Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(6): 902-917, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36604171

RESUMEN

Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas , Receptores Muscarínicos , Nervio Vestibular , Animales , Ratas , Colinérgicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Nucleótidos/metabolismo , Canales de Potasio , Receptores Muscarínicos/metabolismo , Oxotremorina/farmacología , Nervio Vestibular/efectos de los fármacos , Nervio Vestibular/metabolismo , Nervio Vestibular/fisiología
2.
J Cardiovasc Pharmacol ; 78(6): 826-838, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448469

RESUMEN

ABSTRACT: Dexmedetomidine (DEX), an α2-adrenoreceptor (α2-AR) and imidazoline receptor agonist, is most often used for the sedation of patients in the intensive care unit. Its administration is associated with an increased incidence of bradycardia; however, the precise mechanism of DEX-induced bradycardia has yet to be fully elucidated. This study was undertaken to examine whether DEX modifies pacemaker activity and the underlying ionic channel function through α2-AR and imidazoline receptors. The whole-cell patch-clamp techniques were used to record action potentials and related ionic currents of sinoatrial node cells in guinea pigs. DEX (≥10 nM) reduced sinoatrial node automaticity and the diastolic depolarization rate. DEX reduced the amplitude of hyperpolarization-activated cation current (If or Ih) the pacemaker current, even within the physiological pacemaker potential range. DEX slowed the If current activation kinetics and caused a significant shift in the voltage dependence of channel activation to negative potentials. In addition, efaroxan, an α2-AR and imidazoline I1 receptor antagonist, attenuated the inhibitory effects of DEX on sinoatrial node automaticity and If current activity, whereas yohimbine, an α2-AR-selective antagonist, did not. DEX did not affect the current activities of other channels, including rapidly and slowly activating delayed rectifier K+ currents (IKr and IKs), L-type Ca2+ current (ICa,L), Na+/Ca2+ exchange current (INCX), and muscarinic K+ current (IK,ACh). Our results indicate that DEX, at clinically relevant concentrations, induced a negative chronotropic effect on the sinoatrial node function through the downregulation of If current through an imidazoline I1 receptor other than the α2-AR in the clinical setting.


Asunto(s)
Antiarrítmicos/farmacología , Relojes Biológicos/efectos de los fármacos , Dexmedetomidina/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Receptores de Imidazolina/agonistas , Nodo Sinoatrial/efectos de los fármacos , Potenciales de Acción , Animales , Femenino , Cobayas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Receptores de Imidazolina/metabolismo , Cinética , Transducción de Señal , Nodo Sinoatrial/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 320(6): H2201-H2210, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33891515

RESUMEN

Our previous study indicated that intravenously administered ivabradine (IVA) augmented the dynamic heart rate (HR) response to moderate-intensity vagal nerve stimulation (VNS). Considering an accentuated antagonism, the results were somewhat paradoxical; i.e., the accentuated antagonism indicates that an activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels via the accumulation of intracellular cyclic adenosine monophosphate (cAMP) augments the HR response to VNS, whereas the inhibition of HCN channels by IVA also augmented the HR response to VNS. To remove the possible influence from the accentuated antagonism, we examined the effects of IVA on the dynamic vagal control of HR under ß-blockade. In anesthetized rats (n = 7), the right vagal nerve was stimulated for 10 min according to binary white noise signals between 0 and 10 Hz (V0-10), between 0 and 20 Hz (V0-20), and between 0 and 40 Hz (V0-40). The transfer function from VNS to HR was estimated. Under ß-blockade (propranolol, 2 mg/kg iv), IVA (2 mg/kg iv) did not augment the asymptotic low-frequency gain but increased the asymptotic high-frequency gain in V0-10 (0.53 ± 0.10 vs. 1.74 ± 0.40 beats/min/Hz, P < 0.01) and V0-20 (0.79 ± 0.14 vs. 2.06 ± 0.47 beats/min/Hz, P < 0.001). These changes, which were observed under a minimal influence from sympathetic background tone, may reflect an increased contribution of the acetylcholine-sensitive potassium channel (IK,ACh) pathway after IVA, because the HR control via the IK,ACh pathway is faster and acts in the frequency range higher than the cAMP-mediated pathway.NEW & NOTEWORTHY Since ivabradine (IVA) inhibits hyperpolarization-activated cyclic nucleotide-gated channels, interactions among the sympathetic effect, vagal effect, and IVA can occur in the control of heart rate (HR). To remove the sympathetic effect, we estimated the transfer function from vagal nerve stimulation to HR under ß-blockade in anesthetized rats. IVA augmented the high-frequency dynamic gain during low- and moderate-intensity vagal nerve stimulation. Untethering the hyperpolarizing effect of acetylcholine-sensitive potassium channels after IVA may be a possible underlying mechanism.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Fármacos Cardiovasculares/farmacología , Estimulación Eléctrica , Frecuencia Cardíaca/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Ivabradina/farmacología , Nervio Vago/fisiología , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , AMP Cíclico/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Frecuencia Cardíaca/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Propranolol/farmacología , Ratas
4.
Epilepsy Res ; 168: 106484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33099130

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated in the pathogenesis of epilepsy and consequently as targets for anticonvulsant drugs. Consistent with this, broad-spectrum block of HCN-mediated current (Ih) reduces seizure susceptibility in a variety of epilepsy models. However, HCN channel isoforms have distinct biophysical characteristics and anatomical expression suggesting that they may play different roles in setting neuronal excitability. Here we confirm that the broad-spectrum blocker ivabradine is effective at reducing seizure susceptibility in the s.c.PTZ seizure assay and extend this, showing efficacy of this drug in a thermogenic assay that models febrile seizures. Ivabradine is also effective at reducing thermogenic seizures in the Scn1a mouse model of Dravet syndrome in which febrile seizures are a feature. HCN isoform-preferring drugs were tested in the s.c.PTZ seizure assay. We confirm that the HCN4-preferring drug, EC18, is efficacious in reducing seizure susceptibility. Conversely, the HCN2/1-preferring drug, MEL55A, increased seizure susceptibility in the s.c.PTZ seizure assay. MEL57A, an HCN1-preferring drug, had no effect on seizure susceptibility. Mouse pharmacokinetic studies (for MEL55A and MEL57A) and screening against additional ion channels have not been thoroughly investigated on the HCN isoform-preferring compounds. Our results need to be considered in this light. Nevertheless, these data suggest that HCN isoform-selective block can have a differential impact on seizure susceptibility. This motivates the need to develop more HCN isoform-selective compounds to better explore this idea.


Asunto(s)
Anticonvulsivantes/farmacología , Benzazepinas/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Isoformas de Proteínas/metabolismo
5.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549398

RESUMEN

Background: Honokiol (HNK), a dimer of allylphenol obtained from the bark of Magnolia officinalis was demonstrated to exert an array of biological actions in different excitable cell types. However, whether or how this compound can lead to any perturbations on surface-membrane ionic currents remains largely unknown. Methods: We used the patch clamp method and found that addition of HNK effectively depressed the density of macroscopic hyperpolarization-activated cation currents (Ih) in pituitary GH3 cells in a concentration-, time- and voltage-dependent manner. By the use of a two-step voltage protocol, the presence of HNK (10 µM) shifted the steady-state activation curve of Ih density along the voltage axis to a more negative potential by approximately 11 mV, together with no noteworthy modification in the gating charge of the current. Results: The voltage-dependent hysteresis of Ih density elicited by long-lasting triangular ramp pulse was attenuated by the presence of HNK. The HNK addition also diminished the magnitude of deactivating Ih density elicited by ramp-up depolarization with varying durations. The effective half-maximal concentration (IC50) value needed to inhibit the density of Ih or delayed rectifier K+ current identified in GH3 cells was estimated to be 2.1 or 6.8 µM, respectively. In cell-attached current recordings, HNK decreased the frequency of spontaneous action currents. In Rolf B1.T olfactory sensory neurons, HNK was also observed to decrease Ih density in a concentration-dependent manner. Conclusions: The present study highlights the evidence revealing that HNK has the propensity to perturb these ionic currents and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is proposed to be a potential target for the in vivo actions of HNK and its structurally similar compounds.


Asunto(s)
Compuestos de Bifenilo/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Lignanos/farmacología , Magnolia/química , Animales , Línea Celular , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Extractos Vegetales/química , Ratas
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244431

RESUMEN

Cilobradine (CIL, DK-AH269), an inhibitor of hyperpolarization-activated cation current (Ih), has been observed to possess pro-arrhythmic properties. Whether and how CIL is capable of perturbing different types of membrane ionic currents existing in electrically excitable cells, however, is incompletely understood. In this study, we intended to examine possible modifications by it or other structurally similar compounds of ionic currents in pituitary tumor (GH3) cells and in heart-derived H9c2 cells. The standard whole-cell voltage-clamp technique was performed to examine the effect of CIL on ionic currents. GH3-cell exposure to CIL suppressed the density of hyperpolarization-evoked Ih in a concentration-dependent manner with an effective IC50 of 3.38 µM. Apart from its increase in the activation time constant of Ih during long-lasting hyperpolarization, the presence of CIL (3 µM) distinctly shifted the steady-state activation curve of Ih triggered by a 2-s conditioning pulse to a hyperpolarizing direction by 10 mV. As the impedance-frequency relation of Ih was studied, its presence raised the impedance magnitude at the resonance frequency induced by chirp voltage. CIL also suppressed delayed-rectifier K+ current (IK(DR)) followed by the accelerated inactivation time course of this current, with effective IC50 (measured at late IK(DR)) or KD value of 3.54 or 3.77 µM, respectively. As the CIL concentration increased 1 to 3 µM, the inactivation curve of IK(DR) elicited by 1- or 10-s conditioning pulses was shifted to a hyperpolarizing potential by approximately 10 mV, and the recovery of IK(DR) inactivation during its presence was prolonged. The peak Na+ current (INa) during brief depolarization was resistant to being sensitive to the presence of CIL, yet to be either decreased by subsequent addition of A-803467 or enhanced by that of tefluthrin. In cardiac H9c2 cells, unlike the CIL effect, the addition of either ivabradine or zatebradine mildly led to a lowering in IK(DR) amplitude with no conceivable change in the inactivation time course of the current. Taken together, the compound like CIL, which was tailored to block hyperpolarization-activated cation (HCN) channels effectively, was also capable of altering the amplitude and gating of IK(DR), thereby influencing the functional activities of electrically excitable cells, such as GH3 cells.


Asunto(s)
Benzazepinas/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales de Potasio Shab/efectos de los fármacos , Animales , Cationes , Línea Celular Tumoral , Transporte Iónico/efectos de los fármacos , Ivabradina , Cinética , Técnicas de Placa-Clamp , Piperidinas , Neoplasias Hipofisarias , Potasio/farmacología , Sodio
7.
Behav Pharmacol ; 31(2&3): 283-292, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32040017

RESUMEN

Morphine sensitization is associated with increased locomotion and stereotypies in rats. This persistent condition has been proposed as a model of manic-like symptoms. Modifications in reward threshold are considered a central feature of mania and have been related to changes in mesocorticolimbic dopaminergic transmission. Thus, to further characterize this model, we investigated reward responses in morphine-sensitized male rats and the mechanisms underlying the behavioral phenotype. In particular, we examined the possible involvement of hyperpolarization-activated cyclic nucleotide-gated channels as they play a critical role in regulating the excitability of dopaminergic neurons. Rats were trained to self-administer sucrose to study whether morphine sensitization affected motivated behavior. Next, the dopaminergic response to sucrose was examined in the nucleus accumbens shell by in vivo microdialysis. To investigate the possible mechanisms underlying the increased dopaminergic transmission in morphine-sensitized rats, HCN2 channel expression levels in mesocorticolimbic regions were analyzed by immunoblotting. Sensitized rats showed an enhanced motivation to work for sucrose that was accompanied by an increased dopaminergic response to sucrose consumption in the nucleus accumbens shell. Moreover, HCN2 expression levels were increased in the ventral tegmental area, suggesting that their increased expression may underpin the enhanced motivation for sucrose reward and nucleus accumbens shell dopaminergic response in sensitized rats. The modified behavioral and dopaminergic reward response observed in sensitized rats supports the suggestion that the condition of morphine sensitization can be regarded as a model of manic symptoms.


Asunto(s)
Trastorno Bipolar/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Expresión Génica/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Morfina/farmacología , Núcleo Accumbens/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Ratas , Ratas Sprague-Dawley , Recompensa , Transcriptoma/genética , Área Tegmental Ventral/fisiología
8.
Annu Rev Pharmacol Toxicol ; 60: 109-131, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31914897

RESUMEN

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.


Asunto(s)
Diseño de Fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Isoformas de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
Neuroreport ; 31(2): 92-98, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31876681

RESUMEN

Although melatonin is necessary for circadian regulation of sleep, the mechanisms underlying this effect of melatonin are still unclear. In the present study, we showed that melatonin suppressed the activity of GABAergic neurons in the lateral hypothalamus, which has been reported to play a crucial role in maintaining wakefulness. The inhibitory effect of the melatonin was mediated by activation of melatonin 1 receptors and depended on the inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. At behavioral levels, infusion of melatonin into the lateral hypothalamus significantly decreased the locomotor and exploratory activities and increased the time of immobility in open filed. Additionally, using electroencephalogram (EEG) and electromyogram (EMG) recordings, we found that infusion of melatonin into the lateral hypothalamus decreased the time spent in wakefulness and increased the amount of sleep. Overall, these results suggest that melatonin inhibits GABAergic neurons in the lateral hypothalamus via melatonin 1 receptor-dependent inhibition of the HCN channels, which is consistent with a decrease in wakefulness. These findings provide a new mechanism underlying the hypnotic effect of the melatonin.


Asunto(s)
Neuronas GABAérgicas/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Melatonina/farmacología , Vigilia/fisiología , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos
10.
Neuropharmacology ; 162: 107805, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589884

RESUMEN

Chronic ethanol exposure results in numerous neurobiological adaptations that promote deficits in medial prefrontal cortical (mPFC) function associated with blunted inhibitory control and elevated anxiety during withdrawal. Studies exploring alcohol dependence-related changes in this region have largely investigated adaptations in glutamatergic signaling, with inhibitory neurotransmission remaining relatively understudied. To address this, we used biochemical and electrophysiological methods to evaluate the effects of ethanol on the activity of deep-layer prelimbic mPFC Fast-Spiking (FS) and Martinotti interneurons after chronic ethanol exposure in male and female rats. We report that chronic alcohol exposure significantly impairs FS neuron excitability in both males and females. Interestingly, we observed a marked sex difference in the baseline activity of Martinotti cells that furthermore displayed differential sex-specific responses to alcohol exposure. In addition, alcohol effects on Martinotti neuron excitability negatively correlated with hyperpolarization-activated currents mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels, indicative of a causal relationship. Analysis of HCN1 protein expression also revealed a substantial sex difference, although no effect of ethanol on HCN1 protein expression was observed. Taken together, these findings further elucidate the complex adaptations that occur in the mPFC after chronic ethanol exposure and reveal fundamental differences in interneuron activity between sexes. Furthermore, this disparity may reflect innate differences in intracortical microcircuit function between male and female rats, and offers a tenable circuit-level explanation for sex-dependent behavioral responses to alcohol.


Asunto(s)
Alcoholismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Interneuronas/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Excitabilidad Cortical/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores Sexuales , Análisis de la Célula Individual
11.
Molecules ; 24(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766737

RESUMEN

The triterpenoid fraction of Ganoderma (Ganoderma triterpenoids, GTs) has been increasingly demonstrated to provide effective antioxidant, neuroprotective or cardioprotective activities. However, whether GTs is capable of perturbing the transmembrane ionic currents existing in electrically excitable cells is not thoroughly investigated. In this study, an attempt was made to study whether GTs could modify hyperpolarization-activated cation currents (Ih) in pituitary tumor (GH3) cells and in HL-1 atrial cardiomyocytes. In whole-cell current recordings, the addition of GTs produced a dose-dependent reduction in the amplitude of Ih in GH3 cells with an IC50 value of 11.7 µg/mL, in combination with a lengthening in activation time constant of the current. GTs (10 µg/mL) also caused a conceivable shift in the steady-state activation curve of Ih along the voltage axis to a more negative potential by approximately 11 mV. Subsequent addition of neither 8-cyclopentyl-1,3-dipropylxanthine nor 8-(p-sulfophenyl)theophylline, still in the presence of GTs, could attenuate GTs-mediated inhibition of Ih. In current-clamp voltage recordings, GTs diminished the firing frequency of spontaneous action potentials in GH3 cells, and it also decreased the amplitude of sag potential in response to hyperpolarizing current stimuli. In murine HL-1 cardiomyocytes, the GTs addition also suppressed the amplitude of Ih effectively. In DPCPX (1 µM)-treated HL-1 cells, the inhibitory effect of GTs on Ih remained efficacious. Collectively, the inhibition of Ih caused by GTs is independent of its possible binding to adenosine receptors and it might have profound influence in electrical behaviors of different types of electrically excitable cells (e.g., pituitary and heart cells) if similar in vitro or in vivo findings occur.


Asunto(s)
Ganoderma/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Miocitos Cardíacos/citología , Neoplasias Hipofisarias/metabolismo , Triterpenos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Esporas Fúngicas/química
12.
Brain Res Bull ; 149: 11-20, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951796

RESUMEN

Ivabradine (IVA), a heart-rate reducing agent, is recognized as an inhibitor of hyperpolarization-activated cation current (Ih) and also reported to ameliorate inflammatory or neuropathic pain. However, to what extent this agent can perturb another types of membrane ion currents in neurons or endocrine cells remains to be largely unknown. Therefore, the Ih or other types of ionic currents in pituitary tumor (GH3) cells and in hippocampal mHippoE-14 neurons was studied with or without the presence of IVA or other related compounds. The IVA addition caused a time- and concentration-dependent reduction in the amplitude of Ih with an IC50 value of 0.64 µM and a KD value of 0.68 µM. IVA (0.3 µM) shifted the Ih activation curve to a more negative potential by approximately 8 mV, despite no concomitant change in the gating charge. Additionally, IVA was found to increase M-type K+ current (IK(M)) together with a rightward shift in the activation curve. In cell-attached current recordings, IVA (3 µM) applied to the bath increased the open probability of M-type K+ channels; however, it did not modify single-channel conductance of the channel. In current-clamp voltage recordings, IVA suppressed the firing of spontaneous action potentials in GH3 cells; and, further addition of linopirdine attenuated its suppression of firing. In hippocampal mHippoE-14 neurons, IVA also effectively increased IK(M) amplitude. In summary, both inhibition of Ih and activation of IK(M) caused by IVA can synergistically combine to influence electrical behaviors in different types of electrically excitable cells occurring in vivo.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Ivabradina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular Tumoral , Células Endocrinas/metabolismo , Hipocampo/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ivabradina/metabolismo , Ratones , Neuronas/fisiología , Neoplasias Hipofisarias/fisiopatología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo
13.
J Neurosci ; 38(19): 4505-4520, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29650696

RESUMEN

Neuropeptide Y (NPY) expression is tightly linked with the development of stress resilience in rodents and humans. Local NPY injections targeting the basolateral amygdala (BLA) produce long-term behavioral stress resilience in male rats via an unknown mechanism. Previously, we showed that activation of NPY Y1 receptors hyperpolarizes BLA principal neurons (PNs) through inhibition of the hyperpolarization-activated, depolarizing H-current, Ih The present studies tested whether NPY treatment induces stress resilience by modulating Ih NPY (10 pmol) was delivered daily for 5 d bilaterally into the BLA to induce resilience; thereafter, the electrophysiological properties of PNs and the expression of Ih in the BLA were characterized. As reported previously, increases in social interaction (SI) times persisted weeks after completion of NPY administration. In vitro intracellular recordings showed that repeated intra-BLA NPY injections resulted in hyperpolarization of BLA PNs at 2 weeks (2W) and 4 weeks (4W) after NPY treatment. At 2W, spontaneous IPSC frequencies were increased, whereas at 4W, resting Ih was markedly reduced and accompanied by decreased levels of HCN1 mRNA and protein expression in BLA. Knock-down of HCN1 channels in the BLA with targeted delivery of lentivirus containing HCN1-shRNA increased SI beginning 2W after injection and induced stress resilience. NPY treatment induced sequential, complementary changes in the inputs to BLA PNs and their postsynaptic properties that reduce excitability, a mechanism that contributes to less anxious behavior. Furthermore, HCN1 knock-down mimicked the increases in SI and stress resilience observed with NPY, indicating the importance of Ih in stress-related behavior.SIGNIFICANCE STATEMENT Resilience improves mental health outcomes in response to adverse situations. Neuropeptide Y (NPY) is associated with decreased stress responses and the expression of resilience in rodents and humans. Single or repeated injections of NPY into the basolateral amygdala (BLA) buffer negative behavioral effects of stress and induce resilience in rats, respectively. Here, we demonstrate that repeated administration of NPY into the BLA unfolds several cellular mechanisms that decrease the activity of pyramidal output neurons. One key mechanism is a reduction in levels of the excitatory ion channel HCN1. Moreover, shRNA knock-down of HCN1 expression in BLA recapitulates some of the actions of NPY and causes potent resilience to stress, indicating that this channel may be a possible target for therapy.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptido Y/farmacología , Canales de Potasio/efectos de los fármacos , Resiliencia Psicológica/efectos de los fármacos , Amígdala del Cerebelo/citología , Animales , Ansiedad/genética , Ansiedad/psicología , Fenómenos Electrofisiológicos/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Relaciones Interpersonales , Masculino , Microinyecciones , Neuropéptido Y/administración & dosificación , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
14.
Heart Rhythm ; 15(5): 752-760, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288034

RESUMEN

BACKGROUND: Aging is associated with an increased incidence of atrioventricular nodal (AVN) dysfunction. OBJECTIVE: The aim of this study was to investigate the structural and functional remodeling in the atrioventricular junction (AVJ) with aging. METHODS: Electrophysiology, histology, and immunohistochemistry experiments on male Wistar Hannover rats aged 3 months (n = 24) and 2 years (n = 15) were performed. Atrio-His (AH) interval, Wenkebach cycle length (WBCL), and AVN effective refractory period (AVNERP) were measured. Cesium (2 mM) was used to block hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, while ryanodine (2 µM) was used to block ryanodine 2 (RyR2) channels. Protein expression from different regions of the AVJ was studied using immunofluorescence. The expression of connexins (connexin 43 and connexin 40), ion channels (Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), voltage sensitive sodium channel (Nav1.5), and L-Type calcium channel (Cav1.3)), and calcium handling proteins (RyR2 and sarco/endoplasmic reticulum calcium ATPaset type 2a (SERCA2a)) were measured. Morphological characteristics were studied with histology. RESULTS: Without drugs to block HCN and RyR2 channels, there was prolongation of the AH interval, WBCL, and AVNERP (P < .05) with aging. In young rats only, cesium prolonged the AH interval, WBCL, and AVNERP (P < .01). Ryanodine prolonged the AH interval and WBCL (P < .01) in both young and old rats. Immunofluorescence revealed that with aging, connexin 43, HCN4, Nav1.5, and RyR2 downregulate in the regions of the AVJ and connexin 40, SERCA2a, and Cav1.3 upregulate (P < .05). Aging results in cellular hypertrophy, loosely packed cells, a decrease in the number of nuclei, and an increase in collagen content. CONCLUSION: Heterogeneous ion channel expression changes were observed in the AVJ with aging. For the first time, we have shown that HCN and RyR2 play an important role in AVN dysfunction with aging.


Asunto(s)
Envejecimiento , Nodo Atrioventricular/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/farmacología , Animales , Nodo Atrioventricular/citología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Inmunohistoquímica , Masculino , Modelos Animales , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
15.
Neurosci Res ; 132: 8-16, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28970101

RESUMEN

Volatile anesthetics have been reported to inhibit hyperpolarization-activated cyclic-nucleotide gated channels underlying the hyperpolarization-activated cation current (Ih) that contributes to generation of synchronized oscillatory neural rhythms. Meanwhile, the developmental change of Ih has been speculated to play a pivotal role during maturation. In this study, we examined the effect of the volatile anesthetic sevoflurane, which is widely used in pediatric surgery, on Ih and on functional Ih activation kinetics of cholinergic interneurons in developing striatum. Our analyses showed that the changes in Ih of cholinergic interneurons occurred in conjunction with maturation. Sevoflurane application (1-4%) caused significant inhibition of Ih in a dose-dependent manner, and apparently slowed Ih activation. In current-clamp recordings, sevoflurane significantly decreased spike firing during the rebound activation, which is essential for responses to the sensory inputs from the cortex and thalamus. The sevoflurane-induced inhibition of Ih in striatal cholinergic interneurons may lead to alterations of the acetylcholine-dopamine balance in the neural circuits during the early postnatal period.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Éteres Metílicos/farmacología , Anestésicos/farmacología , Animales , Corteza Cerebral/metabolismo , Estimulación Eléctrica/métodos , Interneuronas/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Canales de Potasio/metabolismo , Sevoflurano , Tálamo/efectos de los fármacos
16.
Invest Ophthalmol Vis Sci ; 58(11): 4754-4767, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973319

RESUMEN

Purpose: Phosphene perception is a characteristic side effect of heart rate-reducing medication that acts on hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. It is hypothesized that these phosphenes are caused by blocking HCN channels in photoreceptors and neurons of the retina, yet the underlying changes in visual signal processing in the retina caused by the HCN channel block are still unknown. Methods: We examined the effects of pharmacologic HCN channel block on the encoding of visual signals in retinal ganglion cells by recording ganglion cell spiking activity from isolated mouse retinas mounted on multielectrode arrays. Spontaneous activity and responses to various visual stimuli were measured before, during, and after administration of 3 µM ivabradine. Results: Retinal ganglion cells generally showed slower response kinetics and reduced sensitivity to high temporal frequencies under ivabradine. Moreover, ivabradine differentially affected the sensitivity of On and Off ganglion cells. On cells showed reduced response gain, whereas Off cells experienced an increase in response threshold. In line with these differential effects, Off cells, in contrast to On cells, also showed reduced baseline activity during visual stimulation and reduced spontaneous activity. Furthermore, Off cells, but not On cells, showed increased burst-like spiking activity in the presence of ivabradine. Conclusions: Our data suggest that pharmacologic HCN channel block in the retina leads to a shift in the relative activity of the On and Off pathways of the retina. We hypothesize that this imbalance may underlie the medication-induced perception of phosphenes.


Asunto(s)
Benzazepinas/farmacología , Fármacos Cardiovasculares/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Fosfenos , Bloqueadores de los Canales de Potasio/farmacología , Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ivabradina , Ratones , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/fisiología
17.
Naunyn Schmiedebergs Arch Pharmacol ; 390(9): 961-969, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28685234

RESUMEN

EP receptor activation by PGE2 regulates gastrointestinal motility by modulating smooth muscle contractility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate smooth muscle activity. We aimed to determine effects of the EP3 receptor agonist sulprostone on pacemaker potentials in colonic ICCs. We performed a whole cell patch clamp, RT-PCR, and Ca2+ imaging in cultured ICCs from mouse colon. Sulprostone depolarized the membrane and increased pacemaker frequency. EP3 receptor antagonist blocked these sulprostone-induced effects. EP3 receptors were expressed in ANO1-positive ICCs. Phospholipase C inhibitor or Ca2+-ATPase inhibitor from the endoplasmic reticulum blocked the sulprostone-induced effects and sulprostone increased intracellular Ca2+ ([Ca2+]i) oscillations. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers also suppressed the sulprostone-induced effects. Sulprostone enhanced pacemaker activity through EP3 receptors by activating HCN channels via the [Ca2+]i release pathway. Therefore, EP3 receptor activation in ICCs may modulate colonic motility and could be a therapeutic target for enhancing colonic GI motility.


Asunto(s)
Colon/efectos de los fármacos , Dinoprostona/análogos & derivados , Células Intersticiales de Cajal/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/agonistas , Animales , Anoctamina-1/metabolismo , Calcio/metabolismo , Células Cultivadas , Colon/citología , Dinoprostona/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Intersticiales de Cajal/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Neurotherapeutics ; 14(3): 698-715, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28560710

RESUMEN

Major depressive disorder (MDD) is a chronic and potentially life threatening illness that carries a staggering global burden. Characterized by depressed mood, MDD is often difficult to diagnose and treat owing to heterogeneity of syndrome and complex etiology. Contemporary antidepressant treatments are based on improved monoamine-based formulations from serendipitous discoveries made > 60 years ago. Novel antidepressant treatments are necessary, as roughly half of patients using available antidepressants do not see long-term remission of depressive symptoms. Current development of treatment options focuses on generating efficacious antidepressants, identifying depression-related neural substrates, and better understanding the pathophysiological mechanisms of depression. Recent insight into the brain's mesocorticolimbic circuitry from animal models of depression underscores the importance of ionic mechanisms in neuronal homeostasis and dysregulation, and substantial evidence highlights a potential role for ion channels in mediating depression-related excitability changes. In particular, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators of neuronal excitability. In this review, we describe seminal research on HCN channels in the prefrontal cortex and hippocampus in stress and depression-related behaviors, and highlight substantial evidence within the ventral tegmental area supporting the development of novel therapeutics targeting HCN channels in MDD. We argue that methods targeting the activity of reward-related brain areas have significant potential as superior treatments for depression.


Asunto(s)
Antidepresivos/farmacología , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos
19.
Handb Exp Pharmacol ; 238: 123-133, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28181007

RESUMEN

The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Nucleótidos Cíclicos/metabolismo , Sistemas de Mensajero Secundario , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Agonismo Parcial de Drogas , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Activación del Canal Iónico , Modelos Moleculares , Nucleótidos Cíclicos/farmacología , Conformación Proteica , Sistemas de Mensajero Secundario/efectos de los fármacos , Relación Estructura-Actividad
20.
Neuropharmacology ; 105: 420-433, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26855147

RESUMEN

Neuropeptide S (NPS), an endogenous anxiolytic, has been shown to protect against chronic pain through interacting with its cognate NPS receptor (NPSR) in the brain. However, the cellular mechanism of this NPS action remains unclear. We report that NPS inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channel current (Ih) in the rat's amygdala through activation of NPSR. This NPS effect is mediated through ERK1/2 phosphorylation in a subset of pyramidal-like neurons located in the medial amygdala. The characters of the recorded Ih suggest a major role for HCN1 activity in this process. Inhibition of Ih by NPS stimulates the glutamatergic drive onto fast spiking intra-amygdalolidal GABAergic interneurons, which in turn facilitates GABA release onto pyramidal-like neurons. Moreover, the HCN1 expression is increased in the amygdala of rats with peripheral nerve injury and intra-amygdaloidal administration of the HCN channel inhibitor ZD7288 attenuates nociceptive behavior in these rats. These results suggest that NPS-mediated modulation of intra-amygdaloidal HCN channel activities may be an important central inhibitory mechanism for regulation of chronic pain.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Dolor Crónico/tratamiento farmacológico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Neuropéptidos/farmacología , Canales de Potasio/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Hiperalgesia/tratamiento farmacológico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Taquicininas , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA