Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 741
1.
Am J Physiol Endocrinol Metab ; 326(1): E92-E105, 2024 01 01.
Article En | MEDLINE | ID: mdl-38019082

Zinc is an essential component of the insulin protein complex synthesized in ß cells. The intracellular compartmentalization and distribution of zinc are controlled by 24 transmembrane zinc transporters belonging to the ZnT or Zrt/Irt-like protein (ZIP) family. Downregulation of SLC39A14/ZIP14 has been reported in pancreatic islets of patients with type 2 diabetes (T2D) as well as mouse models of high-fat diet (HFD)- or db/db-induced obesity. Our previous studies observed mild hyperinsulinemia in mice with whole body knockout of Slc39a14 (Zip14 KO). Based on our current secondary data analysis from an integrative single-cell RNA-seq dataset of human whole pancreatic tissue, SLC39A14 (coding ZIP14) is the only other zinc transporter expressed abundantly in human ß cells besides well-known zinc transporter SLC30A8 (coding ZnT8). In the present work, using pancreatic ß cell-specific knockout of Slc39a14 (ß-Zip14 KO), we investigated the role of SLC39A14/ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses. Glucose-stimulated insulin secretion, zinc concentrations, and cellular localization of ZIP14 were assessed using in vivo, ex vivo, and in vitro assays using ß-Zip14 KO, isolated islets, and murine cell line MIN6. Metabolic evaluations were done on both chow- and HFD-fed mice using time-domain nuclear magnetic resonance and a comprehensive laboratory animal monitoring system. ZIP14 localizes on the endoplasmic reticulum regulating intracellular zinc trafficking in ß cells and serves as a negative regulator of glucose-stimulated insulin secretion. Deletion of Zip14 resulted in greater glucose-stimulated insulin secretion, increased energy expenditure, and shifted energy metabolism toward fatty acid utilization. HFD caused ß-Zip14 KO mice to develop greater islet hyperplasia, compensatory hyperinsulinemia, and mild insulin resistance and hyperglycemia. This study provided new insights into the contribution of metal transporter ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses.NEW & NOTEWORTHY Metal transporter SLC39A14/ZIP14 is downregulated in pancreatic islets of patients with T2D and mouse models of HFD- or db/db-induced obesity. However, the function of ZIP14-mediated intracellular zinc trafficking in ß cells is unknown. Our analyses revealed that SLC39A14 is the only Zn transporter expressed abundantly in human ß cells besides SLC30A8. Within the ß cells, ZIP14 is localized on the endoplasmic reticulum and serves as a negative regulator of insulin secretion, providing a potential therapeutic target for T2D.


Cation Transport Proteins , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin-Secreting Cells , Humans , Mice , Animals , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Glucose/metabolism , Insulin/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Obesity/genetics , Obesity/metabolism , Zinc/metabolism , Mice, Knockout
2.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-37916956

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Breast Neoplasms , Hyperinsulinism , Humans , Female , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Cryoelectron Microscopy , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Hyperinsulinism/drug therapy , Hyperinsulinism/genetics , DNA
3.
Clin Obes ; 13(6): e12619, 2023 Dec.
Article En | MEDLINE | ID: mdl-37717597

Insulin receptor gene (INSR) mutations are a relatively rare and diverse cause of insulin resistance (IR), typically associated with a lean phenotype. However, we present a unique case of severe obesity and Type A severe IR syndrome in a patient with a heterozygous mutation of the INSR gene. Next Generation Sequencing (NGS) analysis was conducted to identify the genetic variant. A 16-year-old girl with severe obesity (BMI-SDS +2.79) exhibited markedly elevated basal insulin levels (>800 mcU/L). Despite obesity being a known cause of hyperinsulinism, further investigation was pursued due to the severity of hyperinsulinaemia. A heterozygous nucleotide variant at the donor splicing site of intron 13 (c.2682 + 1G > A) of the INSR gene was identified. This mutation was also present in the proband's normal-weight mother and her two younger brothers with obesity. Metformin treatment provided limited benefits, but subsequent liraglutide therapy resulted in weight loss and decreased IR 3 months after initiation. Our findings suggest that obesity can exacerbate hyperinsulinaemia in individuals with an INSR gene mutation. Although INSR signalling defects play a minor role in the aetiology of IR, they should still be considered in the diagnostic pathway, particularly in severe phenotypes. Clinicians should not overlook the possibility of genetic causes in patients with obesity and IR, as they may require personalized management approaches.


Diabetes Mellitus , Hyperinsulinism , Insulin Resistance , Obesity, Morbid , Adolescent , Female , Humans , Male , Hyperinsulinism/complications , Hyperinsulinism/genetics , Insulin Resistance/genetics , Mutation , Obesity/complications , Obesity/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
4.
Diabetes ; 72(12): 1809-1819, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37725835

The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS: Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in ß-cells and α-cells to regulate glucose homeostasis.


Congenital Hyperinsulinism , Hyperinsulinism , Child , Humans , Glucokinase/genetics , Glucagon , Congenital Hyperinsulinism/genetics , Hyperinsulinism/genetics , Glucose , Mutation , Phenotype
5.
Int J Mol Sci ; 24(14)2023 Jul 23.
Article En | MEDLINE | ID: mdl-37511575

Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.


Breast Neoplasms , Diabetes Mellitus, Type 2 , Diabetes Mellitus , Hyperglycemia , Hyperinsulinism , Humans , Female , Breast Neoplasms/genetics , Hyperglycemia/complications , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperinsulinism/complications , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Glycemic Index , Diabetes Mellitus, Type 2/pathology
6.
Endocr Regul ; 57(1): 128-137, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-37285460

Objective. Kabuki syndrome (KS) is associated with hyperinsulinemic hypoglycemia (HH) in 0.3-4% of patients, thus exceeding the prevalence in the general population. HH association is stronger for KS type 2 (KDM6A-KS, OMIM #300867) than KS type 1 (KMT2D-KS, OMIM #147920). Both the disease-associated genes, KMD6A and KMT2D, modulate the chromatin dynamic. As such, KS is considered to be the best characterized pediatric chromatinopathy. However, the exact pathogenetic mechanisms leading to HH in this syndrome remain still unclear. Methods. We selected on the electronic database PubMed all articles describing or hypothesizing the mechanisms underlying the dysregulated insulin secretion in KS. Results. The impact on the gene expression due to the KDM6A or KMT2D function loss may lead to a deregulated pancreatic ß-cell differentiation during embryogenesis. Moreover, both KMT2D gene and KDM6A gene are implicated in promoting the transcription of essential pancreatic ß-cell genes and in regulating the metabolic pathways instrumental for insulin release. Somatic KMT2D or KDM6A mutations have also been described in several tumor types, including insulinoma, and have been associated with metabolic pathways promoting pancreatic cell proliferation. Conclusions. The impact of pathogenic variants in KDM6A and KDM2D genes on ß-cell insulin release remains to be fully clarified. Understanding this phenomenon may provide valuable insight into the physiological mechanisms of insulin release and into the pathological cascade causing hyperinsulinism in KS. The identification of these molecular targets may open new therapeutic opportunities based on epigenetic modifiers.


Hyperinsulinism , Hypoglycemia , Humans , Child , Mutation , Hyperinsulinism/complications , Hyperinsulinism/genetics , Histone Demethylases/genetics , Insulin , Hypoglycemia/genetics
7.
Endocr Relat Cancer ; 30(9)2023 09 01.
Article En | MEDLINE | ID: mdl-37279235

Nesidioblastoma and nesidioblastosis were terms given to neoplastic and non-neoplastic lesions of the pancreas associated with pancreatogenous hyperinsulinaemic hypoglycaemia. While nesidioblastoma was rapidly replaced by islet cell tumour, nesidioblastosis, defined as the proliferation of islet cells budding off from pancreatic ducts, was the diagnostic term associated with congenital hyperinsulinism of infancy (CHI) and adult non-neoplastic hyperinsulinaemic hypoglycaemia (ANHH). When it was shown that nesidioblastosis was not specific for CHI or ANHH, it was no longer applied to CHI but kept for the morphological diagnosis of ANHH. In severe CHI cases, a diffuse form with hypertrophic ß-cells in all islets can be distinguished from a focal form with hyperactive ß-cells changes in a limited adenomatoid hyperplastic area. Genetically, mutations were identified in several ß-cell genes involved in insulin secretion. Most common are mutations in the ABCC8 or KCNJ11 genes, solely affected in the diffuse form and associated with a focal maternal allelic loss on 11p15.5 in the focal form. Focal CHI can be localized by 18F-DOPA-PET and is thus curable by targeted resection. Diffuse CHI that fails medical treatment requires subtotal pancreatectomy. In ANHH, an idiopathic form can be distinguished from a form associated with gastric bypass, in whom GLP1-induced stimulation of the ß-cells is discussed. While the ß-cells in idiopathic ANHH are diffusely affected and are either hypertrophic or show only little changes, it is controversial whether there is a ß-cell increase or ß-cell hyperactivity in patients with gastric bypass. Recognizing morphological signs of ß-cell hyperactivity needs a good knowledge of the non-neoplastic endocrine pancreas across all ages.


Adenoma, Islet Cell , Congenital Hyperinsulinism , Hyperinsulinism , Nesidioblastosis , Pancreatic Neoplasms , Humans , Adult , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/pathology , Nesidioblastosis/diagnosis , Nesidioblastosis/pathology , Nesidioblastosis/surgery , Hyperinsulinism/genetics , Pancreas/pathology
8.
Mol Metab ; 74: 101752, 2023 08.
Article En | MEDLINE | ID: mdl-37308077

BACKGROUND: Insulin, secreted from pancreatic islets of Langerhans, is of critical importance in regulating glucose homeostasis. Defective insulin secretion and/or the inability of tissues to respond to insulin results in insulin resistance and to several metabolic and organ alterations. We have previously demonstrated that BAG3 regulates insulin secretion. Herein we explored the consequences of beta-cells specific BAG3 deficiency in an animal model. METHODS: We generated a beta-cells specific BAG3 knockout mouse model. Glucose and insulin tolerance tests, proteomics, metabolomics, and immunohistochemical analysis were used to investigate the role of BAG3 in regulating insulin secretion and the effects of chronic exposure to excessive insulin release in vivo. RESULTS: Beta-cells specific BAG3 knockout results in primary hyperinsulinism due to excessive insulin exocytosis finally leading to insulin resistance. We demonstrate that resistance is mainly muscle-dependent while the liver remains insulin sensitive. The chronically altered metabolic condition leads in time to histopathological alterations in different organs. We observe elevated glycogen and lipid accumulation in the liver reminiscent of non-alcoholic fatty liver disease as well as mesangial matrix expansion and thickening of the glomerular basement membrane, resembling the histology of chronic kidney disease. CONCLUSION: Altogether, this study shows that BAG3 plays a role in insulin secretion and provides a model for the study of hyperinsulinemia and insulin resistance.


Hyperinsulinism , Insulin Resistance , Insulin-Secreting Cells , Mice , Animals , Insulin Resistance/genetics , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Mice, Knockout
9.
J Mol Cell Biol ; 15(5)2023 Nov 27.
Article En | MEDLINE | ID: mdl-37188647

Brain-specific serine/threonine-protein kinase 2 (BRSK2) plays critical roles in insulin secretion and ß-cell biology. However, whether BRSK2 is associated with human type 2 diabetes mellitus (T2DM) has not been determined. Here, we report that BRSK2 genetic variants are closely related to worsening glucose metabolism due to hyperinsulinemia and insulin resistance in the Chinese population. BRSK2 protein levels are significantly elevated in ß cells from T2DM patients and high-fat diet (HFD)-fed mice due to enhanced protein stability. Mice with inducible ß-cell-specific Brsk2 knockout (ßKO) exhibit normal metabolism with a high potential for insulin secretion under chow-diet conditions. Moreover, ßKO mice are protected from HFD-induced hyperinsulinemia, obesity, insulin resistance, and glucose intolerance. Conversely, gain-of-function BRSK2 in mature ß cells reversibly triggers hyperglycemia due to ß-cell hypersecretion-coupled insulin resistance. Mechanistically, BRSK2 senses lipid signals and induces basal insulin secretion in a kinase-dependent manner. The enhanced basal insulin secretion drives insulin resistance and ß-cell exhaustion and thus the onset of T2DM in mice fed an HFD or with gain-of-function BRSK2 in ß cells. These findings reveal that BRSK2 links hyperinsulinemia to systematic insulin resistance via interplay between ß cells and insulin-sensitive tissues in the populations carrying human genetic variants or under nutrient-overload conditions.


Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Insulin-Secreting Cells , Humans , Mice , Animals , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Diet, High-Fat
10.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R55-R68, 2023 07 01.
Article En | MEDLINE | ID: mdl-37212552

This study explored the role of apoE receptor-2 (apoER2), a unique member of the LDL receptor family proteins with a restricted tissue expression profile, in modulating diet-induced obesity and diabetes. Unlike wild-type mice and humans in which chronic feeding of a high-fat Western-type diet leads to obesity and the prediabetic state of hyperinsulinemia before hyperglycemia onset, the Lrp8-/- mice with global apoER2 deficiency displayed lower body weight and adiposity, slower development of hyperinsulinemia, but the accelerated onset of hyperglycemia. Despite their lower adiposity, adipose tissues in Western diet-fed Lrp8-/- mice were more inflamed compared with wild-type mice. Additional experiments revealed that the hyperglycemia observed in Western diet-fed Lrp8-/- mice was due to impaired glucose-induced insulin secretion, ultimately leading to hyperglycemia, adipocyte dysfunction, and inflammation upon chronic feeding of the Western diet. Interestingly, bone marrow-specific apoER2-deficient mice were not defective in insulin secretion, exhibiting increased adiposity and hyperinsulinemia compared with wild-type mice. Analysis of bone marrow-derived macrophages revealed that apoER2 deficiency impeded inflammation resolution with lower secretion of IFN-ß and IL-10 in response to LPS stimulation of IL-4 primed cells. The apoER2-deficient macrophages also showed an increased level of disabled-2 (Dab2) as well as increased cell surface TLR4, suggesting that apoER2 participates in Dab2 regulation of TLR4 signaling. Taken together, these results showed that apoER2 deficiency in macrophages sustains diet-induced tissue inflammation and accelerates obesity and diabetes onset while apoER2 deficiency in other cell types contributes to hyperglycemia and inflammation via defective insulin secretion.


Hyperglycemia , Hyperinsulinism , Insulin Resistance , Animals , Humans , Mice , Adipose Tissue/metabolism , Bone Marrow/metabolism , Diet , Diet, High-Fat , Hyperglycemia/metabolism , Hyperinsulinism/genetics , Inflammation/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Receptors, LDL , Toll-Like Receptor 4/metabolism
11.
J Clin Endocrinol Metab ; 108(11): e1316-e1328, 2023 10 18.
Article En | MEDLINE | ID: mdl-37216904

CONTEXT: Patients with congenital hyperinsulinism due to ABCC8 variants generally present severe hypoglycemia and those who do not respond to medical treatment typically undergo pancreatectomy. Few data exist on the natural history of non-pancreatectomized patients. OBJECTIVE: This work aims to describe the genetic characteristics and natural history in a cohort of non-pancreatectomized patients with congenital hyperinsulinism due to variants in the ABCC8 gene. METHODS: Ambispective study of patients with congenital hyperinsulinism with pathogenic or likely pathogenic variants in ABCC8 treated in the last 48 years and who were not pancreatectomized. Continuous glucose monitoring (CGM) has been periodically performed in all patients since 2003. An oral glucose tolerance test was performed if hyperglycemia was detected in the CGM. RESULTS: Eighteen non-pancreatectomized patients with ABCC8 variants were included. Seven (38.9%) patients were heterozygous, 8 (44.4%) compound heterozygous, 2 (11.1%) homozygous, and 1 patient carried 2 variants with incomplete familial segregation studies. Seventeen patients were followed up and 12 (70.6%) of them evolved to spontaneous resolution (median age 6.0 ± 4 years; range, 1-14). Five of these 12 patients (41.7%) subsequently progressed to diabetes with insufficient insulin secretion. Evolution to diabetes was more frequent in patients with biallelic variants in the ABCC8 gene. CONCLUSION: The high remission rate observed in our cohort makes conservative medical treatment a reliable strategy for the management of patients with congenital hyperinsulinism due to ABCC8 variants. In addition, a periodic follow-up of glucose metabolism after remission is recommended, as a significant proportion of patients evolved to impaired glucose tolerance or diabetes (biphasic phenotype).


Congenital Hyperinsulinism , Diabetes Mellitus , Child , Child, Preschool , Humans , Blood Glucose , Blood Glucose Self-Monitoring , Congenital Hyperinsulinism/complications , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/surgery , Diabetes Mellitus/etiology , Diabetes Mellitus/genetics , Hyperinsulinism/genetics , Mutation , Sulfonylurea Receptors/genetics , Pancreatectomy/adverse effects
12.
J Cell Physiol ; 238(5): 1046-1062, 2023 05.
Article En | MEDLINE | ID: mdl-36924049

Hyperinsulinemia is a critical risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine phosphate phospholyase (ETNPPL), a newly discovered metabolic enzyme that converts phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde, is abundantly expressed in liver tissue. Whether it plays a role in the regulation of hyperinsulinemia-induced IR in hepatocytes remains elusive. Here, we established an in vitro hyperinsulinemia-induced IR model in the HepG2 human liver cancer cell line and primary mouse hepatocyte via a high dose of insulin treatment. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without insulin stimulation. To explore the underlying mechanism of ETNPPL mediating hyperinsulinemia-induced IR in HepG2, we performed genome-wide transcriptional analysis using RNA sequencing (RNA-seq) to identify the downstream target gene of ETNPPL. The results showed that ETNPPL expression levels in both mRNA and protein were significantly upregulated in hyperinsulinemia-induced IR in HepG2 and primary mouse hepatocytes. Upon silencing ETNPPL, hyperinsulinemia-induced IR was ameliorated. Under normal conditions without IR in hepatocytes, overexpressing ETNPPL promotes IR, reactive oxygen species (ROS) generation, and AKT inactivation. Transcriptome analysis revealed that salt-inducible kinase 1 (SIK1) is markedly downregulated in the ETNPPL knockdown HepG2 cells. Moreover, disrupting SIK1 prevents ETNPPL-induced ROS accumulation, damage to the PI3K/AKT pathway and IR. Our study reveals that ETNPPL mediates hyperinsulinemia-induced IR through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocyte cells. Targeting ETNPPL may present a potential strategy for hyperinsulinemia-associated metabolic disorders such as type 2 diabetes.


Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
13.
J Lipid Res ; 64(4): 100349, 2023 04.
Article En | MEDLINE | ID: mdl-36806709

We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.


Hyperinsulinism , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Acylation , Adipocytes/metabolism , Arachidonic Acid/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Homeostasis , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin Resistance/genetics , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism
14.
J Inherit Metab Dis ; 46(4): 744-755, 2023 07.
Article En | MEDLINE | ID: mdl-36695547

Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain-of-function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease-causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice-site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic-clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.


Hyperammonemia , Hyperinsulinism , Humans , Glutamate Dehydrogenase , Guanosine Triphosphate/pharmacology , Hyperammonemia/genetics , Hyperinsulinism/genetics , Mutation , Syndrome , Mitochondrial Membrane Transport Proteins/genetics
15.
Nutr Metab Cardiovasc Dis ; 33(1): 219-226, 2023 01.
Article En | MEDLINE | ID: mdl-36411217

BACKGROUND AND AIM: Dysregulation of gene expression is associated to a higher risk of type 2 diabetes (T2D). Further, research indicates that dairy consumption may potentially affect gene expression. The aim of this study was to examine if genes and pathways associated with T2D are differentially changed in subjects with hyperinsulinemia after high dairy (HD) diet. METHODS AND RESULTS: Ten obese patients with hyperinsulinemia who consumed HD (4 servings/day according to the Canadian Food Guide (2007)) for six weeks participated in this study. Before and after HD consumption, fasting blood samples were collected. Blood was taken in PAX-gene tubes and RNA was extracted and analyzed using Clariom S microarrays. Results indicated that 236 genes (137 up-regulated and 99 down-regulated; fold change (FC) ≥ ±1.2; p < 0.05) were expressed differentially between before and after HD intake. Genes related to pathways associated with insulin signaling and inflammation, such as olfactory receptor activity, G-protein-coupled receptors (GPCR), phosphatidylinositol-3-OHKinase (PI3K)/AKT2 (PI3K-AKT2), Ras signaling, Mitogen-Activated Protein Kinase (MAPK) were altered following HD. CONCLUSION: Overall, results suggest a potential protective effect of HD intake in individuals at risk of T2D through modification of gene expression profiles. REGISTRATION NUMBER FOR CLINICAL STUDIES: NCT02961179.


Diabetes Mellitus, Type 2 , Hyperinsulinism , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Transcriptome , Canada , Diet , Hyperinsulinism/diagnosis , Hyperinsulinism/genetics , Phosphatidylinositol 3-Kinases , Dairy Products
16.
J Clin Endocrinol Metab ; 108(3): 680-687, 2023 02 15.
Article En | MEDLINE | ID: mdl-36239000

CONTEXT: Congenital hyperinsulinism (HI) is characterized by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. OBJECTIVE: We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to later age at presentation of disease. METHODS: We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (diagnosed with HI < 12 months of age) or childhood-onset (diagnosed at age 1-16 years). We assessed clinical characteristics and the genotypes of individuals with monogenic HI diagnosed in childhood to gain insights into the later age at diagnosis of HI in these children. RESULTS: We identified the monogenic cause in 24% (n = 42/173) of the childhood-onset HI cohort; this was significantly lower than the proportion of genetic diagnoses in infancy-onset cases (74.5% [n = 1248/1675], P < 0.00001). Most (75%) individuals with genetically confirmed childhood-onset HI were diagnosed before 2.7 years, suggesting these cases represent the tail end of the normal distribution in age at diagnosis. This is supported by the finding that 81% of the variants identified in the childhood-onset cohort were detected in those diagnosed in infancy. CONCLUSION: We have shown that monogenic HI is an important cause of hyperinsulinism presenting outside of infancy. Genetic testing should be considered in children with persistent hyperinsulinism, regardless of age at diagnosis.


Congenital Hyperinsulinism , Hyperinsulinism , Hypoglycemia , Adolescent , Child , Child, Preschool , Humans , Infant , Blood Glucose , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Genetic Testing , Hyperinsulinism/diagnosis , Hyperinsulinism/genetics , Hyperinsulinism/complications , Pancreatic Diseases/genetics , Hypoglycemia/diagnosis , Hypoglycemia/genetics
17.
J Pediatr Endocrinol Metab ; 36(2): 207-211, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36476334

OBJECTIVES: Congenital hyperinsulinism (HI) is a heterogeneous clinical disorder with great variability in its clinical phenotype, and to date, pathogenic variants in 23 genes have been recognized.  Hyperinsulinism-hyperammonemia syndrome (HI/HA) is the second most frequent cause of this disease that shows an autosomal dominant pattern and is caused by an activating mutation of the GLUD1 gene, which responds favorably to the use of diazoxide. HI/HA syndrome presents with fasting hypoglycemia; postprandial hypoglycemia, especially in those with a high protein content (leucine); and persistent mild hyperammonemia. Neurological abnormalities, in the form of epilepsy or neurodevelopmental delay, are observed in a high percentage of patients; therefore, timely diagnosis is crucial for proper management. CASE PRESENTATION: We report the clinical presentation of two Peruvian children that presented with epilepsy whose genetic analysis revealed a missense mutation in the GLUD1 gene, one within exon 11, at 22% mosaicism; and another within exon 7, as well as their response to diazoxide therapy. To the best of our knowledge, these are the first two cases of HI/HA syndrome reported in Peru. CONCLUSIONS: HI/HA syndrome went unnoticed, because hypoglycemia was missed and were considered partially controlled epilepsies. A failure to recognize hypoglycemic seizures will delay diagnosis and adequate treatment, so a proper investigation could avoid irreversible neurological damage.


Congenital Hyperinsulinism , Drug Resistant Epilepsy , Epilepsy , Hyperinsulinism , Child , Humans , Peru , Diazoxide/therapeutic use , Glutamate Dehydrogenase/genetics , Hyperinsulinism/complications , Hyperinsulinism/genetics , Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/complications , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/drug therapy , Epilepsy/drug therapy , Epilepsy/genetics , Mutation
18.
Yi Chuan ; 44(9): 810-818, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-36384957

Congenital hyperinsulinemia (CHI) is a disease phenotype characterized by persistent or recurrent hypoglycemia due to abnormal secretion of insulin by ß cells of the pancreas. CHI induced by activation mutation of a single allele of glucokinase (GCK) is the rarest type. In this paper, the clinical data of a patient with hypoglycemia of unknown cause were collected without obvious clinical symptoms. And a heterozygous missense mutation (c.295T> C:p.W99R) was detected in exon 3 of the GCK gene. The mutation was found in both the son and daughter of the proband, and the blood glucose level was low, while the others were normal. By summarizing and analyzing the characteristics of this case and the genetic pedigree of the family, the possibility of congenital hyperinsulinemia caused by a single gene mutation should be considered for hypoglycemia whose etiology is difficult to be determined clinically. This case also provides new clinical data for subsequent genetic studies of the disease.


Hyperinsulinism , Hypoglycemia , Humans , Glucokinase/genetics , Hypoglycemia/genetics , Mutation , Genetic Testing , Hyperinsulinism/genetics
19.
J Genet ; 1012022.
Article En | MEDLINE | ID: mdl-36226343

A novel missense variant (NM_005327.7: c.99C>G, p.Ile33Met) was discovered in 3-hydroxyacyl-CoA dehydrogenase (HADH), which is involved in congenital hyperinsulinism (CHI). This variant may be damaging or deleterious, as assessed using protein prediction software. This study aimed at the impact of this variant on islets and if it caused the leu-sensitive insulin secretion. The adenoassociated virus containing the HADH missense variant (p.Ile33Met), wild-type (WT) HADH or empty vector (EV) was constructed, and the rats were infected with it. Three weeks after the transfection, 15 rats were dissected to observe the effect of the variant on the islet tissue. Then we treated the remaining rats with leucine or sodium carboxymethyl cellulose (CMC-Na) by gavage and drew blood from the rat tail vein to detect the variations in blood glucose, serum insulin and serum glucagon. Further, we dissected the rats to observe the fluctuation of insulin and glucagon contents in pancreatic islets under the combined action of leucine and p.Ile33Met. Insulin and glucagon were observed in the islet tissue under an inverted fluorescence microscope, serum insulin and glucagon were detected by ELISA, and the blood glucose value was determined using a Roche glucometer. The positive area and average gray value of islet fluorescence pictures were analysed using the software Image J (USA). Rats expressing p.Ile33Met showed significantly higher insulin and glucagon content, as well as the islet area, compared to WT and EV rats. Moreover, after intragastric administration of leucine, the serum insulin content of the variant rats increased but the blood sugar level decreased significantly. Meanwhile, there was an appreciable decrease in the insulin content in rat pancreatic islet tissues. Our results suggest that the variant NM_005327.7: c.99C>G promotes the proliferation of pancreatic islets, enhances the secretion of insulin, and induces leu-sensitive hyperinsulinaemia.


Hyperinsulinism , Islets of Langerhans , 3-Hydroxyacyl-CoA Dehydrogenase/metabolism , Animals , Blood Glucose/metabolism , Carboxymethylcellulose Sodium/metabolism , Carboxymethylcellulose Sodium/pharmacology , Cell Proliferation , Glucagon/metabolism , Glucagon/pharmacology , Glucose/metabolism , Glucose/pharmacology , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin , Islets of Langerhans/metabolism , Leucine/metabolism , Leucine/pharmacology , Rats , Sodium/metabolism , Sodium/pharmacology
20.
Horm Res Paediatr ; 95(5): 492-498, 2022.
Article En | MEDLINE | ID: mdl-35952631

INTRODUCTION: The hyperinsulinemia-hyperammonemia syndrome (HIHA) is the second most common cause of congenital hyperinsulinism and is caused by activating heterozygous missense mutations in GLUD1. In the majority of HIHA cases, the GLUD1 mutation is found to be de novo. We have identified 3 patients in whom clinical evaluation was suggestive of HIHA but with negative mutation analysis in peripheral blood DNA for GLUD1 as well as other known HI genes. METHODS: We performed next-generation sequencing (NGS) on peripheral blood DNA from two children with clinical features of HIHA in order to look for mosaic mutations in GLUD1. Pancreas tissue was also available in one of these cases for NGS. In addition, NGS was performed on peripheral blood DNA from a woman with a history of HI in infancy whose child had HIHA due to a presumed de novo GLUD1 mutation. RESULTS: Mosaic GLUD1 mutations were identified in these 3 cases at percent mosaicism ranging from 2.7% to 10.4% in peripheral blood. In one case with pancreas tissue available, the mosaic GLUD1 mutation was present at 17.9% and 28.9% in different sections of the pancreas. Two unique GLUD1 mutations were identified in these cases, both of which have been previously reported (c.1493c>t/p.Ser445Leu and c.820c>t/p.Arg221Cys). CONCLUSION: The results suggest that low-level mosaic mutations in known HI genes may be the underlying molecular mechanism in some children with HI who have negative genetic testing in peripheral blood DNA.


Congenital Hyperinsulinism , Hyperammonemia , Hyperinsulinism , Child , Female , Humans , Hyperammonemia/genetics , Glutamate Dehydrogenase/genetics , Hyperinsulinism/genetics , Mutation , DNA , Congenital Hyperinsulinism/genetics
...