Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
1.
PeerJ ; 12: e18099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301056

RESUMEN

The microbiota of hydrothermal vents has been widely implicated in the dynamics of oceanic biogeochemical cycling. Lithotrophic organisms utilize reduced chemicals in the vent effluent for energy, which fuels carbon fixation, and their metabolic byproducts can then support higher trophic levels and high-biomass ecosystems. However, despite the important role these microorganisms play in our oceans, they are difficult to study. Most are resistant to culturing in a lab setting, so culture-independent methods are necessary to examine community composition. Targeted amplicon surveying has become the standard practice for assessing the structure and diversity of hydrothermal vent microbial communities. Here, the performance of primer pairs targeting the V3V4 and V4V5 variable regions of the SSU rRNA gene was assessed for use on environmental samples from microbial mats surrounding Kama'ehuakanaloa Seamount, an iron-dominated hydrothermal vent system. Using the amplicon sequence variant (ASV) approach to taxonomic identification, the structure and diversity of microbial communities were elucidated, and both primer pairs generated robust data and comparable alpha diversity profiles. However, several distinct differences in community composition were identified between primer sets, including differential relative abundances of both bacterial and archaeal phyla. The primer choice was determined to be a significant driver of variation among the taxonomic profiles generated. Based on the higher quality of the raw sequences generated and on the breadth of abundant taxa found using the V4V5 primer set, it is determined as the most efficacious primer pair for whole-community surveys of microbial mats at Kama'ehuakanaloa Seamount.


Asunto(s)
Archaea , Bacterias , Respiraderos Hidrotermales , Microbiota , Respiraderos Hidrotermales/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Microbiota/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Cartilla de ADN/genética , ARN Ribosómico 16S/genética
2.
mSystems ; 9(9): e0014824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39166872

RESUMEN

Enhancing the availability of representative isolates from hydrothermal vents (HTVs) is imperative for comprehending the microbial processes that propel the vent ecosystem. In recent years, Campylobacteria have emerged as the predominant and ubiquitous taxon across both shallow and deep-sea vent systems. Nevertheless, only a few isolates have been cultured, primarily originating from deep-sea HTVs. Presently, no cultivable isolates of Campylobacteria are accessible in shallow water vent systems (<200 m), which exhibit markedly distinct environmental conditions from their deep-sea counterparts. In this study, we enriched a novel isolate (genus Sulfurospirillum, Campylobacteria) from shallow-water HTVs of Kueishan Island. Genomic and physiological analysis revealed that this novel Campylobacteria species grows on a variety of substrate and carbon/energy sources. The pan-genome and phenotypic comparisons with 12 previously isolated Sulfurospirillum species from different environments supported the identification of functional features in Sulfurospirillum genomes crucial for adaptation to vent environments, such as sulfur oxidation, carbon fixation, biofilm formation, and benzoate/toluene degradation, as well as diverse genes related with signal transportation. To conclude, the metabolic characteristics of this novel Campylobacteria augment our understanding of Campylobacteria spanning from deep-sea to shallow-water vent systems.IMPORTANCECampylobacteria emerge as the dominant and ubiquitous taxa within vent systems, playing important roles in the vent ecosystems. However, isolated representatives of Campylobacteria have been mainly from the deep-sea hydrothermal fields, leaving a significant knowledge gap regarding the functions, activities, and adaptation strategies of the vent microorganisms in shallow-water hydrothermal vents (HTVs). This study bridges this gap by providing insights into the phenomics and genomic diversity of genus Sulfurospirillum (order Campylobacterales, class Campylobacteria) based on data derived from a novel isolate obtained from shallow-water HTVs. Our mesophilic isolate of Sulfurospirillum not only augments the genus diversity of Campylobacteria pure cultures derived from vent systems but also serves as the inaugural reference isolate for Campylobacteria in shallow-water environments.


Asunto(s)
Epsilonproteobacteria , Hidrógeno , Respiraderos Hidrotermales , Oxidación-Reducción , Respiraderos Hidrotermales/microbiología , Hidrógeno/metabolismo , Epsilonproteobacteria/genética , Epsilonproteobacteria/aislamiento & purificación , Epsilonproteobacteria/metabolismo , Epsilonproteobacteria/clasificación , Genoma Bacteriano/genética , Filogenia , Adaptación Fisiológica , Crecimiento Quimioautotrófico
3.
PeerJ ; 12: e17724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175749

RESUMEN

Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.


Asunto(s)
Sedimentos Geológicos , Respiraderos Hidrotermales , Respiraderos Hidrotermales/microbiología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , ARN Ribosómico 16S/genética , Biodiversidad , Agua de Mar/microbiología , Agua de Mar/química , California , Bacterias/genética , Bacterias/clasificación
4.
Mar Environ Res ; 200: 106653, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094430

RESUMEN

Along the northern Mid-Atlantic Ridge (nMAR), in habitats under moderate (<10 °C) hydrothermal influence on the Snake Pit vent field (SP), large assemblages dominated by Bathymodiolin mussels remain poorly characterised, contrary to those in warmer habitats dominated by gastropods and alvinocaridid shrimps that were recently described. In this study, we assessed and compared the population structure, biomass, diversity and trophic interactions of two Bathymodiolus puteoserpentis assemblages and their associated fauna at SP. Three sampling units distanced by 30 cm were sampled in 2014 during the BICOSE cruise at the top of the Moose site (''Elan'' site), while few meters further down three others, distanced by ∼1 m were obtained in 2018 during the BICOSE 2 cruise at the edifice's base. We observed a micro-scale heterogeneity between these six sampling units partially explained by temperature variations, proximity to hydrothermal fluids and position on the edifice. Meiofauna dominate or co-dominate most of the sampling units, with higher densities at the base of the edifice. In terms of macrofauna, high abundance of Pseudorimula midatlantica gastropods was observed at the top of the vent edifice, while numerous Ophioctenella acies ophiuroids were found at the base. Contrary to what was expected, the apparent health and abundance of mussels seems to indicate a current climax stage of the community. However, the modification of B. puteoserpentis isotopic signatures, low number of juveniles decreasing over the two years and observations made during several French cruises in the study area raise questions about the fate of the B. puteoserpentis population over time, which remains to be verified in a future sampling campaign.


Asunto(s)
Ecosistema , Respiraderos Hidrotermales , Animales , Océano Atlántico , Biodiversidad , Bivalvos/fisiología , Ecología , Biomasa , Monitoreo del Ambiente , Mytilidae/fisiología
5.
Sci Total Environ ; 950: 175358, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127215

RESUMEN

Deep-sea hydrothermal vents are characterized by high hydrostatic pressure, hypoxia, darkness and toxic substances. However, how organisms adapt to such extreme marine ecosystems remain poorly understood. We hypothesize that adaptive evolution plays an essential role in generating novelty for evolutionary adaptation to the deep-sea environment because adaptive evolution has been found to be critical for species origin and evolution. In this project, the chromosome-level genome of the deep-sea hydrothermal vent gastropod T. jamsteci was constructed for the first time to examine molecular mechanisms of its adaptation to the deep-sea environment. The genome size was large (2.54 Gb), ranking at the top of all species in the Vetigastropoda subclass, driven primarily by the bursts of transposable elements (TEs). The transposition of TEs may also trigger chromosomal changes including both inter-chromosomal fusions and intra-chromosomal activities involving chromosome inversions, rearrangements and fusions, as revealed by comparing the genomes of T. jamsteci and its closely related shallow-sea species Gibbula magus. Innovative changes including the expansion of the ABC transporter gene family that may facilitate detoxification, duplication of genes related to endocytosis, immunity, apoptosis, and anti-apoptotic domains that may help T. jamsteci fight against microbial pathogens, were identified. Furthermore, comparative analysis identified positive selection signals in a large number of genes including the hypoxia up-regulated protein 1, which is a chaperone that may promote adaptation of the T. jamsteci to hypoxic deepsea environments, hox2, Rx2, Pax6 and cilia-related genes BBS1, BBS2, BBS9 and RFX4. Notably, because of the critical importance of cilia and IFT in development, positive selection in cilia-related genes may play a critical role in facilitating T. jamsteci to adapt to the high-pressure deep-sea ecosystem. Results from this study thus revealed important molecular clues that may facilitate further research on the adaptation of molluscs to deep-sea hydrothermal vents.


Asunto(s)
Gastrópodos , Animales , Gastrópodos/genética , Gastrópodos/fisiología , Respiraderos Hidrotermales , Cilios , Adaptación Fisiológica/genética , Selección Genética
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163484

RESUMEN

Hydrothermal vent systems release reduced chemical compounds that act as an important energy source in the deep sea. Chemolithoautotrophic microbes inhabiting hydrothermal plumes oxidize these compounds, in particular, hydrogen and reduced sulfur, to obtain the energy required for CO2 fixation. Here, we analysed the planktonic communities of four hydrothermal systems located along the Mid-Atlantic Ridge: Irinovskoe, Semenov-2, Logatchev-1, and Ashadze-2, by combining long-read 16S rRNA gene analysis, fluorescence in situ hybridization, meta-omics, and thermodynamic calculations. Sulfurimonas and SUP05 dominated the microbial communities in these hydrothermal plumes. Investigation of Sulfurimonas and SUP05 MAGs, and their gene transcription in plumes indicated a niche partitioning driven by hydrogen and sulfur. In addition to sulfur and hydrogen oxidation, a novel SAR202 clade inhabiting the plume, here referred to as genus Carboxydicoccus, harbours the capability for CO oxidation and CO2 fixation via reverse TCA cycle. Both pathways were also highly transcribed in other hydrogen-rich plumes, including the Von Damm vent field. Carboxydicoccus profundi reached up to 4% relative abundance (1.0 x 103 cell ml- 1) in Irinovskoe non-buoyant plume and was also abundant in non-hydrothermally influenced deep-sea metagenomes (up to 5 RPKM). Therefore, CO, which is probably not sourced from the hydrothermal fluids (1.9-5.8 µM), but rather from biological activities within the rising fluid, may serve as a significant energy source in hydrothermal plumes. Taken together, this study sheds light on the chemolithoautotrophic potential of the bacterial community in Mid-Atlantic Ridge plumes.


Asunto(s)
Bacterias , Crecimiento Quimioautotrófico , Respiraderos Hidrotermales , ARN Ribosómico 16S , Agua de Mar , Respiraderos Hidrotermales/microbiología , Océano Atlántico , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Microbiota , Hidrógeno/metabolismo , Filogenia , Azufre/metabolismo , Oxidación-Reducción , Hibridación Fluorescente in Situ , Dióxido de Carbono/metabolismo
7.
Enzyme Microb Technol ; 180: 110486, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038418

RESUMEN

Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.


Asunto(s)
Alginatos , Estabilidad de Enzimas , Respiraderos Hidrotermales , Polisacárido Liasas , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Polisacárido Liasas/química , Alginatos/metabolismo , Respiraderos Hidrotermales/microbiología , Biblioteca de Genes , Metagenómica , Especificidad por Sustrato , Metagenoma , Temperatura , Secuencia de Aminoácidos , Cinética , Concentración de Iones de Hidrógeno , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Clonación Molecular
8.
Environ Pollut ; 360: 124599, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053797

