Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.942
1.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692246

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Cell Proliferation , Collagen , Fibroblasts , Hyaluronoglucosaminidase , Myofibroblasts , Periodontal Ligament , Transforming Growth Factor beta , Animals , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Hyaluronoglucosaminidase/pharmacology , Rats , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Collagen/metabolism , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Hyaluronic Acid/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , Actins/metabolism , Blotting, Western , In Vitro Techniques , Collagen Type I/metabolism , Biomarkers/metabolism , Real-Time Polymerase Chain Reaction , Male , RNA, Messenger/metabolism
2.
BMC Oral Health ; 24(1): 540, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720327

OBJECTIVE: To investigate the effect of concentrated growth factor (CGF) combined with sodium hyaluronate (SH) on temporomandibular joint osteoarthritis (TMJOA). METHODS: Sixty patients with TMJOA who were diagnosed by cone-beam computed tomography (CBCT) between March 2020 and March 2023 at the Stomatological Hospital of Xi'an Jiaotong University were randomly divided into a control group (n = 30) and an experimental group (n = 30). The patients in the experimental group were treated with CGF + SH, and those in the control group were treated with SH only. The visual analogue scale (VAS) score indicating pain in the temporomandibular joint (TMJ) area; the Helkimo Clinical Dysfunction Index (Di); and changes in condylar CBCT at the first visit and 2 weeks, 3 months and 6 months after treatment were recorded. The CBCT data of the patients in the experimental and control groups were collected, and the three-dimensional CBCT image sequences were imported into Mimics Medical 19.0 software in DICOM format for condylar reconstruction. RESULTS: The VAS scores at 2 weeks, 3 months and 6 months after treatment were significantly lower in the experimental group than in the control group (P < 0.05), and the pain in the experimental group was significantly relieved. The Di was significantly lower in the experimental group than in the control group (P < 0.05), and the clinical function of the TMJ improved. After treatment, the CBCT score was significantly lower in the experimental group than in the control group (P < 0.05), and the condylar bone cortex was obviously repaired. Observation of the condylar bone cortex by three-dimensional reconstruction showed the same results as those obtained by CBCT. CONCLUSION: CGF combined with SH is effective in the treatment of TMJOA and can improve muscle pain, TMJ pain, Impaired TMJ function, Impaired range of movement, Pain on movement of the mandible and promote bone repair. THE REGISTRATION NUMBER (TRN): ChiCTR2400082712. THE DATE OF REGISTRATION: April 5, 2024.


Cone-Beam Computed Tomography , Hyaluronic Acid , Osteoarthritis , Temporomandibular Joint Disorders , Humans , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage , Female , Male , Osteoarthritis/drug therapy , Osteoarthritis/diagnostic imaging , Temporomandibular Joint Disorders/drug therapy , Temporomandibular Joint Disorders/diagnostic imaging , Adult , Middle Aged , Pain Measurement , Intercellular Signaling Peptides and Proteins/therapeutic use , Treatment Outcome
3.
Sci Rep ; 14(1): 10626, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724670

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Carcinoma, Renal Cell , Extracellular Matrix , Gene Expression Regulation, Neoplastic , Hyaluronic Acid , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Hyaluronic Acid/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Prognosis , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Protein Interaction Maps/genetics , Transcriptome , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks
4.
Mol Pain ; 20: 17448069241254455, 2024.
Article En | MEDLINE | ID: mdl-38728068

Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.


Administration, Cutaneous , Hyaluronic Acid , Protamines , Rats, Sprague-Dawley , Animals , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Male , Female , Rats , Protamines/pharmacology , Molecular Weight , Serotonin/metabolism , Administration, Topical
5.
Int Wound J ; 21(5): e14906, 2024 May.
Article En | MEDLINE | ID: mdl-38745342

This study manufactured a 35 kDa hyaluronan fragment (HA35) by enzymatically degrading high-molecular-weight HA using hyaluronidase PH20 derived from bovine testis. The research then examined the therapeutic efficacy of locally administered, tissue-permeable HA35 in alleviating chronic wounds and their associated neuropathic pain. For 20 patients with nonhealing wounds and associated pain lasting over three months, 100 mg of HA35 was injected daily into the healthy skin surrounding the chronic wound for 10 days. Self-assessments before and after treatment indicated that HA35 significantly enhanced wound healing. This was evidenced by the formation of fresh granulation tissue on the wounds (p < 0.0001); reduced darkness, redness, dryness, and damage in the skin surrounding the wounds (p < 0.0001), and a decrease in wound size (p < 0.001). Remarkably, HA35 injections alleviated pain associated with chronic wounds within 24 hours (p < 0.0001). It can be concluded that the low-molecular-weight hyaluronan fragment HA35 potentially enhances the immune response and angiogenesis during wound healing.


Hyaluronic Acid , Hyaluronoglucosaminidase , Wound Healing , Hyaluronic Acid/therapeutic use , Wound Healing/drug effects , Male , Humans , Middle Aged , Chronic Disease , Hyaluronoglucosaminidase/therapeutic use , Hyaluronoglucosaminidase/administration & dosage , Aged , Female , Adult , Treatment Outcome , Wounds and Injuries/drug therapy , Animals , Molecular Weight , Aged, 80 and over
6.
Klin Padiatr ; 236(3): 180-188, 2024 May.
Article En | MEDLINE | ID: mdl-38729129

BACKGROUND: Oral mucositis is one of the side effects developed post-hematopoietic stem cell transplant. This retrospective study aimed to assess the efficacy of a mouthwash mixture (lidocaine, sodium alginate, sucralfate, pheniramine) versus hyaluronic acid and a solution of sodium bicarbonate in terms of healing time and weight gain in the treatment of oral mucositis in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation with hemato-oncological malignancies. METHODS: A total of 171 patients that received chemotherapy for the hematopoietic stem cell transplant were divided into three groups; group 1, treated with a mixed mouthwash of lidocaine, sodium alginate, sucralfate, and pheniramine; group 2, treated with hyaluronic acid; and group 3, treated with an aqueous solution of 5% sodium bicarbonate. Weight and mucositis scale scores derived from medical records of patients. RESULTS: There was a statistically significant difference in the mucositis scale scores between the groups on the transplant day and days 5, 10, 15 and 20 after the transplantation. At these measurement points, Group 2 (receiving hyaluronic acid) had a lower score, and Group 3 (who received sodium bicarbonate) had a higher score, especially on days 5 and 10 after the transplantation. CONCLUSION: The results suggest that hyaluronic acid is a more effective treatment option than the other oral care solutions that are frequently used for prophylaxis and treatment of oral mucositis.


Hematopoietic Stem Cell Transplantation , Stomatitis , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Child , Stomatitis/prevention & control , Stomatitis/chemically induced , Stomatitis/drug therapy , Male , Female , Retrospective Studies , Adolescent , Child, Preschool , Mouthwashes/therapeutic use , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/adverse effects , Sodium Bicarbonate/therapeutic use , Sodium Bicarbonate/administration & dosage , Oral Hygiene , Antineoplastic Agents/adverse effects , Hematologic Neoplasms/therapy , Lidocaine/therapeutic use , Sucralfate/therapeutic use
7.
Vet Med Sci ; 10(3): e1439, 2024 05.
Article En | MEDLINE | ID: mdl-38695208

This study evaluated the effect of ozone, chitosan-hyaluronic (Cs-HA) acid and mesenchymal stem cells (MSCs) on wound healing in rats. A total of 64 rats were randomly divided into four groups: control, ozone, Cs-HA + ozone and Cs-HA + ozone + MSCs. A 5 mm full-thickness wound was created on the back of each rat. The wound area was measured macroscopically on days 3, 5, 9 and 14. Tissue sections were prepared for histopathological evaluation of inflammation, collagen arrangement, neovascularization and epithelial tissue rearrangement. Macroscopic assessment showed differences in wound area on days 5, 9 and 14. Histopathological examination showed that the Cs-HA + ozone + MSCs and Cs-HA + ozone groups had significantly higher vascularization on day 3 compared to the ozone-treated and control groups. All treatment groups had significantly better collagen arrangement than the control group. On day 5, no significant difference was observed between different groups. On day 9, the inflammation level in the Cs-HA + ozone + MSCs group was significantly lower than in the other groups. All treatment groups had significantly better vascularization compared to the control group. On day 14, the rate of inflammation was significantly lower in the treatment groups than in the control group. Significantly higher collagen arrangement levels were observed in the Cs-HA + ozone and Cs-HA + ozone + MSCs groups compared to the control and ozone groups. All treatment groups had significantly better epithelial tissue rearrangement than the control group. Overall, the results of this study indicated that treatment with ozone, Cs-HA acid, Cs-HA and MSCs accelerated wound healing in rats. The effect of using Cs-HA acid with mesenchymal cells was better than the other types of treatment. Larger clinical trials are needed to assess these factors for improving chronic wound treatment.


