374, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36608845

RESUMEN

BACKGROUND: The aim of the current study was to determine whether there is an association between alkaptonuria (AKU) and urinary tract infection (UTI) by exploring the bacterial quality of the urinary tract, as most of the patients with AKU present with frequent occurrence of urinary tract symptoms such as incomplete emptying of urinary bladder, dysuria and nocturia. METHODS: Study samples were collected from 22 participants; 9 from patients with AKU, 9 from individuals who were AKU carriers, and 4 people served as control. Confirmation of AKU diagnosis was established by the ferric chloride test and quantitative determination of urinary homogentisic acid (HGA) levels. RESULTS: In the ferric chloride test, the urine samples of AKU patients showed a characteristic black ring upon addition of few drops of ferric chloride solution. During urinary HGA determination, patients with AKU had increased levels of urinary HGA as compared to carriers and controls. The following 10 bacterial species were isolated from the urinary tract of AKU patients, carriers and controls: Sphingomonas paucimobilis, Escherichia coli, Francisella tularensis, Staphylococcus hominis, Staphylococcus haemolyticus, Leuconostoc mesenteroides, Dermacoccus nishinomiyaensis, Kytococcus sedentarius, Serratia fonticola and Granulicatella adiacens. The presence of S. paucimobilis was found in three male patients, and one female each from the carrier and control groups. Almost all study samples were positive for D. nishinomiyaensis and K. sedentarius. S. fonticola and G. adiacens were found only in AKU carrier females. CONCLUSIONS: The results deduced that males show symptoms of arthritis early and more severely than females and by this it appears that there is an association between these symptoms and the percentage of bacterial infection in males that requires more accurate diagnosis and treatment to clarify such relationship. In the current study, males (patients, carriers, and controls) were more likely to have bacterial infections than females (64% vs. 36%). The 16 and 2 bacterial isolates, detected in 7 males and 2 females AKU patients, respectively, revealed that male AKU patients had a 2.3-fold greater rate of bacterial infection than female AKU patients. Therefore, further studies are warranted to investigate if there's any relationship between higher incidence of bacterial infections and development of AKU-related clinical symptoms in the male population.


Asunto(s)
Alcaptonuria , Artritis , Sistema Urinario , Humanos , Masculino , Femenino , Alcaptonuria/tratamiento farmacológico , Alcaptonuria/orina , Ácido Homogentísico/orina
16.
Orphanet J Rare Dis ; 18(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600285

RESUMEN

Alkaptonuria is a rare inherited disorder for which there was no disease-modifying treatment. In order to develop a successful approved therapy of AKU multiple barriers had to be overcome. These included activities before the conduct of the study including deciding on the drug therapy, the dose of the drug to be used, clarify the nature of the disease, develop outcome measures likely to yield a positive outcome, have a strategy to ensure appropriate patient participation through identification, build a consortium of investigators, obtain regulatory approval for proposed investigation plan and secure funding. Significant barriers were overcome during the conduct of the multicentre study to ensure harmonisation. Mechanisms were put in place to recruit and retain patients in the study. Barriers to patient access following completion of the study and regulatory approval were resolved.


Asunto(s)
Alcaptonuria , Humanos , Alcaptonuria/tratamiento farmacológico , Enfermedades Raras/tratamiento farmacológico , Ciclohexanonas/uso terapéutico , Nitrobenzoatos/uso terapéutico , Ácido Homogentísico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
17.
ACS Chem Biol ; 18(4): 711-723, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36215670

RESUMEN

Opportunistic infections by Burkholderia cenocepacia are life threatening for patients suffering from cystic fibrosis and chronic granulomatous disease. These infections are often associated with variable clinical outcomes, prompting an interest in molecular investigations of phenotypes associated with disease severity. The production of the pyomelanin pigment is one such phenotype, which was recently linked to the ability of clinical strains to carry out biotransformation of the antibiotic trimethoprim. However, this biotransformation product was not identified, and differences in metabolite production associated with pyomelanin pigmentation are poorly understood. Here, we identify several key metabolites produced exclusively by the pyomelanin-producing strains. To provide insight into the structures and biosynthetic origin of these metabolites, we developed a mass spectrometry-based strategy coupling unsupervised in silico substructure prediction with stable isotope labeling referred to as MAS-SILAC (Metabolite Annotation assisted by Substructure discovery and Stable Isotope Labeling by Amino acids in Cell culture). This approach led to discovery of homogentisic acid as a precursor for biosynthesis of several natural products and for biotransformation of trimethoprim, representing a previously unknown mechanism of antibiotic tolerance. This work presents application of computational methods for analysis of untargeted metabolomic data to link the chemotype of pathogenic microorganisms with a specific phenotype. The observations made in this study provide insights into the clinical significance of the melanated phenotype.


Asunto(s)
Productos Biológicos , Trimetoprim , Antibacterianos , Productos Biológicos/metabolismo , Ácido Homogentísico/metabolismo , Metabolómica , Trimetoprim/química , Trimetoprim/metabolismo
18.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555443

RESUMEN

Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.


Asunto(s)
Alcaptonuria , Dioxigenasas , Humanos , Alcaptonuria/genética , Metabolómica , Ácido Homogentísico/metabolismo , Biomarcadores , Espectroscopía de Resonancia Magnética
19.
Sci Rep ; 12(1): 19452, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376482

RESUMEN

Alkaptonuria (AKU) is a rare inborn error of metabolism caused by a defective homogentisate 1,2-dioxygenase (HGD), an enzyme involved in the tyrosine degradation pathway. Loss of HGD function leads to the accumulation of homogentisic acid (HGA) in connective body tissues in a process called ochronosis, which results on the long term in an early-onset and severe osteoarthropathy. HGD's quaternary structure is known to be easily disrupted by missense mutations, which makes them an interesting target for novel treatment strategies that aim to rescue enzyme activity. However, only prediction models are available providing information on a structural basis. Therefore, an E. coli based whole-cell screening was developed to evaluate HGD missense variants in 96-well microtiter plates. The screening principle is based on HGD's ability to convert the oxidation sensitive HGA into maleylacetoacetate. More precisely, catalytic activity could be deduced from pyomelanin absorbance measurements, derived from the auto-oxidation of remaining HGA. Optimized screening conditions comprised several E. coli expression strains, varied expression temperatures and varied substrate concentrations. In addition, plate uniformity, signal variability and spatial uniformity were investigated and optimized. Finally, eight HGD missense variants were generated via site-directed mutagenesis and evaluated with the developed high-throughput screening (HTS) assay. For the HTS assay, quality parameters passed the minimum acceptance criterion for Z' values > 0.4 and single window values > 2. We found that activity percentages versus wildtype HGD were 70.37 ± 3.08% (for M368V), 68.78 ± 6.40% (for E42A), 58.15 ± 1.16% (for A122V), 69.07 ± 2.26% (for Y62C), 35.26 ± 1.90% (for G161R), 35.86 ± 1.14% (for P230S), 23.43 ± 4.63% (for G115R) and 19.57 ± 11.00% (for G361R). To conclude, a robust, simple, and cost-effective HTS system was developed to reliably evaluate and distinguish human HGD missense variants by their HGA consumption ability. This HGA quantification assay may lay the foundation for the development of novel treatment strategies for missense variants in AKU.


Asunto(s)
Alcaptonuria , Dioxigenasas , Humanos , Alcaptonuria/genética , Homogentisato 1,2-Dioxigenasa/genética , Dioxigenasas/genética , Polimorfismo de Nucleótido Simple , Ensayos Analíticos de Alto Rendimiento , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Homogentísico
20.
J Med Case Rep ; 16(1): 351, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183119

RESUMEN

BACKGROUND: We present this report of a new ophthalmic finding in a patient with ochronosis. CASE PRESENTATION: An 85-year-old Caucasian male patient with bilateral dark temporal and nasal pigmentation of conjunctiva and sclera was referred to our hospital owing to low visual acuity. On biomicroscopic examination, bilateral horizontal Descemet's membrane folds were observed. Corneal tomography revealed irregular and asymmetric "against-the-rule" astigmatism in both eyes. Anterior segment optical coherence tomography demonstrated numerous central Descemet's without edema or other corneal structure alterations. CONCLUSION: This is the first report of Descemet's membrane folds in ochronosis. These corneal findings suggest that the accumulation of homogentisic acid in the sclera leads to thickening and stiffness of this region. These alterations could remarkably decrease visual acuity owing to topographic corneal curvature alterations, especially in elderly patients.


Asunto(s)
Lámina Limitante Posterior , Ocronosis , Anciano , Anciano de 80 o más Años , Córnea/diagnóstico por imagen , Lámina Limitante Posterior/diagnóstico por imagen , Ácido Homogentísico , Humanos , Masculino , Ocronosis/complicaciones , Ocronosis/diagnóstico , Agudeza Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA