Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1432743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247193

RESUMEN

Introduction: Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method: In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results: A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion: Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.


Asunto(s)
Infecciones por Orthomyxoviridae , Proteómica , Tráquea , Animales , Tráquea/inmunología , Tráquea/virología , Porcinos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Proteómica/métodos , Humanos , Adaptación al Huésped/inmunología , Inmunidad Innata , Subtipo H1N1 del Virus de la Influenza A/inmunología , Interacciones Huésped-Patógeno/inmunología , Multiómica
2.
Science ; 378(6617): 290-295, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36264814

RESUMEN

Adaptations to infectious and dietary pressures shape mammalian physiology and disease risk. How such adaptations affect sex-biased diseases remains insufficiently studied. In this study, we show that sex-dependent hepatic gene programs confer a robust (~300%) survival advantage for male mice during lethal bacterial infection. The transcription factor B cell lymphoma 6 (BCL6), which masculinizes hepatic gene expression at puberty, is essential for this advantage. However, protection by BCL6 protein comes at a cost during conditions of dietary excess, which result in overt fatty liver and glucose intolerance in males. Deleting hepatic BCL6 reverses these phenotypes but markedly lowers male survival during infection, thus establishing a sex-dependent trade-off between host defense and metabolic systems. Our findings offer strong evidence that some current sex-biased diseases are rooted in ancient evolutionary trade-offs between immunity and metabolism.


Asunto(s)
Infecciones Bacterianas , Evolución Biológica , Hígado Graso , Adaptación al Huésped , Hígado , Proteínas Proto-Oncogénicas c-bcl-6 , Animales , Masculino , Ratones , Hígado Graso/genética , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Adaptación al Huésped/genética , Adaptación al Huésped/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/fisiología , Eliminación de Gen , Factores Sexuales , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología
3.
Dev Growth Differ ; 63(3): 219-227, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33595856

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic as of early 2020. Upon infection, SARS-CoV-2 attaches to its receptor, that is, angiotensin-converting enzyme 2 (ACE2), on the surface of host cells and is then internalized into host cells via enzymatic machineries. This subsequently stimulates immune response factors. Since the host immune response and severity of COVID-19 vary among individuals, genetic risk factors for severe COVID-19 cases have been investigated. Our research group recently conducted a survey of genetic variants among SARS-CoV-2-interacting molecules across populations, noting near absence of difference in allele frequency spectrum between populations in these genes. Recent genome-wide association studies have identified genetic risk factors for severe COVID-19 cases in a segment of chromosome 3 that involves six genes encoding three immune-regulatory chemokine receptors and another three molecules. The risk haplotype seemed to be inherited from Neanderthals, suggesting genetic adaptation against pathogens in modern human evolution. Therefore, SARS-CoV-2 uses highly conserved molecules as its virion interaction, whereas its immune response appears to be genetically biased in individuals to some extent. We herein review the molecular process of SARS-CoV-2 infection as well as our further survey of genetic variants of its related immune effectors. We also discuss aspects of modern human evolution.


Asunto(s)
Inmunidad Adaptativa , COVID-19 , Evolución Molecular , Variación Genética , Interacciones Huésped-Patógeno , SARS-CoV-2/genética , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Animales , COVID-19/epidemiología , COVID-19/genética , COVID-19/inmunología , Secuencia Conservada , Estudio de Asociación del Genoma Completo , Adaptación al Huésped/genética , Adaptación al Huésped/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Pandemias , SARS-CoV-2/inmunología , Análisis de Secuencia de ARN
4.
PLoS Pathog ; 16(12): e1009177, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370400

RESUMEN

HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.


Asunto(s)
Variación Antigénica/inmunología , Infecciones por VIH , VIH-1 , Evasión Inmune/genética , Linfocitos T Citotóxicos/inmunología , Células Cultivadas , Evolución Clonal/inmunología , Epítopos de Linfocito T/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/clasificación , VIH-1/genética , VIH-1/inmunología , Células HeLa , Adaptación al Huésped/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Tipificación Molecular , Mutación , Linfocitos T Citotóxicos/metabolismo , Carga Viral/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
5.
Front Immunol ; 11: 793, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477336

RESUMEN

Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Innata , Inmunidad Mucosa , Macrófagos/inmunología , Animales , Infecciones por Citomegalovirus/virología , Adaptación al Huésped/inmunología , Humanos , Inmunomodulación , Lactante , Recién Nacido , Ratones , Monocitos/inmunología
6.
Front Immunol ; 11: 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117225

RESUMEN

In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.


Asunto(s)
Quirópteros/inmunología , Quirópteros/virología , Virus ADN/inmunología , Adaptación al Huésped/inmunología , Sistema Inmunológico/virología , Virus ARN/inmunología , Inmunidad Adaptativa , Animales , Reservorios de Enfermedades/virología , Evolución Molecular , Inmunidad Innata , Interferones/metabolismo , Zoonosis Virales/inmunología , Zoonosis Virales/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA