Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.343
1.
Gut Microbes ; 16(1): 2351478, 2024.
Article En | MEDLINE | ID: mdl-38780485

For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.


Critical Illness , Cross Infection , Dysbiosis , Gastrointestinal Microbiome , Dysbiosis/microbiology , Humans , Cross Infection/microbiology , Cross Infection/drug therapy , Intensive Care Units , Animals , Host Microbial Interactions , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
2.
Cell Host Microbe ; 32(5): 630-632, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723600

The gut microbiota has the capacity to metabolize food-derived molecules. In this issue of Cell Host & Microbe, Li et al. explore how some bacterial species of the gut microbiota can deplete amino acids in the gut lumen, modulating the amino acid landscape and energy metabolism of the host.


Amino Acids , Energy Metabolism , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Amino Acids/metabolism , Humans , Bacteria/metabolism , Bacteria/genetics , Animals , Host Microbial Interactions , Gastrointestinal Tract/microbiology
3.
Gut Microbes ; 16(1): 2351520, 2024.
Article En | MEDLINE | ID: mdl-38717832

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
4.
BMC Microbiol ; 24(1): 161, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730357

Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.


Diabetes, Gestational , Dysbiosis , Fatty Acids, Volatile , Gastrointestinal Microbiome , Diabetes, Gestational/microbiology , Diabetes, Gestational/metabolism , Humans , Pregnancy , Female , Dysbiosis/microbiology , Fatty Acids, Volatile/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Host Microbial Interactions , Lipopolysaccharides/metabolism
5.
Microbiome ; 12(1): 99, 2024 May 28.
Article En | MEDLINE | ID: mdl-38802950

BACKGROUND: Vaginal microbiota composition is associated with spontaneous preterm birth (sPTB), depending on ethnicity. Host-microbiota interactions are thought to play an important underlying role in this association between ethnicity, vaginal microbiota and sPTB. METHODS: In a prospective cohort of nulliparous pregnant women, we assessed vaginal microbiota composition, vaginal immunoglobulins (Igs), and local inflammatory markers. We performed a nested case-control study with 19 sPTB cases, matched based on ethnicity and midwifery practice to 19 term controls. RESULTS: Of the 294 included participants, 23 pregnancies ended in sPTB. We demonstrated that Lactobacillus iners-dominated microbiota, diverse microbiota, and ethnicity were all independently associated with sPTB. Microbial Ig coating was associated with both microbiota composition and ethnicity, but a direct association with sPTB was lacking. Microbial IgA and IgG coating were lowest in diverse microbiota, especially in women of any ethnic minority. When correcting for microbiota composition, increased microbial Ig coating correlated with increased inflammation. CONCLUSION: In these nulliparous pregnant women, vaginal microbiota composition is strongly associated with sPTB. Our results support that vaginal mucosal Igs might play a pivotal role in microbiota composition, microbiota-related inflammation, and vaginal community disparity within and between ethnicities. This study provides insight in host-microbe interaction, suggesting that vaginal mucosal Igs play an immunomodulatory role similar to that in the intestinal tract. Video Abstract.


Ethnicity , Lactobacillus , Microbiota , Premature Birth , Vagina , Humans , Female , Vagina/microbiology , Pregnancy , Adult , Premature Birth/microbiology , Premature Birth/ethnology , Case-Control Studies , Prospective Studies , Lactobacillus/isolation & purification , Host Microbial Interactions , Immunoglobulins , Immunoglobulin A , Young Adult
6.
Gut Microbes ; 16(1): 2353399, 2024.
Article En | MEDLINE | ID: mdl-38757687

Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.


Gastrointestinal Microbiome , Homeostasis , Host Microbial Interactions , Intestinal Mucosa , Stem Cells , Humans , Gastrointestinal Microbiome/physiology , Stem Cells/metabolism , Animals , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestines/microbiology , Bacteria/metabolism , Bacteria/classification
7.
J Bacteriol ; 206(5): e0003524, 2024 May 23.
Article En | MEDLINE | ID: mdl-38695522

Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.


Aliivibrio fischeri , Decapodiformes , Quorum Sensing , Aliivibrio fischeri/genetics , Aliivibrio fischeri/physiology , Animals , Decapodiformes/microbiology , Symbiosis , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host Microbial Interactions
9.
Arch Microbiol ; 206(6): 253, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727738

Candida auris is an invasive fungal pathogen of high concern due to acquired drug tolerance against antifungals used in clinics. The prolonged persistence on biotic and abiotic surfaces can result in onset of hospital outbreaks causing serious health threat. An in depth understanding of pathology of C. auris is highly desirable for development of efficient therapeutics. Non-coding RNAs play crucial role in fungal pathology. However, the information about ncRNAs is scanty to be utilized. Herein our aim is to identify long noncoding RNAs with potent role in pathobiology of C. auris. Thereby, we analyzed the transcriptomics data of C. auris infection in blood for identification of potential lncRNAs with regulatory role in determining invasion, survival or drug tolerance under infection conditions. Interestingly, we found 275 lncRNAs, out of which 253 matched with lncRNAs reported in Candidamine, corroborating for our accurate data analysis pipeline. Nevertheless, we obtained 23 novel lncRNAs not reported earlier. Three lncRNAs were found to be under expressed throughout the course of infection, in the transcriptomics data. 16 of potent lncRNAs were found to be coexpressed with coding genes, emphasizing for their functional role. Noteworthy, these ncRNAs are expressed from intergenic regions of the genes associated with transporters, metabolism, cell wall biogenesis. This study recommends for possible association between lncRNA expression and C. auris pathogenesis.


Candida auris , Candidiasis , Host Microbial Interactions , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/isolation & purification , Gene Expression Profiling , Computer Simulation , Genome-Wide Association Study , Candida auris/genetics , Candida auris/pathogenicity , Candidiasis/blood , Candidiasis/microbiology , Sepsis/microbiology , Host Microbial Interactions/genetics , Humans
10.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791599

This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.


Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Dysbiosis/microbiology , Dysbiosis/therapy , Microbiota , Animals , Human Body , Host Microbial Interactions/physiology
11.
Nat Commun ; 15(1): 4578, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811586

Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.


Cervix Uteri , Host Microbial Interactions , Immunity, Innate , Microbiota , Humans , Female , Cervix Uteri/microbiology , Cervix Uteri/immunology , Microbiota/immunology , Host Microbial Interactions/immunology , Gardnerella vaginalis/immunology , Lactobacillus crispatus/immunology , Mucus/immunology , Mucus/microbiology , Mucus/metabolism , Lab-On-A-Chip Devices
12.
Gut Microbes ; 16(1): 2359515, 2024.
Article En | MEDLINE | ID: mdl-38808455

The intestinal microbiota, consisting of an estimated 10^10-10^11 organisms, regulate physiological processes involved in digestion, metabolism, and immunity. Surprisingly, these intestinal microorganisms have been found to influence tissues that are not directly in contact with the gut, such as adipose tissue, the liver, skeletal muscle, and the brain. This interaction takes place even when intestinal barrier function is uncompromised. An increasing body of evidence suggests that bacterial membrane vesicles (bMVs), in addition to bacterial metabolites such as short-chain fatty acids, are able to mediate effects of the microbiota on these host tissues. The ability of bMVs to dissipate from the intestinal lumen into systemic circulation hereby facilitates the transport and presentation of bacterial components and metabolites to host organs. Importantly, there are indications that the interaction between bMVs and tissues or immune cells may play a role in the etiology of (chronic metabolic) disease. For example, the gut-derived bMV-mediated induction of insulin resistance in skeletal muscle cells and pro-inflammatory signaling by adipocytes possibly underlies diseases such as type 2 diabetes and obesity. Here, we review the current knowledge on bMVs in the microbiota's effects on host energy/substrate metabolism with a focus on etiological roles in the onset and progression of metabolic disease. We furthermore illustrate that vesicle production by bacterial microbiota could potentially be modulated through lifestyle intervention to improve host metabolism.


Bacteria , Gastrointestinal Microbiome , Animals , Humans , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Extracellular Vesicles/metabolism , Gastrointestinal Microbiome/physiology , Metabolic Diseases/microbiology , Metabolic Diseases/metabolism , Host Microbial Interactions
13.
Adv Microb Physiol ; 84: 83-133, 2024.
Article En | MEDLINE | ID: mdl-38821635

The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.


Bile Acids and Salts , Fatty Acids, Volatile , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Indoles/metabolism , Host Microbial Interactions , Bacteria/metabolism , Bacteria/genetics , Animals
14.
World J Microbiol Biotechnol ; 40(6): 190, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702495

The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.


