Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.668
1.
Commun Biol ; 7(1): 559, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734859

In nature, parasite species often coinfect the same host. Yet, it is not clear what drives the natural dynamics of coinfection prevalence. The prevalence of coinfections might be affected by interactions among coinfecting species, or simply derive from parasite diversity. Identifying the relative impact of these parameters is crucial for understanding patterns of coinfections. We studied the occurrence and likelihood of coinfections in natural populations of water fleas (Daphnia magna). Coinfection prevalence was within the bounds expected by chance and parasite diversity had a strong positive effect on the likelihood of coinfections. Additionally, coinfection prevalence increased over the season and became as common as a single infection. Our results demonstrate how patterns of coinfection, and particularly their temporal variation, are affected by overlapping epidemics of different parasites. We suggest that monitoring parasite diversity can help predict where and when coinfection prevalence will be high, potentially leading to increased health risks to their hosts.


Coinfection , Host-Parasite Interactions , Animals , Coinfection/epidemiology , Coinfection/parasitology , Daphnia/microbiology , Daphnia/parasitology , Prevalence , Seasons , Biodiversity , Siphonaptera
2.
Parasit Vectors ; 17(1): 207, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720339

BACKGROUND: Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS: We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS: Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS: Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.


Genetic Variation , Host-Parasite Interactions , Schistosoma japonicum , Animals , Schistosoma japonicum/genetics , Host-Parasite Interactions/genetics , Evolution, Molecular , Polymorphism, Single Nucleotide , Sex Chromosomes/genetics , Selection, Genetic , Schistosoma haematobium/genetics , Schistosoma mansoni/genetics , Biological Evolution , Schistosomiasis japonica/parasitology
3.
J Agric Food Chem ; 72(19): 10828-10841, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691839

Chemosensory proteins (CSPs) constitute a class of olfactory proteins localized in insect sensory organs that serve a crucial function in decoding external chemical stimuli. This study aims to elucidate the involvement of CrufCSP3 in olfactory perception within the context of Cotesia ruficrus, an indigenous endoparasitoid targeting the invasive pest Spodoptera frugiperda. Through fluorescence-competitive binding assays and site-directed mutagenesis, we pinpointed four amino acids as pivotal residues involved in the interaction between CrufCSP3 and five host-related compounds. Subsequent RNA interference experiments targeting CrufCSP3 unveiled a reduced sensitivity to specific host-related compounds and a decline in the parasitism rate of the FAW larvae. These findings unequivocally indicate the essential role of CrufCSP3 in the chemoreception process of C. ruficrus. Consequently, our study not only sheds light on the functional importance of CSPs in parasitic wasp behavior but also contributes to the development of eco-friendly and efficacious wasp behavior modifiers for effectively mitigating pest population surges.


Insect Proteins , Spodoptera , Wasps , Animals , Wasps/chemistry , Wasps/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Larva/growth & development , Host-Parasite Interactions , Olfactory Perception
4.
PeerJ ; 12: e17348, 2024.
Article En | MEDLINE | ID: mdl-38770098

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Amphipoda , Hemocytes , Hemolymph , Lakes , Leeches , Animals , Amphipoda/immunology , Amphipoda/parasitology , Hemolymph/immunology , Hemolymph/parasitology , Leeches/immunology , Lakes/parasitology , Hemocytes/immunology , Immunity, Cellular , Siberia , Host-Parasite Interactions/immunology
5.
PLoS One ; 19(5): e0304220, 2024.
Article En | MEDLINE | ID: mdl-38771894

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Beauveria , Capsicum , Oviposition , Wasps , Animals , Beauveria/physiology , Capsicum/parasitology , Capsicum/microbiology , Wasps/physiology , Volatile Organic Compounds/metabolism , Female , Trichoderma/physiology , Host-Parasite Interactions , Ovum , Herbivory
6.
Curr Biol ; 34(10): R483-R488, 2024 May 20.
Article En | MEDLINE | ID: mdl-38772331

Parasitoids - insects that parasitize other insects - have fascinating biologies that have made them darlings of the science fiction genre, owing to their wide array of innovative and often gruesome strategies for living off other organisms. These insects do not sting, but rather lay eggs on or inside their hosts, typically another insect or spider. Unlike parasites, which feed off a host without killing it, parasitoids kill their hosts - and they typically do it slowly. Parasitoids carefully keep their hosts alive for extended periods while they feed on host hemolymph and/or tissues until they are close to completing their own development. The techniques parasitoids use to feed on and manipulate their hosts are wide ranging, demonstrating multiple evolutionary pathways to achieve successful development from egg to adult.


Host-Parasite Interactions , Wasps , Animals , Wasps/physiology , Biological Evolution , Insecta/parasitology , Insecta/physiology
7.
Proc Biol Sci ; 291(2023): 20240356, 2024 May.
Article En | MEDLINE | ID: mdl-38772422

Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.