Chitosan , Hyaluronic Acid , Mesenchymal Stem Cell Transplantation , Ozone , Wound Healing , Animals , Wound Healing/drug effects , Ozone/pharmacology , Rats , Hyaluronic Acid/pharmacology , Male , Mesenchymal Stem Cell Transplantation/veterinary , Rats, Wistar , Random Allocation
8.
J Appl Oral Sci ; 32: e20230294, 2024.
Article En | MEDLINE | ID: mdl-38747782

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
9.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735931

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
10.
Carbohydr Polym ; 337: 122145, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710553

Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.


Biocompatible Materials , Drug Delivery Systems , Hyaluronic Acid , Hydrogels , Hyaluronic Acid/chemistry , Humans , Drug Delivery Systems/methods , Biocompatible Materials/chemistry , Hydrogels/chemistry , Animals , Drug Liberation , Drug Carriers/chemistry , Tissue Engineering/methods , Nanoparticles/chemistry
11.
Carbohydr Polym ; 337: 122146, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710570

Diabetic wounds remain a global challenge due to disordered wound healing led by inflammation, infection, oxidative stress, and delayed proliferation. Therefore, an ideal wound dressing for diabetic wounds not only needs tissue adhesiveness, injectability, and self-healing properties but also needs a full regulation of the microenvironment. In this work, adhesive wound dressings (HA-DA/PRP) with injectability were fabricated by combining platelet rich plasma (PRP) and dopamine-modified-hyaluronic acid (HA-DA). The engineered wound dressings exhibited tissue adhesiveness, rapid self-healing, and shape adaptability, thereby enhancing stability and adaptability to irregular wounds. The in vitro experiments demonstrated that HA-DA/PRP adhesives significantly promoted fibroblast proliferation and migration, attributed to the loaded PRP. The adhesives showed antibacterial properties against both gram-positive and negative bacteria. Moreover, in vitro experiments confirmed that HA-DA/PRP adhesives effectively mitigated oxidative stress and inflammation. Finally, HA-DA/PRP accelerated the healing of diabetic wounds by inhibiting bacterial growth, promoting granulation tissue regeneration, accelerating neovascularization, facilitating collagen deposition, and modulating inflammation through inducing M1 to M2 polarization, in an in vivo model of infected diabetic wounds. Overall, HA-DA/PRP adhesives with the ability to comprehensively regulate the microenvironment in diabetic wounds may provide a novel approach to expedite the diabetic wounds healing in clinic.


Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Hyaluronic Acid , Hydrogels , Platelet-Rich Plasma , Wound Healing , Hyaluronic Acid/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Platelet-Rich Plasma/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diabetes Mellitus, Experimental/drug therapy , Mice , Rats , Bandages , Male , Cell Proliferation/drug effects , Humans , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Dopamine/chemistry , Fibroblasts/drug effects , Adhesives/chemistry , Adhesives/pharmacology
12.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article En | MEDLINE | ID: mdl-38720939

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
13.
Jt Dis Relat Surg ; 35(2): 361-367, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38727116

OBJECTIVES: This study aims to compare the radiological, biomechanical, and histopathological results of microfracture treatment and osteochondral damage repair treatment with a new scaffold product produced by the three-dimensional (3D) bioprinting method containing gelatin-hyaluronic acid-alginate in rabbits with osteochondral damage. MATERIALS AND METHODS: A new 3D bioprinted scaffold consisting of gelatin, hyaluronic acid, and alginate designed by us was implanted into the osteochondral defect created in the femoral trochlea of 10 rabbits. By randomization, it was determined which side of 10 rabbits would be repaired with a 3D bioprinted scaffold, and microfracture treatment was applied to the other knees of the rabbits. After six months of follow-up, the rabbits were sacrificed. The results of both treatment groups were compared radiologically, biomechanically, and histopathologically. RESULTS: None of the rabbits experienced any complications. The magnetic resonance imaging evaluation showed that all osteochondral defect areas were integrated with healthy cartilage in both groups. There was no significant difference between the groups in the biomechanical load test (p=0.579). No statistically significant difference was detected in the histological examination using the modified Wakitani scores (p=0.731). CONCLUSION: Our study results showed that 3D bioprinted scaffolds exhibited comparable radiological, biomechanical, and histological properties to the conventional microfracture technique for osteochondral defect treatment.


Alginates , Bioprinting , Cartilage, Articular , Gelatin , Hyaluronic Acid , Knee Joint , Printing, Three-Dimensional , Tissue Scaffolds , Animals , Rabbits , Alginates/chemistry , Gelatin/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/therapeutic use , Tissue Scaffolds/chemistry , Cartilage, Articular/pathology , Cartilage, Articular/injuries , Cartilage, Articular/surgery , Knee Joint/surgery , Knee Joint/pathology , Bioprinting/methods , Disease Models, Animal , Biomechanical Phenomena , Magnetic Resonance Imaging , Arthroplasty, Subchondral/methods
14.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 608-614, 2024 May 06.
Article Zh | MEDLINE | ID: mdl-38715499

Atmospheric particulate matter has an association with respiratory system inflammation, and low molecular weight hyaluronic acid (LMW-HA) is a key biomarker of inflammatory cascade reaction. This review summarized the possible pathways and biomarkers of atmospheric particulate matter causing respiratory system inflammation through high molecular weight hyaluronic acid (HMW-HA)/LMW-HA imbalance, including the synthesis and decomposition of HA, the reduction of particulate matter and HMW-HA, the increase of LMW-HA, and the relationship between LMW-HA and respiratory system inflammation. Furthermore, inhibitors and therapeutic drugs targeting certain biomarkers were further listed. This review could shed light on the mechanism of respiratory system inflammation caused by atmospheric particulate matter and the weak points that need attention in subsequent research.


Hyaluronic Acid , Inflammation , Particulate Matter , Particulate Matter/adverse effects , Humans , Molecular Weight , Biomarkers , Air Pollutants/adverse effects , Air Pollutants/toxicity
15.
Fr J Urol ; 34(2): 102585, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717460

INTRODUCTION: The aim was to compare the efficacy of polyacrylate polyalcohol copolymer (PPC) injections and dextranomer/hyaluronic acid (Dx/Ha) injections for the endoscopic treatment of vesicoureteral reflux in children. MATERIAL: This retrospective cohort study included 189 young patients who had endoscopic treatment for vesicoureteral reflux from January 2012 to December 2019 in our center. Among them, 101 had PCC injections and 88 had Dx/Ha injections. Indications for treatment were vesicoureteral reflux with breakthrough urinary tract infection or vesicoureteral reflux with renal scarring on dimercaptosuccinic acid (DMSA) renal scan. Endoscopic injection was performed under the ureteral meatus. Early complications, recurrence of febrile urinary tract infection and vesicoureteral reflux after endoscopic injection, ureteral obstruction and reintervention were evaluated and compared between groups. RESULTS: Endoscopic treatment was successful in 90.1% of patients who had PPC injection and in 82% of patients who had Dx/Ha injection. Four patients presented a chronic ureteral obstruction after PPC injection, one with a complete loss of function of the dilated kidney. One patient in the Dx/Ha group presented a postoperative ureteral dilatation after 2 injections. CONCLUSION: Despite a similar success rate after PPC and Dx/Ha injections for endoscopic treatment of VUR, there may be a greater risk of postoperative ureteral obstruction after PPC injections. The benefit of using PPC to prevent febrile UTI and renal scarring in children with low-grade VUR does not seem to outweigh the risk of chronic ureteral obstruction.


Dextrans , Hyaluronic Acid , Ureteral Obstruction , Vesico-Ureteral Reflux , Humans , Vesico-Ureteral Reflux/therapy , Retrospective Studies , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/adverse effects , Female , Male , Dextrans/therapeutic use , Dextrans/administration & dosage , Dextrans/adverse effects , Child, Preschool , Treatment Outcome , Infant , Acrylic Resins/therapeutic use , Acrylic Resins/administration & dosage , Child , Injections , Cohort Studies , Ureteroscopy/adverse effects
16.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702837

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Cell Differentiation , Hyaluronic Acid , Mesenchymal Stem Cells , Pluripotent Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Culture Media, Serum-Free/pharmacology , Cell Lineage , Cells, Cultured , Cell Culture Techniques/methods , Coculture Techniques
17.
Int Ophthalmol ; 44(1): 211, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696090

PURPOSE: To evaluate the effects of sodium hyaluronate drops on dry eye parameters and corneal epithelial thickness following cataract surgery. METHODS: The study included 84 patients who underwent uncomplicated phacoemulsification. In Group A, 0.15% sodium hyaluronate drops were added to the postoperative antibiotic/anti-inflammatory treatment. In Group B, only antibiotic/anti-inflammatory treatment was applied. Preoperatively and at 1 week and 1 month postoperatively, all the patients were evaluated in respect of tear break-up time (TBUT), the Schirmer test under anesthesia, the corneal fluorescein staining (CFS) score, mean central corneal thickness (CCT) and mean central corneal epithelial thickness (CCET), and the two groups were compared. RESULTS: A statistically significant difference was determined between the two groups at postoperative 1 month in respect of TBUT, Schirmer test, CFS score, and CCET (p < 0.01). In Group A, a statistically significant increase was determined in the TBUT and Schirmer values at 1 month postoperatively (p < 0.01, p = 0.01, respectively) and in Group B, these values were decreased compared to preoperatively (p < 0.01). The CCET was determined to be significantly thinner in Group B 1 month postoperatively (p < 0.01). A significant increase in CCT was observed in both groups at postoperative 1 week (p < 0.01) and preoperative values were reached at 1 month postoperatively. CONCLUSION: In the patient group using sodium hyaluronate, significant differences were determined in all dry eye parameters and CCET. The use of hyaluronate sodium drops after cataract surgery was seen to improve dry eye parameters and contribute to a healthy ocular surface by ensuring continuity of the corneal epithelium.


Dry Eye Syndromes , Epithelium, Corneal , Hyaluronic Acid , Ophthalmic Solutions , Phacoemulsification , Humans , Hyaluronic Acid/administration & dosage , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/diagnosis , Female , Male , Aged , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Middle Aged , Ophthalmic Solutions/administration & dosage , Phacoemulsification/methods , Viscosupplements/administration & dosage , Prospective Studies , Tears/metabolism , Postoperative Complications/prevention & control , Cataract Extraction/methods
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732135

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Doxorubicin , Fibronectins , Glioblastoma , Hyaluronic Acid , Hydrogels , Oligopeptides , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Fibronectins/metabolism , Fibronectins/antagonists & inhibitors , Hydrogels/chemistry , Cell Line, Tumor , Hyaluronic Acid/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Liposomes/chemistry , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism
19.
World J Urol ; 42(1): 317, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740620

PURPOSE: To review the literature on the topic, to suggest a common line of treatment applicable across a wide community of specialists, and to contribute in maintaining the high level of interest in this disease. METHODS: A comprehensive and exhaustive review of the literature was performed, identifying hundreds of articles on the topic. RESULTS: Peyronie's disease is a condition that has been recognized, studied, and treated for centuries; despite this, if one excludes surgery in cases in which the deformity is stable, no clear treatment (or line of treatment) is available for complete relief of signs and symptoms. Treatment options were divided into local, oral, and injection therapy, and a wide variety of drugs, remedies, and options were identified. CONCLUSIONS: Low-intensity extracorporeal shock wave therapy, vacuum therapy, penile traction therapy, phosphodiesterase type 5 inhibitors, hyaluronic acid, and collagenase of Clostridium histolyticum may be recommended only in specific contexts. Further studies on individual options or potential combinations are required.


Conservative Treatment , Penile Induration , Penile Induration/therapy , Humans , Male , Conservative Treatment/methods , Extracorporeal Shockwave Therapy/methods , Phosphodiesterase 5 Inhibitors/therapeutic use , Traction/methods , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/therapeutic use , Microbial Collagenase/therapeutic use , Microbial Collagenase/administration & dosage , Practice Guidelines as Topic
20.
ACS Biomater Sci Eng ; 10(5): 3242-3254, 2024 May 13.
Article En | MEDLINE | ID: mdl-38632852

Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.


Chondrocytes , Chondroitin Sulfates , Hyaluronic Acid , Hydrogels , Inflammation , Hydrogels/chemistry , Hydrogels/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cytokines/metabolism , Aggrecans/metabolism , Tissue Engineering/methods , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism
...