Enterococcus faecalis , Probiotics , Humans , Animals , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Host-Pathogen Interactions , Gastrointestinal Tract/microbiology , Host Microbial Interactions
15.
Rev Med Virol ; 34(3): e2537, 2024 May.
Article En | MEDLINE | ID: mdl-38666757

Human papillomavirus (HPV) infection is one of the most common sexually transmitted infections worldwide. It is caused by the HPV, a DNA virus that infects epithelial cells in various mucous membranes and skin surfaces. HPV can be categorised into high-risk and low-risk types based on their association with the development of certain cancers. High-risk HPV types, such as HPV-16 and HPV-18, are known to be oncogenic and are strongly associated with the development of cervical, anal, vaginal, vulvar, penile, and oropharyngeal cancers. These types of HPV can persist in the body for an extended period and, in some cases, lead to the formation of precancerous lesions that may progress to cancer if left untreated. Low-risk HPV types, such as HPV-6 and HPV-11, are not typically associated with cancer but can cause benign conditions like genital warts. Genital warts are characterised by the growth of small, cauliflower-like bumps on the genital and anal areas. Although not life-threatening, they can cause discomfort and psychological distress. HPV is primarily transmitted through sexual contact, including vaginal, anal, and oral sex. It can also be transmitted through non-penetrative sexual activities that involve skin-to-skin contact. In addition to sexual transmission, vertical transmission from mother to child during childbirth is possible but relatively rare. Prevention of HPV infection includes vaccination and safe sexual practices. HPV vaccines, such as Gardasil and Cervarix, are highly effective in preventing infection with the most common high-risk HPV types. These vaccines are typically administered to adolescents and young adults before they become sexually active. Safe sexual practices, such as consistent and correct condom use and limiting the number of sexual partners, can also reduce the risk of HPV transmission. Diagnosis of HPV infection can be challenging because the infection is often asymptomatic, especially in men. In women, HPV testing can be done through cervical screening programs, which involve the collection of cervical cells for analysis. Abnormal results may lead to further diagnostic procedures, such as colposcopy or biopsy, to detect precancerous or cancerous changes. Overall, HPV infection is a prevalent sexually transmitted infection with significant implications for public health. Vaccination, regular screening, and early treatment of precancerous lesions are key strategies to reduce the burden of HPV-related diseases and their associated complications. Education and awareness about HPV and its prevention are crucial in promoting optimal sexual health. This study aimed to carry out a literature review considering several aspects involving HPV infection: Global distribution, prevalence, biology, host interactions, cancer development, prevention, therapeutics, coinfection with other viruses, coinfection with bacteria, association with head and neck squamous cell carcinomas, and association with anal cancer.


Neoplasms , Papillomavirus Infections , Humans , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Papillomavirus Infections/prevention & control , Papillomavirus Infections/transmission , Neoplasms/virology , Neoplasms/epidemiology , Neoplasms/prevention & control , Papillomaviridae/physiology , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , Host Microbial Interactions , Female , Male
16.
Cell Host Microbe ; 32(5): 727-738.e6, 2024 May 08.
Article En | MEDLINE | ID: mdl-38579715

Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.


Bacteriophages , Host Factor 1 Protein , Quorum Sensing , Vibrio cholerae , Vibrio cholerae/virology , Vibrio cholerae/genetics , Quorum Sensing/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/genetics , Virus Replication , Lysogeny , RNA, Viral/genetics , RNA, Viral/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Host Microbial Interactions/genetics
17.
Front Cell Infect Microbiol ; 14: 1379962, 2024.
Article En | MEDLINE | ID: mdl-38655281

The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.


Endogenous Retroviruses , Endogenous Retroviruses/genetics , Endogenous Retroviruses/physiology , Humans , Animals , Cell Differentiation , Host-Pathogen Interactions/genetics , Host Microbial Interactions/genetics , Retroviridae Infections/virology , Cellular Senescence/genetics , Proviruses/genetics , Proviruses/physiology , Evolution, Molecular
19.
mSystems ; 9(5): e0140523, 2024 May 16.
Article En | MEDLINE | ID: mdl-38557130

The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.


Gastrointestinal Microbiome , Gene Regulatory Networks , Animals , Gastrointestinal Microbiome/genetics , Callithrix/microbiology , Host Microbial Interactions/genetics , Gene Expression Profiling/methods , Transcriptome , Intestines/microbiology , Algorithms
20.
Trends Plant Sci ; 29(5): 524-534, 2024 May.
Article En | MEDLINE | ID: mdl-38565452

Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.


Phytosterols , Plants , Plants/metabolism , Plants/microbiology , Phytosterols/metabolism , Sterols/metabolism , Host-Pathogen Interactions , Host Microbial Interactions/physiology , Signal Transduction
...