Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.319
1.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731557

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Antioxidants , Phenols , Plant Extracts , Solvents , Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology , Molecular Dynamics Simulation , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification
2.
Food Res Int ; 186: 114328, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729714

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
3.
Food Res Int ; 187: 114426, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763676

Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.


Antioxidants , Biological Availability , Digestion , Germination , Lupinus , Lupinus/metabolism , Lupinus/chemistry , Antioxidants/metabolism , Germination/drug effects , Mice , RAW 264.7 Cells , Animals , Polyphenols/metabolism , Flavonoids/analysis , Flavonoids/metabolism , gamma-Aminobutyric Acid/metabolism , Reactive Oxygen Species/metabolism , Hydroxybenzoates/metabolism , Hydroxybenzoates/analysis , Gastrointestinal Tract/metabolism
4.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727835

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Biodegradation, Environmental , Phthalic Acids , Sphingomonadaceae , Phthalic Acids/metabolism , Sphingomonadaceae/metabolism , Sphingomonadaceae/genetics , Dibutyl Phthalate/metabolism , Plasticizers/metabolism , Chromatography, High Pressure Liquid , Hydroxybenzoates/metabolism
5.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713216

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Antioxidants , Biflavonoids , Phenols , Plant Extracts , Schisandra , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid , Schisandra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Catechin/chemistry , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Bioreactors
6.
J Agric Food Chem ; 72(20): 11549-11560, 2024 May 22.
Article En | MEDLINE | ID: mdl-38718199

Corinthian currants are dried fruits produced from Vitis vinifera L. var. Apyrena grape. This study investigated the distribution of phenolic compounds in male Wistar rat livers following two distinct Corinthian currant long-term dietary intake protocols (3 and 10% w/w). Method optimization, comparing fresh and lyophilized tissues, achieved satisfactory recoveries (>70%) for most analytes. Enzymatic hydrolysis conditions (37 °C, pH 5.0) minimally affected phenolics, but enzyme addition showed diverse effects. Hydrolyzed lyophilized liver tissue from rats consuming Corinthian currants (3 and 10% w/w) exhibited elevated levels of isorhamnetin (20.62 ± 2.27 ng/g tissue and 33.80 ± 1.38 ng/g tissue, respectively), along with similar effects for kaempferol, quercetin, and chrysin after prolonged Corinthian currant intake. This suggests their presence as phase II metabolites in the fasting-state liver. This study is the first to explore phenolic accumulation in rat liver, simulating real conditions of dried fruit consumption, as seen herein with Corinthian currant.


Flavonoids , Fruit , Liver , Rats, Wistar , Tandem Mass Spectrometry , Vitis , Animals , Flavonoids/metabolism , Flavonoids/chemistry , Male , Rats , Vitis/chemistry , Vitis/metabolism , Liver/metabolism , Liver/chemistry , Fruit/chemistry , Fruit/metabolism , Hydroxybenzoates/metabolism , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/administration & dosage , Chromatography, High Pressure Liquid
7.
Nutrients ; 16(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732594

Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder, and its complex etiology makes prevention and treatment challenging. Research on new drugs and treatment strategies is currently a focal point. Phenolic acids are widely present in plant-based diets and have demonstrated the potential to alleviate colitis due to their powerful antioxidant and anti-inflammatory properties. In this review, we provide an overview of the structures and main dietary sources of phenolic acids, encompassing benzoic acid and cinnamic acid. Additionally, we explore the potential of phenolic acids as a nutritional therapy for preventing and treating IBD. In animal and cell experiments, phenolic acids effectively alleviate IBD induced by drug exposure or genetic defects. The mechanisms include improving intestinal mucosal barrier function, reducing oxidative stress, inhibiting excessive activation of the immune response, and regulating the balance of the intestinal microbiota. Our observation points towards the need for additional basic and clinical investigations on phenolic acids and their derivatives as potential novel therapeutic agents for IBD.


