Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.883
1.
Water Sci Technol ; 89(9): 2326-2341, 2024 May.
Article En | MEDLINE | ID: mdl-38747952

In this paper, we address the critical task of 24-h streamflow forecasting using advanced deep-learning models, with a primary focus on the transformer architecture which has seen limited application in this specific task. We compare the performance of five different models, including persistence, long short-term memory (LSTM), Seq2Seq, GRU, and transformer, across four distinct regions. The evaluation is based on three performance metrics: Nash-Sutcliffe Efficiency (NSE), Pearson's r, and normalized root mean square error (NRMSE). Additionally, we investigate the impact of two data extension methods: zero-padding and persistence, on the model's predictive capabilities. Our findings highlight the transformer's superiority in capturing complex temporal dependencies and patterns in the streamflow data, outperforming all other models in terms of both accuracy and reliability. Specifically, the transformer model demonstrated a substantial improvement in NSE scores by up to 20% compared to other models. The study's insights emphasize the significance of leveraging advanced deep learning techniques, such as the transformer, in hydrological modeling and streamflow forecasting for effective water resource management and flood prediction.


Hydrology , Models, Theoretical , Hydrology/methods , Rivers , Water Movements , Forecasting/methods , Deep Learning
2.
Water Sci Technol ; 89(9): 2367-2383, 2024 May.
Article En | MEDLINE | ID: mdl-38747954

With the widespread application of machine learning in various fields, enhancing its accuracy in hydrological forecasting has become a focal point of interest for hydrologists. This study, set against the backdrop of the Haihe River Basin, focuses on daily-scale streamflow and explores the application of the Lasso feature selection method alongside three machine learning models (long short-term memory, LSTM; transformer for time series, TTS; random forest, RF) in short-term streamflow prediction. Through comparative experiments, we found that the Lasso method significantly enhances the model's performance, with a respective increase in the generalization capabilities of the three models by 21, 12, and 14%. Among the selected features, lagged streamflow and precipitation play dominant roles, with streamflow closest to the prediction date consistently being the most crucial feature. In comparison to the TTS and RF models, the LSTM model demonstrates superior performance and generalization capabilities in streamflow prediction for 1-7 days, making it more suitable for practical applications in hydrological forecasting in the Haihe River Basin and similar regions. Overall, this study deepens our understanding of feature selection and machine learning models in hydrology, providing valuable insights for hydrological simulations under the influence of complex human activities.


Machine Learning , Rivers , Hydrology , Models, Theoretical , Water Movements , China , Forecasting/methods
3.
Water Sci Technol ; 89(9): 2577-2592, 2024 May.
Article En | MEDLINE | ID: mdl-38747968

This study undertakes a systematic analysis of the hydrological changes before and after the implementation of the Comprehensive Remediation Project in the lower reaches of the Ganjiang River. It focuses on changes in downstream inflow, ratios of flow distribution, and water levels, as well as water velocity near the gates. The results indicate a significant improvement in the spatial distribution of water resources in the lower reaches of the Ganjiang River. The project enhances the inflow from the northern and southern branches, positively influencing downstream water usage and the ecological environment. Building upon these findings, the study proposes operational recommendations tailored to different hydrological years, such as timely adjustments to the southern branch's water inflow and optimizing flow distribution ratios. This research provides a scientific basis for the implementation and dispatch of comprehensive remediation projects and offers insights into water resource management in similar regions.