Disease Resistance , Host-Parasite Interactions , Poecilia , Animals , Poecilia/physiology , Poecilia/parasitology , Fish Diseases/parasitology , Biological Evolution , Models, Biological
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732123

The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.


Coleoptera , Transcriptome , Animals , Coleoptera/physiology , Coleoptera/genetics , Tylenchida/physiology , Tylenchida/genetics , Tylenchida/pathogenicity , Gene Expression Profiling/methods , Larva , Host-Parasite Interactions/genetics , Genetic Fitness
9.
PLoS One ; 19(5): e0302874, 2024.
Article En | MEDLINE | ID: mdl-38722910

Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.


Lyme Disease , Population Dynamics , Lyme Disease/epidemiology , Animals , Humans , Ixodes/microbiology , Ixodes/physiology , Models, Theoretical , Ticks/microbiology , Ticks/physiology , Models, Biological , Borrelia burgdorferi/physiology , Borrelia burgdorferi/pathogenicity , Host-Parasite Interactions , Nymph
10.
J Invertebr Pathol ; 204: 108125, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705353

In La Réunion, the established honeybee subspecies Apis mellifera unicolor, an endemic subspecies of African lineage, is facing considerable challenges. Since the introduction of the Varroa destructor mite in 2017 high colony losses have been recorded. We investigated the dynamics of V. destructor and two viruses, the Deformed Wing Virus (DWV), known to be transmitted by the mite, and the Chronic Bee Paralysis Virus (CBPV), in A. m. unicolor. Colonies from two apiaries located at 300 and 900 m a.s.l were monitored twice for one year without any acaricide treatment. The brood area, V. destructor infestation rates, DWV and CBPV prevalence and load were recorded monthly. A. m. unicolor maintained brood rearing throughout the year. Varroa destructor infestation resulted in high colony mortality (up to 85 %) and high phoretic mite rates (up to 52 mites per hundred bees). The establishment of DWV in colonies occurred after that of V. destructor and the mite infestation rate had a significant effect on the virus prevalence and load. CBPV appeared only transiently throughout the surveys. The data showed that, in tropical colonies with permanent brood rearing, V. destructor and DWV can reach high levels, but are still subject to seasonal variations that appear to be influenced by environmental conditions. This suggests that beekeeping practices could be adapted by favouring sites and periods for transhumance or acaricide treatment.


RNA Viruses , Varroidae , Animals , Bees/virology , Bees/parasitology , Varroidae/virology , Varroidae/physiology , Mite Infestations/veterinary , Mite Infestations/parasitology , Insect Viruses , Introduced Species , Host-Parasite Interactions , Islands , Dicistroviridae/physiology
11.
Cytokine ; 179: 156627, 2024 Jul.
Article En | MEDLINE | ID: mdl-38703436

Leishmaniasis, a major globally re-emerging neglected tropical disease, has a restricted repertoire of chemotherapeutic options due to a narrow therapeutic index, drug resistance, or patient non-compliance due to toxicity. The disease is caused by the parasite Leishmania that resides in two different forms in two different environments: as sessile intracellular amastigotes within mammalian macrophages and as motile promastigotes in sandfly gut. As mitogen-activated protein kinases (MAPKs) play important roles in cellular differentiation and survival, we studied the expression of Leishmania donovani MAPKs (LdMAPKs). The homology studies by multiple sequence alignment show that excepting LdMAPK1 and LdMAPK2, all thirteen other LdMAPKs share homology with human ERK and p38 isoforms. Expression of LdMAPK4 and LdMAPK5 is less in avirulent promastigotes and amastigotes. Compared to miltefosine-sensitive L. donovani parasites, miltefosine-resistant parasites have higher LdMAPK1, LdMAPK3-5, LdMAPK7-11, LdMAPK13, and LdMAPK14 expression. IL-4-treatment of macrophages down-regulated LdMAPK11, in virulent amastigotes whereas up-regulated LdMAPK5, but down-regulated LdMAPK6, LdMAPK12-15, expression in avirulent amastigotes. IL-4 up-regulated LdMAPK1 expression in both virulent and avirulent amastigotes. IFN-γ-treatment down-regulated LdMAPK6, LdMAPK13, and LdMAPK15 in avirulent amastigotes but up-regulated in virulent amastigotes. This complex profile of LdMAPKs expression among virulent and avirulent parasites, drug-resistant parasites, and in amastigotes within IL-4 or IFN-γ-treated macrophages suggests that LdMAPKs are differentially controlled at the host-parasite interface regulating parasite survival and differentiation, and in the course of IL-4 or IFN-γ dominated immune response.