Anti-Inflammatory Agents , Antioxidants , Gastrointestinal Microbiome , Hydroxybenzoates , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/drug therapy , Hydroxybenzoates/pharmacology , Animals , Antioxidants/pharmacology , Gastrointestinal Microbiome/drug effects , Anti-Inflammatory Agents/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Cinnamates/pharmacology , Cinnamates/therapeutic use , Benzoic Acid/pharmacology , Oxidative Stress/drug effects
8.
Sci Rep ; 14(1): 10159, 2024 05 03.
Article En | MEDLINE | ID: mdl-38698043

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Allelopathy , Bidens , Erigeron , Introduced Species , Soil , Soil/chemistry , Erigeron/chemistry , Egypt , Hydroxybenzoates
9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731982

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Anti-Inflammatory Agents , Antioxidants , Cornus , Plant Extracts , Skin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cornus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Skin/metabolism , Skin/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Fruit/chemistry , Animals , Chromatography, High Pressure Liquid
10.
Molecules ; 29(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38611719

Cancer is one of the leading causes of death worldwide, making the search for alternatives for its control a critical issue. In this context, exploring alternatives from natural sources, such as certain vegetables containing a variety of secondary metabolites with beneficial effects on the body and that play a crucial role in the fight against cancer, is essential. Among the compounds with the greatest efficacy in controlling this disease, those with antioxidant activity, particularly phenolic com-pounds, stand out. A remarkable example of this group is protocatechuic acid (PCA), which has been the subject of various revealing research on its activities in different areas. These studies sustain that protocatechuic acid has anti-inflammatory, antimutagenic, antidiabetic, antiulcer, antiviral, antifibrogenic, antiallergic, neuroprotective, antibacterial, anticancer, antiosteoporotic, anti-aging, and analgesic properties, in addition to offering protection against metabolic syndrome and con-tributing to the preservation of hepatic, renal, and reproductive functionality. Therefore, this paper aims to review the biological activities of PCA, focusing on its anticancer potential and its in-volvement in the control of various molecular pathways involved in tumor development, sup-porting its option as a promising alternative for cancer treatment.


Hydroxybenzoates , Neoplasms , Humans , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Neoplasms/drug therapy , Phenols
11.
Molecules ; 29(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38611834

Alongside fermentable sugars, weak acids, and furan derivatives, lignocellulosic hydrolysates contain non-negligible amounts of lignin-derived aromatic compounds. The biological funnel of lignin offers a new strategy for the "natural" production of protocatechuic acid (PCA). Herein, Pseudomonas putida KT2440 was engineered to produce PCA from lignin-derived monomers in hydrolysates by knocking out protocatechuate 3,4-dioxygenase and overexpressing vanillate-O-demethylase endogenously, while acetic acid was used for cell growth. The sugar catabolism was further blocked to prevent the loss of fermentable sugar. Using the engineered strain, a total of 253.88 mg/L of PCA was obtained with a yield of 70.85% from corncob hydrolysate 1. The highest titer of 433.72 mg/L of PCA was achieved using corncob hydrolysate 2 without any additional nutrients. This study highlights the potential ability of engineered strains to address the challenges of PCA production from lignocellulosic hydrolysate, providing novel insights into the utilization of hydrolysates.


Hydroxybenzoates , Lignin , Pseudomonas putida , Pseudomonas putida/genetics , Acetic Acid , Sugars
12.
Sci Rep ; 14(1): 8709, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622262

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Camellia , Hydroxybenzoates , Lignans , Camellia/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry , Flavonoids/analysis , Seeds/chemistry , Metabolomics/methods , Plant Extracts/chemistry , Lignans/analysis , Coumarins/analysis
13.
J Biotechnol ; 388: 59-71, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38636845

Withania somnifera (L.) Dunal is an important indigenous medicinal plant with extensive pharmaceutical potential. The root is the main source of major bioactive compounds of this plant species including withanolides, withanine, phenolic acids, etc. Hairy root culture (HRC) is a crucial method for low-cost production of active compounds on a large scale. Four different Agrobacterium rhizogenes strains have been used for the hairy root induction. Maximum transformation efficiency (87.34 ± 2.13%) was achieved with A4 bacterial strain-mediated transformed culture. The genetic transformation was confirmed by using specific primers of seven different genes. Seven HR (Hairy root) lines were selected after screening 29 HR lines based on their fast growth rate and high accumulation of withanolides and phenolic acids content. Two biotic and three abiotic elicitors were applied to the elite root line to trigger more accumulation of withanolides and phenolic acids. While all the elicitors effectively increased withanolides and phenolic acids production, among the five different elicitors, salicylic acid (4.14 mg l-1) induced 11.49 -fold increase in withanolides (89.07 ± 2.75 mg g-1 DW) and 5.34- fold increase in phenolic acids (83.69 ± 3.11 mg g- 1 DW) after 5 days of elicitation compared to the non-elicited culture (7.75 ± 0.63 mg g-1 DW of withanolides and 15.66 ± 0.92 mg g-1 DW of phenolic acids). These results suggest that elicitors can tremendously increase the biosynthesis of active compounds in this system; thus, the HRC of W. somnifera is cost-effective and can be efficiently used for the industrial production of withanolides and phenolic acids.


Agrobacterium , Hydroxybenzoates , Plant Roots , Withania , Withanolides , Withania/metabolism , Withania/genetics , Withania/growth & development , Hydroxybenzoates/metabolism , Withanolides/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Agrobacterium/genetics , Agrobacterium/metabolism , Transformation, Genetic
14.
Food Funct ; 15(10): 5439-5449, 2024 May 20.
Article En | MEDLINE | ID: mdl-38650575

Barley, rich in bioactive components including dietary fiber, polyphenolic compounds and functional proteins, exhibits health benefits such as regulating glucose and lipid metabolism. Previous studies have found that the content and composition of free phenolic acids in barley may be significantly changed by fermentation with the laboratory patented strain Lactobacillus plantarum dy-1 (L. p dy-1), but the mechanism of enzymatic release of phenolic acid remains to be elucidated. Based on this, this study aimed to identify the key enzyme in L. p dy-1 responsible for releasing the bound phenolic acid and to further analyze its enzymatic properties. The Carbohydrate-Active enZYmes database revealed that L. p dy-1 encodes 7 types of auxiliary enzymes, among which we have identified a membrane sulfatase. The enzyme gene LPMS05445 was heterologous to that expressed in E. coli, and a recombinant strain was induced to produce the target protein and purified. The molecular weight of the purified enzyme was about 59.9 kDa, with 578.21 U mg-1 enzyme activity. The optimal temperature and pH for LPMS05445 expression were 40 °C and 7.0, respectively. Furthermore, enzymatic hydrolysis by LPMS05445 can obviously change the surface microstructure of dietary fiber from barley bran and enhance the release of bound phenolic acid, thereby increasing the free phenolic acid content and improving its physiological function. In conclusion, sulfatase produced by Lactobacillus plantarum dy-1 plays a key role in releasing bound phenolic acids during the fermentation of barley.


Lactobacillus plantarum , Sulfatases , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/genetics , Sulfatases/metabolism , Sulfatases/genetics , Sulfatases/chemistry , Hordeum , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Fermentation , Hydroxybenzoates/metabolism , Hydrogen-Ion Concentration , Escherichia coli/genetics , Temperature , Dietary Fiber/metabolism
15.
Ecotoxicol Environ Saf ; 276: 116329, 2024 May.
Article En | MEDLINE | ID: mdl-38626604

Due to continuous plantation of poplar, its growth and biomass accumulation may be negatively affected by the accumulation of allelochemicals such as para-hydroxybenzoic acid (pHBA) in soil. As photosynthesis is the most fundamental process in plants, it can be negatively impacted by pHBA stress. Therefore, it is crucial to improve photosynthetic capacity under pHBA stress to facilitate poplar plant growth. The mitogen-activated protein kinase (MAPK) cascade pathway is widely involved in environmental stress responses in plants. However, the regulation mechanisms of photosynthesis-related pathways by MAPK pathway genes under pHBA stress are still unclear. In this study, through transcriptome analysis and weighted gene co-expression network analysis, we observed that PeMPK7 overexpression in poplar can regulate the expression of photosynthesis-related genes and transcription factor genes, namely, WRKY1, WRKY33, and ERF3, during the early stage of pHBA stress. In addition, PeMPK7 can improve photosynthesis in poplar under long-term pHBA stress. Moreover, yeast two-hybrid and pull-down assays confirmed the interaction between PeMPK7 and PeMKK7/10. Based on these results, a schematic diagram of the pathways involved in the regulation of photosynthesis by PeMPK7 was constructed. This study provided novel insights into the molecular mechanisms of regulation of pHBA stress via MAPK cascade pathway.