Hydrology , Rivers , China , Environmental Restoration and Remediation/methods , Water Movements
4.
Science ; 384(6696): 697-703, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723080

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Anopheles , Hydrology , Malaria , Mosquito Vectors , Animals , Malaria/transmission , Africa , Anopheles/parasitology , Mosquito Vectors/parasitology , Climate Change , Humans , Seasons , Rain , Models, Theoretical , Water , Greenhouse Gases/analysis
5.
Environ Monit Assess ; 196(6): 532, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727964

WetSpass-M model and multi-technique baseflow separation (MTBS) were applied to estimate spatio-temporal groundwater recharge (GWR) to be used to comprehend and enhance sustainable water resource development in the data-scarce region. Identification of unit Hydrographs And Component flows from Rainfall, Evaporation, and Streamflow (IHACRES) techniques outperform the existing 13 MTBS techniques to separate baseflow depending on the correlation matrix; mean baseflow was 5.128 m3/s. The WetSpass-M model performance evaluated by Nash-Sutcliff Efficiency (NSE) was 0.95 and 0.89; R2 was 0.90 and 0.85 in comparison to observed and simulated mean monthly baseflow and runoff (m3/s), respectively. The estimated mean annual water balance was 608.2 mm for actual evapotranspiration, 221.42 mm for the surface runoff, 87.42 mm for interception rate, and 177.66 mm for GWR, with an error of - 3.29 mm/year. The highest annual actual evapotranspiration was depicted in areas covered by vegetation, whereas lower in the settlement. The peak annual interception rates have been noticed in areas covered with forests and shrublands, whereas the lowest in settlement and bare land. The maximum annual runoff was depicted in settlement and bare land, while the lowest was in forest-covered areas. The annual recharge rates were low in bare land due to high runoff and maximum in forest-covered areas due to low surface runoff. The watershed's downstream areas receive scanty annual rainfall, which causes low recharge and drought. The findings point the way ahead in terms of selecting the best approach across multi-technique baseflow separations.


Environmental Monitoring , Groundwater , Water Movements , Groundwater/chemistry , Ethiopia , Environmental Monitoring/methods , Rain , Models, Theoretical , Water Supply/statistics & numerical data , Hydrology
6.
Environ Sci Technol ; 58(19): 8360-8371, 2024 May 14.
Article En | MEDLINE | ID: mdl-38701334

Artificial channels, common features of inland waters, have been suggested as significant contributors to methane (CH4) and carbon dioxide (CO2) dynamics and emissions; however, the magnitude and drivers of their CH4 and CO2 emissions (diffusive and ebullitive) remain unclear. They are characterized by reduced flow compared to the donor river, which results in suspended organic matter (OM) accumulation. We propose that in such systems hydrological controls will be reduced and OM accumulation will control emissions by promoting methane production and outgassing. Here, we monitored summertime CH4 and CO2 concentrations and emissions on six newly constructed river-fed artificial channels, from bare riparian mineral soil to lotic channels, under two distinct flow regimes. Chamber-based fluxes were complemented with hydrology, total fluxes (diffusion + ebullition), and suspended OM accumulation assessments. During the first 6 weeks after the flooding, inflowing riverine water dominated the emissions over in-channel contributions. Afterwards, a substantial accumulation of riverine suspended OM (≥50% of the channel's volume) boosted in-channel methane production and led to widespread ebullition 10× higher than diffusive fluxes, regardless of the flow regime. Our finding suggests ebullition as a dominant pathway in these anthropogenic systems, and thus, their impact on regional methane emissions might have been largely underestimated.


Greenhouse Gases , Hydrology , Methane , Rivers/chemistry , Carbon Dioxide , Environmental Monitoring
7.
J Water Health ; 22(4): 639-651, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678419

Stream flow forecasting is a crucial aspect of hydrology and water resource management. This study explores stream flow forecasting using two distinct models: the Soil and Water Assessment Tool (SWAT) and a hybrid M5P model tree. The research specifically targets the daily stream flow predictions at the MH Halli gauge stations, located along the Hemvati River in Karnataka, India. A 14-year dataset spanning from 2003 to 2017 is divided into two subsets for model calibration and validation. The SWAT model's performance is evaluated by comparing its predictions to observed stream flow data. Residual time series values resulting from this comparison are then resolved using the M5P model tree. The findings reveal that the hybrid M5P tree model surpasses the SWAT model in terms of various evaluation metrics, including root-mean-square error, coefficient of determination (R2), Nash-Sutcliffe efficiency, and degree of agreement (d) for the MH Halli stations. In conclusion, this study shows the effectiveness of the hybrid M5P tree model in stream flow forecasting. The research contributes valuable insights into improved water resource management and underscores the importance of selecting appropriate models based on their performance and suitability for specific hydrological forecasting tasks.


Models, Theoretical , Rain , India , Rivers , Water Movements , Hydrology , Environmental Monitoring/methods , Forecasting
8.
PLoS One ; 19(4): e0297744, 2024.
Article En | MEDLINE | ID: mdl-38625879

Malaria transmission across sub-Saharan Africa is sensitive to rainfall and temperature. Whilst different malaria modelling techniques and climate simulations have been used to predict malaria transmission risk, most of these studies use coarse-resolution climate models. In these models convection, atmospheric vertical motion driven by instability gradients and responsible for heavy rainfall, is parameterised. Over the past decade enhanced computational capabilities have enabled the simulation of high-resolution continental-scale climates with an explicit representation of convection. In this study we use two malaria models, the Liverpool Malaria Model (LMM) and Vector-Borne Disease Community Model of the International Centre for Theoretical Physics (VECTRI), to investigate the effect of explicitly representing convection on simulated malaria transmission. The concluded impact of explicitly representing convection on simulated malaria transmission depends on the chosen malaria model and local climatic conditions. For instance, in the East African highlands, cooler temperatures when explicitly representing convection decreases LMM-predicted malaria transmission risk by approximately 55%, but has a negligible effect in VECTRI simulations. Even though explicitly representing convection improves rainfall characteristics, concluding that explicit convection improves simulated malaria transmission depends on the chosen metric and malaria model. For example, whilst we conclude improvements of 45% and 23% in root mean squared differences of the annual-mean reproduction number and entomological inoculation rate for VECTRI and the LMM respectively, bias-correcting mean climate conditions minimises these improvements. The projected impact of anthropogenic climate change on malaria incidence is also sensitive to the chosen malaria model and representation of convection. The LMM is relatively insensitive to future changes in precipitation intensity, whilst VECTRI predicts increased risk across the Sahel due to enhanced rainfall. We postulate that VECTRI's enhanced sensitivity to precipitation changes compared to the LMM is due to the inclusion of surface hydrology. Future research should continue assessing the effect of high-resolution climate modelling in impact-based forecasting.


Convection , Malaria , Humans , Africa/epidemiology , Computer Simulation , Hydrology/methods , Malaria/epidemiology
9.
Water Sci Technol ; 89(6): 1419-1440, 2024 Mar.
Article En | MEDLINE | ID: mdl-38557709

Rivers respond directly to climate change, as well as incorporating the effects of climate-driven changes occurring within their watersheds. In this research, climate change's impact on the Atbara River, one of the main tributaries of the Nile River, was studied. Various statistical methods of analysis were applied to study the basic characteristics of the climatic parameters that affect the discharge of the Atbara River. The three hydrological gauging stations on the Atbara River, namely, the Upper Atbara and Setit reservoirs, Khashm el-Girba reservoir, and Atbara Kilo 3 station, were included in the study. The correlation between the meteorological parameters and the hydrology of the Atbara River and the prediction of the future hydrology of the Atbara River Basin was determined. Many hydrological models were developed and tested to predict the hydrology of the river. Finally, forecasting for river hydrology was built. No significant trend was found in the precipitation in the study area. The developed model simulates the observed data with a high coefficient of determination ranging from 0.7 to 0.91 for the three hydrological gauging stations studied. Results predicted a slight decrease in river discharge in future years.


Rivers , Water Resources , Climate Change , Hydrology
10.
Environ Monit Assess ; 196(5): 482, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683463

The flood of Damodar river is a well-known fact which is used to the whole riverine society of the basin as well as to the eastern India. The study aims to estimate the spatio-temporal probability of floods and identify susceptible zones in the Lower Damodar Basin (LDB). A flood frequency analysis around 90 years hydrological series is performed using the Log-Pearson Type III model. The frequency ratio model has also been applied to determine the spatial context of flood. This reveals the extent to which the LDB could be inundated in response to peak discharge conditions, especially during the monsoon season. The findings indicate that 36.64% of the LDB falls under high to very high flood susceptibility categories, revealing an increasing downstream flood vulnerability trend. Hydro-geomorphic factors substantially contribute to the susceptibility of the LDB to high magnitude floods. A significant shift in flood recurrence intervals, from biennial occurrences in the pre-dam period to decadal or vicennial occurrences in the post-dam period, is observed. Despite a reduction in high-magnitude flood incidents due to dam and barrage construction, irregular flood events persist. The effect of flood in the LDB region is considered to be either positive as well as negative in terms of wholistic sense and impact. The analytical results of this research could serve to identify flood-prone zones and guide the development of flood resilience policies, thereby promoting sustainability within the LDB floodplain.


Environmental Monitoring , Floods , Rivers , India , Environmental Monitoring/methods , Rivers/chemistry , Probability , Spatio-Temporal Analysis , Hydrology
11.
Water Res ; 256: 121578, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608622

Humans have played a fundamental role in altering lake wetland ecosystems, necessitating the use of diverse data types to accurately quantify long-term changes, identify potential drivers, and establish a baseline status. We complied high-resolution historical topographic maps and Landsat imagery to assess the dynamics of the lake wetlands in the Yangtze Plain over the past century, with special attention to land use and hydrological connectivity changes. Results showed an overall loss of 45.6 % (∼11,859.5 km2) of the lake wetlands over the past century. The number of lakes larger than 10 km2 decreased from 149 to 100 due to lake dispersion, vanishing, and shrinkage. The extent of lake wetland loss was 3.8 times larger during the 1930s-1970s than that in the 1970s-1990s. Thereafter, the lake wetland area remained relatively stable, and a net increase was observed during the 2010s-2020s in the Yangtze Plain. The significant loss of lake wetland was predominately driven by agricultural activities and urban land expansion, accounting for 81.1 % and 4.9 % of the total losses, respectively. In addition, the changes in longitudinal and lateral hydrological connectivity further exacerbated the lake wetland changes across the Yangtze Plain through isolation between lakes and the Yangtze River and within the lakes. A total of 130 lakes have been isolated from the Yangtze River due to the construction of sluices and dykes throughout the Yangtze Plain, resulting in the decrease in the proportion of floodplain marsh from 28.3 % in the 1930s to 8.0 % in the 2020s. Furthermore, over 260 sub-lakes larger than 1 km2 (with a total area of 1276.4 km2) are experiencing a loss of connectivity with their parent lakes currently. This study could provide an improved historical baseline of lake wetland changes to guide the conservation planning to wetland protection and prioritization area in the Yangtze Plain.


Hydrology , Lakes , Wetlands , China , Conservation of Natural Resources , Environmental Monitoring , Agriculture/history
12.
Nature ; 627(8004): 559-563, 2024 Mar.
Article En | MEDLINE | ID: mdl-38509278

Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks1. Accurate and timely warnings are critical for mitigating flood risks2, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that artificial intelligence-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a five-day lead time that is similar to or better than the reliability of nowcasts (zero-day lead time) from a current state-of-the-art global modelling system (the Copernicus Emergency Management Service Global Flood Awareness System). In addition, we achieve accuracies over five-year return period events that are similar to or better than current accuracies over one-year return period events. This means that artificial intelligence can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed here was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.


Artificial Intelligence , Computer Simulation , Floods , Forecasting , Forecasting/methods , Reproducibility of Results , Rivers , Hydrology , Calibration , Time Factors , Disaster Planning/methods
14.
Ground Water ; 62(3): 480-493, 2024.
Article En | MEDLINE | ID: mdl-38511862

In South Africa, approximately 98% of the predicted total surface water resources are already being used up. Consequently, the National Water Resource Strategy considers groundwater to be important for the future planning and management of water resources. In this case, quantifying groundwater budgets is a prerequisite because they provide a means for evaluating the availability and sustainability of a water supply. This study estimated the regional groundwater budgets for the Inkomati-Usuthu Water Management Area (Usuthu, Komati, Sabie-Sand, and Crocodile) using the classical hydrological continuity equation. The equation was used to describe prevailing feedback loops between groundwater draft, recharge, baseflow, and storage change. The results were coarser scale estimates which, beforehand, were derived from the 2006 study. In the years to follow, groundwater reliance intensified and there was also the historic 2015/2016 drought. This inevitably led to an increased draft while the rest of the components of the groundwater budgets experienced decreases. Both Crocodile and Sabie-Sand experienced groundwater storage depletion which led to reduced baseflow and groundwater availability, while groundwater recharge contrarily increased due to capture. Conversely, the other two catchments experienced relatively lower drafts with correspondingly higher groundwater availability and recharge while storage change was positive. The results highlighted the need for adaptive water management whose effectiveness relies on predictive studies. Consequently, future models should be developed to capture the spatial and temporal dynamism of the natural groundwater budget due to climate change, water demands, and population growth predictions.


Groundwater , Water Supply , South Africa , Water Movements , Conservation of Water Resources/methods , Hydrology , Environmental Monitoring , Models, Theoretical
15.
Sci Total Environ ; 924: 171676, 2024 May 10.
Article En | MEDLINE | ID: mdl-38479535

Typhoons can induce variations in hydrodynamic conditions and biogeochemical processes, potentially escalating the risk of algal bloom occurrences impacting coastal ecosystems. However, the impacts of typhoons on instantaneous changes and the mechanisms behind typhoon-induced algal blooms remain poorly understood. This study utilized high-frequency in situ observation and machine learning model to track the dynamic variations in meteorological, hydrological, physicochemical, and Chlorophyll-a (Chl-a) levels through the complete Typhoon Talim landing in Zhanjiang Bay (ZJB) in July 2023. The results showed that a delayed onset of algal bloom occurring 10 days after typhoon's arrival. Subsequently, as temperatures reached a suitable range, with an ample supply of nutrients and water stability, Chl-a peaked at 121.49 µg L-1 in algal bloom period. Additionally, water temperature and air temperature decreased by 1.61 °C and 2.8 °C during the typhoon, respectively. In addition, wind speed and flow speed increased by 1.34 and 0.015 m s-1 h-1 to peak values, respectively. Moreover, the slow decline of 8.2 % in salinity suggested a substantial freshwater input, leading to an increase in nutrients. For instance, the mean DIN and DIP were 2.2 and 8.5 times higher than those of the pre-typhoon period, resulting in a decrease in DIN/DIP (closer to16) and the alleviation of P limitation. Furthermore, pH and dissolved oxygen (DO) were both low during the typhoon period and then peaked at 8.93 and 19.05 mg L-1 during the algal bloom period, respectively, but subsequently decreased, remaining lower than those of the pre-typhoon period. A preliminary learning machine model was established to predict Chl-a and exhibited good accuracy, with R2 of 0.73. This study revealed the mechanisms of eutrophication status formation and algal blooms occurrence in the coastal waters, providing insights into the effects of typhoon events on tropical coastal biogeochemistry and ecology.


Cyclonic Storms , Ecosystem , Hydrology , Bays , Eutrophication , Nutrients , China , Water
16.
J Environ Manage ; 356: 120637, 2024 Apr.
Article En | MEDLINE | ID: mdl-38520859

Land use/land cover (LULC) change, often a consequence of natural or anthropogenic drivers, plays a decisive role in governing global catchment dynamics, and subsequent impact on regional hydrology. Insight into the complex relationship between the drivers of LULC change and catchment hydrology is of utmost importance to decision makers. Contemplating the dynamic rainfall-runoff response of the Indian catchments, this study proposes an integrated modeling-based approach to identify the drivers and relative contribution to catchment hydrology. The proposed approach was evaluated in the tropical climate Nagavali River Basin (NRB) (9512 km2) of India. The Soil and Water Assessment Tool (SWAT) hydrological model, which uses daily-scale rainfall, temperature, wind speed, relative humidity, solar radiation, and streamflow information was integrated with the Indicators of Hydrologic Alteration (IHA) technique to characterize the plausible changes in the flow regime of the NRB. Subsequently, the Partial Least Squares Regression (PLSR) based modeling analysis was performed to quantify the relative contribution of individual LULC components on the catchment water balance. The outcomes of the study revealed that forest land has been significantly converted to agricultural land (45-59%) across the NRB resulting in mean annual streamflow increase of 3.57 m3/s during the monsoon season. The affinity between land use class and streamflow revealed that barren land (CN = 83-87) exhibits the maximum positive response to streamflow followed by the built-up land (CN = 89-91) and fallow land (CN = 88-93). The period 1985-1995 experienced an increased ET scenario (911-1050 mm), while the recent period (2005-2020) experienced reduced ET scenario owing to conversion of forest to agricultural land. Certainly, the study endorses adopting the developed methodology for understanding the complex land use and catchment-scale hydrologic interactions across global-scales for early watershed management planning.


Hydrology , Soil , Agriculture , Temperature , Rivers , Water
17.
Water Res ; 253: 121284, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38367376

Green stormwater infrastructure (GSI) is growing in popularity to reduce combined sewer overflows (CSOs) and hydrologic simulation models are a tool to assess their reduction potential. Given the numerous and interacting water flows that contribute to CSOs, such as evapotranspiration (ET) and groundwater (GW), these models should ideally account for them. However, due to the complexity, simplified models are often used, and it is currently unknown how these assumptions affect estimates of CSOs, GSI effectiveness, and ultimately planning guidance. This study evaluates the effect on estimates of CSOs and GSI effectiveness when different flows and hydrologic processes are neglected. We modified an existing EPA SWMM model of a combined sewer system in Switzerland to include ET, GW, and upstream inflows. Historical rainfall data over 30 years are used to assess volume and duration of CSOs with and without three types of GSI (bioretention basins, permeable pavements and green roofs). Results demonstrate that neglect of certain flows in modelling can alter CSO volumes from -15 % to 40 %. GSI effectiveness also varies considerably, resulting in differences in simulated percent of CSO volume reduced from 8 % to 35 %, depending on the GSI type and modeled flow or process. Representation of GW within models is particularly crucial when infiltrating GSI are present, as CSOs could increase in certain subcatchments due to higher GW levels from increased infiltration. When basing GSI planning decisions on modeled estimates of CSOs, all relevant hydrologic processes should be included to the extent possible, and uncertainty and assumptions should always be considered.


Groundwater , Computer Simulation , Water , Hydrology , Switzerland , Rain , Sewage/chemistry
18.
Water Res ; 253: 121308, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38377925

Subsurface runoff represents the main pathway of nitrate transport in hilly catchments. The magnitude of nitrate export from a source area is closely related to subsurface hydrological connectivity, which refers to the linkage of separate regions of a catchment via subsurface runoff. However, understanding of how subsurface hydrological connectivity regulates catchment nitrate export remains insufficient. This study conducted high-frequency monitoring of shallow groundwater in a hilly catchment over 17 months. Subsurface hydrological connectivity of the catchment over 38 rainfall events was analyzed by combining topography-based upscaling of shallow groundwater and graph theory. Moreover, cross-correlation analysis was used to evaluate the time-series similarity between subsurface hydrological connectivity and nitrate flux during rainfall events. The results showed that the maximum subsurface hydrological connectivity during 32 out of 38 rainfall events was below 0.5. Although subsurface flow paths (i.e., the pathways of lateral subsurface runoff) exhibited clear dynamic extension and contraction during rainfall events, most areas in the catchment did not establish subsurface hydrological connectivity with the stream. The primary pattern of nitrate export was flushing (44.7%), followed by dilution (34.2%), and chemostatic behavior (21.1%). A threshold relationship between subsurface hydrological connectivity and nitrate flux was identified, with nitrate flux rapidly increasing after the subsurface connectivity strength exceeded 0.121. Moreover, the median value of cross-correlation coefficients reached 0.67, which indicated subsurface hydrological connectivity exerts a strong control on nitrate flux. However, this control effect is not constant and it increases with rainfall amount and intensity as a power function. The results of this study provide comprehensive insights into the subsurface hydrological control of catchment nitrate export.


Groundwater , Nitrates , Nitrates/analysis , Water Movements , Rivers , Hydrology
19.
Isotopes Environ Health Stud ; 60(2): 122-140, 2024 May.
Article En | MEDLINE | ID: mdl-38372972

We investigated the stable isotope hydrology of Sable Island, Nova Scotia, Canada over a five year period from September, 2017 to August, 2022. The δ2H and δ18O values of integrated monthly precipitation were weakly seasonal and ranged from -66 to -15 ‰ and from -9.7 to -1.9 ‰, respectively. Fitting these monthly precipitation data resulted in a local meteoric water line (LMWL) defined by: δ2H = 7.22 ± 0.21 · δ18O + 7.50 ± 1.22 ‰. Amount-weighted annual precipitation had δ2H and δ18O values of -36 ± 11 ‰ and -6.1 ± 1.4 ‰, respectively. Deep groundwater had more negative δ2H and δ18O values than mean annual precipitation, suggesting recharge occurs mainly in the winter, while shallow groundwater had δ2H and δ18O values more consistent with mean annual precipitation or mixing of freshwater with local seawater. Surface waters had more positive values and showed evidence of isolation from the groundwater system. The stable isotopic compositions of plant (leaf) water, on the other hand, indicate plants use groundwater as their source. Fog had δ2H and δ18O values that were significantly more positive than those of local precipitation, yet had similar 17O-excess values. δ2H values of horsehair from 4 individuals lacked seasonality, but had variations typical to those of precipitation on the island. Differences in mean δ2H values of horsehair were statistically significant and suggest variations in water use may exist between spatially disparate horse communities. Our results establish an important initial framework for ongoing isotope studies of feral horses and other wildlife on Sable Island.


Hydrology , Water , Humans , Horses , Animals , Oxygen Isotopes/analysis , Nova Scotia , Deuterium/analysis , Environmental Monitoring/methods
20.
Sci Total Environ ; 922: 171196, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38412874

Riparian wetlands have suffered from degradation due to global climate change and human activities, which can alter flora and fauna community patterns and disrupt material cycles in the riparian zones. Hydrological connectivity identified by functional and structural connectivity is an important driving force of riparian ecosystems. However, the role of hydrological connectivity in linking riparian hydrology and ecology remains unclear, especially in dryland rivers. By taking the riparian zone of the Xilin River in Eurasian steppe as an example, the functional connectivity was represented by the groundwater depth in the riparian zones. The structural connectivity was quantified by integrating the soil, and vegetation properties of the riparian zone. The structural connectivity decreased from upstream to downstream. Laterally, the highest structural connectivity was found in the riparian zone 25 m away from the river channel. The abundance of three groups of ground-dwelling arthropods (except Araneae) showed a threshold behavior in response to the functional connectivity, with the highest abundance occurring in the medium level of functional connectivity. Both vegetation biomass and ground-dwelling arthropod abundance were significantly and positively correlated to the structural connectivity strength. The results of structural equation models (SEMs) also indicated that structural connectivity was a key factor affecting vegetation and ground-dwelling arthropod abundance. The results underscore the essential function of hydrological connectivity in maintaining the biodiversity in the riparian zones. The study provides a scientific reference of riparian-zone restoration based on hydrological connectivity.


Arthropods , Ecosystem , Animals , Humans , Hydrology , Grassland , Soil
...