Host-Parasite Interactions , Leishmania donovani , Macrophages , Mitogen-Activated Protein Kinases , Leishmania donovani/enzymology , Animals , Mitogen-Activated Protein Kinases/metabolism , Mice , Macrophages/parasitology , Macrophages/metabolism , Humans , Mice, Inbred BALB C , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Interferon-gamma/metabolism , Drug Resistance
12.
Fish Shellfish Immunol ; 149: 109613, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710341

Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.


Aquaculture , Fish Diseases , Fishes , Trematoda , Trematode Infections , Animals , Trematode Infections/veterinary , Trematode Infections/immunology , Trematode Infections/parasitology , Trematode Infections/drug therapy , Fish Diseases/immunology , Fish Diseases/parasitology , Trematoda/physiology , Fishes/immunology , Fishes/parasitology , Host-Parasite Interactions , Anthelmintics/therapeutic use , Anthelmintics/pharmacology
13.
Parasit Vectors ; 17(1): 203, 2024 May 07.
Article En | MEDLINE | ID: mdl-38711063

BACKGROUND: The role of pathogen genotype in determining disease severity and immunopathology has been studied intensively in microbial pathogens including bacteria, fungi, protozoa and viruses but is poorly understood in parasitic helminths. The medically important blood fluke Schistosoma mansoni is an excellent model system to study the impact of helminth genetic variation on immunopathology. Our laboratory has demonstrated that laboratory schistosome populations differ in sporocyst growth and cercarial production in the intermediate snail host and worm establishment and fecundity in the vertebrate host. Here, we (i) investigate the hypothesis that schistosome genotype plays a significant role in immunopathology and related parasite life history traits in the vertebrate mouse host and (ii) quantify the relative impact of parasite and host genetics on infection outcomes. METHODS: We infected BALB/c and C57BL/6 mice with four different laboratory schistosome populations from Africa and the Americas. We quantified disease progression in the vertebrate host by measuring body weight and complete blood count (CBC) with differential over a 12-week infection period. On sacrifice, we assessed parasitological (egg and worm counts, fecundity), immunopathological (organ measurements and histopathology) and immunological (CBC with differential and cytokine profiles) characteristics to determine the impact of parasite and host genetics. RESULTS: We found significant variation between parasite populations in worm numbers, fecundity, liver and intestine egg counts, liver and spleen weight, and fibrotic area but not in granuloma size. Variation in organ weight was explained by egg burden and intrinsic parasite factors independent of egg burden. We found significant variation between infected mouse lines in cytokine levels (IFN-γ, TNF-α), eosinophils, lymphocytes and monocyte counts. CONCLUSIONS: This study showed that both parasite and host genotype impact the outcome of infection. While host genotype explains most of the variation in immunological traits, parasite genotype explains most of the variation in parasitological traits, and both host and parasite genotypes impact immunopathology outcomes.


Genotype , Mice, Inbred BALB C , Mice, Inbred C57BL , Schistosoma mansoni , Schistosomiasis mansoni , Animals , Schistosoma mansoni/immunology , Schistosoma mansoni/genetics , Mice , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology , Female , Host-Parasite Interactions/immunology , Host-Parasite Interactions/genetics , Cytokines/genetics , Cytokines/blood , Cytokines/immunology
14.
Parasitol Res ; 123(5): 203, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705882

Functional signal in an interaction network is a phenomenon in which species resembling each other in their traits interact with similar partners. We tested the functional signal concept in realm-specific and regional flea-host networks from four biogeographic realms and asked whether the species composition of (a) host spectra and (b) flea assemblages is similar between functionally similar flea and host species, respectively. Analogously to testing for phylogenetic signal, we applied Mantel tests to investigate the correlation between flea or host functional distances calculated from functional dendrograms and dissimilarities in sets of interacting partners. In all realm-specific networks, functionally similar fleas tended to exploit similar hosts often belonging to the same genus, whereas functionally similar hosts tended to harbour similar fleas, again often belonging to the same genus. The strength of realm-specific functional signals and the frequency of detecting a significant functional signal in the regional networks differed between realms. The frequency of detecting a significant functional signal in the regional networks correlated positively with the network size for fleas and with the number of hosts in a network for hosts. A functional signal in the regional networks was more frequently found for hosts than for fleas. We discuss the mechanisms behind the functional signal in both fleas and their hosts, relate geographic functional signal patterns to the historic biogeography of fleas and conclude that functional signals in the species composition of host spectra for fleas and of flea assemblages for hosts result from the interplay of evolutionary and ecological processes.


Host-Parasite Interactions , Mammals , Siphonaptera , Animals , Siphonaptera/physiology , Siphonaptera/classification , Mammals/parasitology , Flea Infestations/parasitology , Flea Infestations/veterinary , Phylogeny
15.
Infect Dis Poverty ; 13(1): 32, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711151

The three most important genera of snails for the transmission of schistosomes are Bulinus, Biomphalaria and Oncomelania. Each of these genera, found in two distantly related families, includes species that act as the intermediate host for one of the three most widespread schistosome species infecting humans, Schistosoma haematobium, S. mansoni and S. japonicum, respectively. An important step in the fight against schistosomiasis in Asia has been taken with the publication of the article "Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum", which means that genomes for all three major genera, including species across three continents, are now available in the public domain. This includes the first genomes of African snail vectors, namely Biomphalaria sudanica, Bi. pfeifferi and Bulinus truncatus, as well as high-quality chromosome level assemblies for South American Bi. glabrata. Most importantly, the wealth of new genomic and transcriptomic data is helping to establish the specific molecular mechanisms that underly compatibility between snails and their schistosomes, which although diverse and complex, may help to identify potential targets dictating host parasite interactions that can be utilised in future transmission control strategies. This new work on Oncomelania hupensis and indeed studies on other snail vectors, which provide deep insights into the genome, will stimulate research that may well lead to new and much needed control interventions.


Disease Vectors , Genomics , Snails , Animals , Snails/parasitology , Humans , Schistosomiasis/transmission , Schistosomiasis/prevention & control , Schistosomiasis/parasitology , Host-Parasite Interactions
16.
Parasite ; 31: 23, 2024.
Article En | MEDLINE | ID: mdl-38759153

Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.


Title: Analyse phosphoprotéomique quantitative de cellules DF-1 de poulet infectées par Eimeria tenella, par spectrométrie de masse avec marqueur de masse en tandem (TMT) et surveillance des réactions parallèles (PRM). Abstract: Eimeria tenella est un parasite intracellulaire obligatoire qui cause de graves dommages à l'industrie de l'élevage de volailles. La phosphorylation des protéines joue un rôle essentiel dans les interactions entre la cellule hôte et E. tenella. Cependant, aucune analyse phosphoprotéomique complète des cellules hôtes à différentes phases de l'infection par E. tenella n'a été publiée. Dans cette étude, une analyse phosphoprotéomique quantitative de fibroblastes DF-1 d'embryon de poulet non infectés (NI) ou infectés par E. tenella pendant 6 h (PI6, la phase d'invasion précoce) ou 36 h (PI36, la phase de développement des trophozoïtes) a été réalisée. Un total de 10 122 phosphopeptides correspondant à 3 398 phosphoprotéines de cellules hôtes ont été identifiés et 13 437 sites de phosphorylation ont été identifiés. Parmi celles-ci, 491, 1 253 et 275 protéines différentiellement phosphorylées exprimées ont été identifiées respectivement dans les comparaisons PI6/NI, PI36/NI et PI36/PI6. L'analyse d'enrichissement de la voie KEGG a montré qu'E. tenella modulait les processus de la cellule hôte par phosphorylation, y compris l'adhésion focale, la régulation du cytosquelette d'actine et la signalisation FoxO, pour aider sa phase d'invasion précoce, et la modulation des jonctions adhérentes et de la voie de signalisation ErbB pour favoriser le développement de son trophozoïte. Ces résultats enrichissent les données sur l'interaction entre E. tenella et les cellules hôtes et facilitent une meilleure compréhension des mécanismes moléculaires sous-jacents aux relations hôtes­parasites.


Chickens , Eimeria tenella , Fibroblasts , Phosphoproteins , Proteomics , Tandem Mass Spectrometry , Animals , Eimeria tenella/physiology , Chickens/parasitology , Proteomics/methods , Phosphoproteins/analysis , Phosphoproteins/metabolism , Phosphorylation , Fibroblasts/parasitology , Cell Line , Poultry Diseases/parasitology , Host-Parasite Interactions , Coccidiosis/parasitology , Coccidiosis/veterinary , Chick Embryo , Signal Transduction
17.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article En | MEDLINE | ID: mdl-38713712

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
18.
Malar J ; 23(1): 151, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755636

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Hepatocytes , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hepatocytes/parasitology , Humans , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Host-Parasite Interactions , Protein Binding
19.
Adv Parasitol ; 124: 1-55, 2024.
Article En | MEDLINE | ID: mdl-38754926

Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.


Intestinal Diseases, Parasitic , Trematoda , Trematode Infections , Animals , Humans , Trematoda/physiology , Trematoda/immunology , Trematode Infections/parasitology , Trematode Infections/immunology , Trematode Infections/veterinary , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/parasitology , Intestines/parasitology , Intestines/pathology , Intestines/immunology , Host-Parasite Interactions/immunology
20.
Adv Parasitol ; 124: 57-89, 2024.
Article En | MEDLINE | ID: mdl-38754927

For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.


Arthropod Vectors , Animals , Arthropod Vectors/physiology , Humans , Arthropods/physiology , Vector Borne Diseases/transmission , Vector Borne Diseases/prevention & control , Host-Parasite Interactions
...