Gene Expression Regulation, Plant , Parabens , Photosynthesis , Populus , Populus/genetics , Populus/drug effects , Populus/physiology , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Hydroxybenzoates , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Soil Pollutants/toxicity
16.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664755

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Antioxidants , Endometriosis , Granulosa Cells , NF-E2-Related Factor 2 , Oxidative Stress , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Female , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Endometriosis/metabolism , Endometriosis/drug therapy , Endometriosis/pathology , Hydroxybenzoates/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Membrane Potential, Mitochondrial/drug effects
17.
Meat Sci ; 213: 109519, 2024 Jul.
Article En | MEDLINE | ID: mdl-38663116

Lipid oxidation is the principal driver of meat and meat product deterioration during shelf life, causing the loss of fresh meat color, flavor, and aroma. Currently, synthetic antioxidants are used to prevent oxidation, but increasing consumer demand for natural ones leaves the industry with few alternatives. In this study, protocatechuic acid (PCA), known to have high antioxidant activity, was evaluated as a potential inhibitor of meat lipid oxidation. For this purpose, the antioxidant capacity and lipoxygenase (LOX) inhibitory activity of PCA were evaluated in vitro, and a set of four experiments was conducted, treating minced meat with water (control), lactic acid (LA), rosmarinic acid (RA) and PCA, at different concentrations (1-12 mg mL-1), depending on the experiment. The potential antioxidant effect of PCA when applied to meat cubes was also evaluated, as well as the potential of carboxymethyl cellulose (CMC) as a delivery system for PCA. The in vitro results showed that PCA is a potent antioxidant and an effective LOX inhibitor at 1 mg mL-1. PCA effect on meat lipid oxidation prevention was dose-dependent, and at 2 mg mL-1, it inhibited color change by 50% and lipid peroxidation by up to 70% when compared to water-treated samples, performing better than RA at 0.25 mg mL-1. These results suggest that PCA is a promising molecule to the meat industry as a natural preservative for meat and meat products directly or in a formulation.


Antioxidants , Hydroxybenzoates , Lipid Peroxidation , Hydroxybenzoates/pharmacology , Animals , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Swine , Lipoxygenase Inhibitors/pharmacology , Color , Meat Products/analysis , Red Meat/analysis , Oxidation-Reduction
18.
Int J Biol Macromol ; 267(Pt 1): 131443, 2024 May.
Article En | MEDLINE | ID: mdl-38588837

Facial masks have become ubiquitous in our daily life to endow skin enough moisture and activated nutrition through mask nonwovens infused with skincare ingredients. However, the active nutrients in wet masks are prone to deterioration and deactivation. Herein, a novel multifunctional nanofiber dry mask was successfully prepared using aqueous-electrospun phenolic acid grafted chitosan/collagen peptides. When used, the functional nanofibers in the mask dissolve through spraying moisture, activating active ingredients in response to water and providing in-situ free radical scavenging, moisturizing and antibacterial effects to the skin. In this work, a series of gallic acid (GA), caffeic acid (CA), and protocatechuic acid (PA) have been studied to be grafted with chitosan to improve water solubility of chitosan (CS). Also, through aqueous electrospinning of phenolic acid-grafted chitosan/collagen peptides, a one-step green multifunctional nanofiber mask was obtained. The results showed that the mask had a 12.14 % moisturizing rate and a 94.09 % activity for removing free radicals from the skin after encountering moisture. Considering its high efficiency, controllable function release, and easy processability, the nanofiber multifunctional mask may provide a competitive alternative to facial masks and promote potential value-added applications of bio-based macro-molecules.


Chitosan , Collagen , Hydroxybenzoates , Nanofibers , Chitosan/chemistry , Hydroxybenzoates/chemistry , Collagen/chemistry , Nanofibers/chemistry , Peptides/chemistry , Water/chemistry , Skin/drug effects , Solubility , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
19.
Arch Microbiol ; 206(5): 239, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689148

Camellia sinensis is an important economic plant grown in southern subtropical hilly areas, especially in China, mainly for the production of tea. Soil acidification is a significant cause of the reduction of yield and quality and continuous cropping obstacles in tea plants. Therefore, chemical and microbial properties of tea growing soils were investigated and phenolic acid-degrading bacteria were isolated from a tea plantation. Chemical and ICP-AES investigations showed that the soils tested were acidic, with pH values of 4.05-5.08, and the pH negatively correlated with K (p < 0.01), Al (p < 0.05), Fe and P. Aluminum was the highest (47-584 mg/kg) nonessential element. Based on high-throughput sequencing, a total of 34 phyla and 583 genera were identified in tea plantation soils. Proteobacteria and Acidobacteria were the main dominant phyla and the highest abundance of Acidobacteria was found in three soils, with nearly 22% for the genus Gp2. Based on the functional abundance values, general function predicts the highest abundance, while the abundance of amino acids and carbon transport and metabolism were higher in soils with pH less than 5. According to Biolog Eco Plate™ assay, the soil microorganisms utilized amino acids well, followed by polymers and phenolic acids. Three strains with good phenolic acid degradation rates were obtained, and they were identified as Bacillus thuringiensis B1, Bacillus amyloliquefaciens B2 and Bacillus subtilis B3, respectively. The three strains significantly relieved the inhibition of peanut germination and growth by ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, cinnamic acid, and mixed acids. Combination of the three isolates showed reduced relief of the four phenolic acids due to the antagonist of B2 against B1 and B3. The three phenolic acid degradation strains isolated from acidic soils display potential in improving the acidification and imbalance in soils of C. sinensis.


Camellia sinensis , Hydroxybenzoates , Soil Microbiology , Soil , Hydroxybenzoates/metabolism , Soil/chemistry , Hydrogen-Ion Concentration , Camellia sinensis/microbiology , Camellia sinensis/metabolism , China , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Tea/microbiology , Tea/chemistry , Acidobacteria/metabolism , Acidobacteria/genetics , Acidobacteria/isolation & purification
20.
Molecules ; 29(7)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38611718

The purpose of this study was to determine the content of certain phenolic compounds, antioxidant activity, pressing efficiency, extract content, and sugars in celeriac juices obtained from the pulp after α-amylase treatment from Aspergillus oryzae. The test material consisted of peeled and unpeeled celery pulp kept at a temperature of 25 °C with and without the enzyme for a period of 30 and 60 min. The juices obtained from them were analyzed for the content of selected phenolic acids and flavonoids using the UPLC-PDA-ESI-MS/MS method, for antioxidant activity measured using the ABTS˙+ and DPPH˙ method, and for the total polyphenol content using the F-C method. Additionally, the juice pressing efficiency, the extract content using the refractometer method, and the sugar content using the HPLC method were checked. Significantly higher antioxidant activity, pressing yield, and average content of caffeic acid glucoside, quinic acid, kaempferol-3,7-di-O-glucoside, and chrysoeriol-7-O-apiosylglucoside were obtained in juices from peeled celery. Maceration of the pulp with amylase resulted in a significant reduction in antioxidant activity compared to control samples. An is-total increase of 17-41% in total flavonoid content was observed in all juices tested after treatment with the enzyme for 30 and 60 min, and the phenolic acid content increased by 4-41% after treatment of the pulp with amylase for 60 min. The 60 min holding of the pulp at 25 °C, including with the enzyme, was shown to decrease the antioxidant activity and the content of quinic acid, ferulic acid, and chrysoriol-7-O-apiose-glucoside in the juices tested compared to the samples held for 30 min, while the content of other phenolic acids and flavonoids increased. In addition, after 60 min of enzymatic maceration, the pressing yield of the juices increased.


Apium , Aspergillus oryzae , Hydroxybenzoates , alpha-Amylases , Antioxidants/pharmacology , Quinic Acid , Tandem Mass Spectrometry , Vegetables , Phenols , Amylases , Flavonoids , Glucosides , Plant Extracts/pharmacology
...