RESUMEN

The disorderly discharge of industrial wastewater containing heavy metals has caused serious water pollution and ecological environmental risks, ultimately threatening human life and health. Biological treatment methods have obvious advantages, but the existing microorganisms exhibit issues such as poor resistance, adaptability, colonization ability, and low activity. However, a wide variety of microorganisms in deep-sea hydrothermal vent areas are tolerant to heavy metals, possessing the potential for efficient treatment of heavy metal wastewater. Based on this, the study obtained a group of deep-sea microbial communities dominated by Burkholderia-Caballeronia-Paraburkholderia through shake flask experiments from the sediments of deep-sea hydrothermal vents, which can simultaneously achieve the synchronous removal of vanadium and cadmium heavy metals through bioreduction, biosorption, and biomineralization. Through SEM-EDS, XRD, XPS, and FT-IR analyses, it was found that V(V) was reduced to V(IV) through a reduction process and subsequently precipitated. Glucose oxidation accelerated this process. Cd(II) underwent biomineralization to form precipitates such as cadmium hydroxide and cadmium carbonate. Functional groups on the microbial cell surface, such as -CH2, C=O, N-H, -COOH, phosphate groups, amino groups, and M-O moieties, participated in the bioadsorption processes of V(V) and Cd(II) heavy metals. Under optimal conditions, namely a temperature of 40 °C, pH value of 7.5, inoculation amount of 10%, salinity of 4%, COD concentration of 600 mg/L, V5+ concentration of 300 mg/L, and Cd2+ concentration of 40 mg/L, the OD600 can reach its highest at 72 h, with the removal efficiency of V5+, Cd2+, and COD in simulated vanadium smelting wastewater reaching 86.32%, 59.13%, and 61.63%, respectively. This study provides theoretical insights and practical evidence for understanding the dynamic changes in microbial community structure under heavy metal stress, as well as the resistance mechanisms of microbial treatment of industrial heavy metal wastewater.


Asunto(s)
Cadmio , Vanadio , Aguas Residuales , Contaminantes Químicos del Agua , Cadmio/metabolismo , Vanadio/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Respiraderos Hidrotermales/microbiología , Metalurgia , Metales Pesados/metabolismo
9.
Appl Environ Microbiol ; 90(8): e0029224, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012100

RESUMEN

Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE: The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.


Asunto(s)
Crecimiento Quimioautotrófico , Hidrógeno , Respiraderos Hidrotermales , Respiraderos Hidrotermales/microbiología , Hidrógeno/metabolismo , Agua de Mar/microbiología , Deltaproteobacteria/metabolismo , Deltaproteobacteria/crecimiento & desarrollo , Methanocaldococcus/metabolismo , Methanocaldococcus/crecimiento & desarrollo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Calor
10.
Extremophiles ; 28(3): 32, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023751

RESUMEN

Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 â„ƒ) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.


Asunto(s)
Metabolismo Energético , Methanocaldococcus , Methanocaldococcus/metabolismo , Termodinámica , Hidrógeno/metabolismo , Respiraderos Hidrotermales/microbiología
11.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39007295

RESUMEN

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Asunto(s)
Genoma Bacteriano , Respiraderos Hidrotermales , Filogenia , Vibrio , Vibrio/genética , Respiraderos Hidrotermales/microbiología , Evolución Molecular , Adaptación Fisiológica/genética , Océano Pacífico
12.
Biol Lett ; 20(7): 20230573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39079676

RESUMEN

Chemosynthesis-based ecosystems such as hydrothermal vents and hydrocarbon seeps harbour various endemic species, each uniquely adapted to the extreme conditions. While some species rely on obligatory relationships with bacterial symbionts for nutrient uptake, scavengers and predators also play important roles in food web dynamics in these ecosystems. Acoels, members of the phylum Xenacoelomorpha, are simple, worm-like invertebrates found in marine environments worldwide but are scarcely understood taxa. This study presents a novel genus and species of acoel from a deep-sea hydrocarbon seep off Hatsushima, Japan, Hoftherma hatsushimaensis gen. et sp. nov. Our multi-locus phylogenetic analysis revealed that the acoels are nested within Hofsteniidae, a family previously known exclusively from shallow waters. This finding suggests that at least two independent colonization events occurred in the chemosynthesis-based environments from the phylum Xenoacoelomorpha, represented by hofsteniid acoels and Xenoturbella. Previous reports of hofsteniid species from low-oxygen and sulfide-rich environments, including intertidal habitats with decomposing leaves, in addition to H. hatsushimaensis gen. et sp. nov. from a deep-sea hydrocarbon seep, imply a common ancestral adaptation to sulfide-rich ecosystems within Hofsteniidae. Moreover, the sister relationship between solenofilomorphid acoels predominating in sulfide-rich habitats indicates common ancestral adaptation to sulfide-rich ecosystems between these two families.


Asunto(s)
Ecosistema , Invertebrados , Filogenia , Animales , Japón , Invertebrados/clasificación , Respiraderos Hidrotermales/microbiología
13.
Antonie Van Leeuwenhoek ; 117(1): 93, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954062

RESUMEN

A Gram-negative, rod-shaped, non-motile, aerobic bacterium, designated as strain TK19101T, was isolated from the intermediate seawater of yellow vent in the shallow-sea hydrothermal system located near Kueishantao Island. The strain was found to grow at 10-40 °C (optimum, 35 °C), at pH 6.0-8.0 (optimum, 7.0), and in 0-5% (w/v) NaCl (optimum, 1%). Strain TK19101T was catalase-positive and oxidase-positive. The predominant fatty acids (> 10%) in strain TK19101T cells were C16:0, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), and C18:0. The predominant isoprenoid quinone of strain TK19101T was ubiquinone-10. The polar lipids of strain TK19101T comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and unknown polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TK19101T belonged to the genus Mesobacterium. Strain TK19101T exhibited highest 16S rRNA gene sequence similarity value to Mesobacterium pallidum MCCC M24557T (97.48%). The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain TK19101T and the closest related species Mesobacterium pallidum MCCC M24557T were 74.88% and 20.30%, respectively. The DNA G + C content was 63.49 mol%. On the basis of the analysis of 16S rRNA gene sequences, genotypic and phylogenetic data, strain TK19101T has a unique phylogenetic status and represents a novel species of genus Mesobacterium, for which the name Mesobacterium hydrothermale sp. nov. is proposed. The type strain is TK19101T (= MCCC 1K08936T = KCTC 8354T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Respiraderos Hidrotermales , Filogenia , ARN Ribosómico 16S , Agua de Mar , ARN Ribosómico 16S/genética , Respiraderos Hidrotermales/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Islas , Fosfolípidos/análisis , Análisis de Secuencia de ADN , China
14.
Mar Environ Res ; 200: 106649, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059122

RESUMEN

The discovery of inactive hydrothermal vent sulfide features near 9°50'N on the East Pacific Rise provides an opportunity to investigate the distribution and feeding ecology of communities inhabiting this type of habitat. We quantify megafaunal distributions on two features, Lucky's Mound and Sentry Spire, to determine how taxonomic composition and feeding traits vary with vertical elevation. Fifty-one morphotypes, categorized by feeding mode, were identified from three levels of the features (spire, apron, and base) and the surrounding flat oceanic rise. About half of the morphotypes (26 of 51) were only observed at the sulfide features. Passive suspension feeders were more abundant on the spires, where horizontal particulate flux is expected to be elevated, than the base or rise. Deposit feeders tended to be more abundant on the base and rise, where deposition is expected to be enhanced, but were unexpectedly abundant higher up on Sentry Spire. Community differences between the two sulfide features suggest that other processes, such as feature-specific chemoautotrophic production, may also influence distributions.


Asunto(s)
Respiraderos Hidrotermales , Sulfuros , Animales , Sulfuros/análisis , Conducta Alimentaria , Ecosistema , Océano Pacífico , Biodiversidad , Organismos Acuáticos/fisiología
15.
Mar Pollut Bull ; 205: 116547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875965

RESUMEN

The shallow hydrothermal vents (HVs) of Kueishan Island are considered as a template for studying the extremes of sulfide-polluted and acidified water. The present study examined the biological and spatiotemporal aspects of mesozooplankton mortality in waters around this extreme HV environment. Zooplankton sample collection was carried out in three monsoonal periods and the results revealed that there was a significant decrease in the mortality of total mesozooplankton with increasing distance from the HVs. The overall mortality of mesozooplankton showed a significant negative correlation with sea surface temperature and pH. Particularly, mortality of copepods showed a significant negative correlation with pH, whereas it was significantly positive correlated with sea surface temperature in the southwest monsoon prevailing period. Overall, the results may imply a situation that zooplankton will encounter in the more acidified environment of a future ocean.


Asunto(s)
Monitoreo del Ambiente , Respiraderos Hidrotermales , Océanos y Mares , Agua de Mar , Zooplancton , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Copépodos , Temperatura , Estaciones del Año
16.
Microbes Environ ; 39(5)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38839370

RESUMEN

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Asunto(s)
Bacterias , Respiraderos Hidrotermales , Hierro , Consorcios Microbianos , ARN Ribosómico 16S , Agua de Mar , Corrosión , Hierro/metabolismo , Hierro/química , Agua de Mar/microbiología , Agua de Mar/química , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Respiraderos Hidrotermales/microbiología , Filogenia
17.
Nat Microbiol ; 9(6): 1526-1539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839975

RESUMEN

Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.


Asunto(s)
Ciclo del Carbono , Respiraderos Hidrotermales , Poliquetos , Simbiosis , Respiraderos Hidrotermales/microbiología , Animales , Poliquetos/metabolismo , Oxidación-Reducción , Ciclo del Ácido Cítrico , Sulfuros/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrogenasas/metabolismo , Hidrogenasas/genética , Crecimiento Quimioautotrófico , Perfilación de la Expresión Génica , Nitratos/metabolismo , Fotosíntesis , Bacterias/metabolismo , Bacterias/genética
18.
Mar Genomics ; 75: 101106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735671

RESUMEN

Pseudoalteromonas sp. CuT4-3, a copper resistant bacterium, was isolated from deep-sea hydrothermal sulfides on the Southwest Indian Ridge (SWIR), is an aerobic, mesophilic and rod-shaped bacterium belonging to the family Pseudoalteromonadaceae (class Gammaproteobacteria, order Alteromonadales). In this study, we present the complete genome sequence of strain CuT4-3, which consists of a single circular chromosome comprising 3,660,538 nucleotides with 41.05% G + C content and two circular plasmids comprising 792,064 nucleotides with 40.36% G + C content and 65,436 nucleotides with 41.50% G + C content. In total, 4078 protein coding genes, 105 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain CuT4-3 identified numerous genes related to heavy metal resistance (especially copper) and EPS production. The genome of strain CuT4-3 will be helpful for further understanding of its adaptive strategies, particularly its ability to resist heavy metal, in the deep-sea hydrothermal vent environment.


Asunto(s)
Cobre , Respiraderos Hidrotermales , Pseudoalteromonas , Cobre/metabolismo , Cobre/toxicidad , Genoma Bacteriano , Respiraderos Hidrotermales/microbiología , Pseudoalteromonas/genética , Secuenciación Completa del Genoma
19.
J Evol Biol ; 37(7): 779-794, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38699972

RESUMEN

Molluscs have undergone many transitions between separate sexes and hermaphroditism, which is of interest in studying the evolution of sex determination and differentiation. Here, we combined multi-locus genotypes obtained from restriction site-associated DNA (RAD) sequencing with anatomical observations of the gonads of three deep-sea hydrothermal vent gastropods of the genus Alviniconcha living in the southwest Pacific. We found that all three species (Alviniconcha boucheti, Alviniconcha strummeri, and Alviniconcha kojimai) share the same male-heterogametic XY sex-determination system but that the gonads of XX A. kojimai individuals are invaded by a variable proportion of male reproductive tissue. The identification of Y-specific RAD loci (found only in A. boucheti) and the phylogenetic analysis of three sex-linked loci shared by all species suggested that X-Y recombination has evolved differently within each species. This situation of three species showing variation in gonadal development around a common sex-determination system provides new insights into the reproductive mode of poorly known deep-sea species and opens up an opportunity to study the evolution of recombination suppression on sex chromosomes and its association with mixed or transitory sexual systems.


Asunto(s)
Gastrópodos , Respiraderos Hidrotermales , Filogenia , Procesos de Determinación del Sexo , Animales , Masculino , Gastrópodos/genética , Gastrópodos/anatomía & histología , Gastrópodos/clasificación , Femenino , Trastornos del Desarrollo Sexual/genética , Gónadas/anatomía & histología , Gónadas/crecimiento & desarrollo
20.
mSystems ; 9(6): e0113523, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38747602

RESUMEN

Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.


Asunto(s)
Oxidación-Reducción , Sulfuros , Simbiosis , Animales , Adaptación Fisiológica/genética , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Respiraderos Hidrotermales/microbiología , Familia de Multigenes , Filogenia , Sulfuros/metabolismo , Azufre/metabolismo , Simbiosis/genética , Bivalvos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA