Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.404
1.
Sleep Med Clin ; 19(2): 229-237, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692748

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.


Hypoxia , Sleep Apnea Syndromes , Humans , Hypoxia/physiopathology , Hypoxia/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/complications , Autonomic Nervous System/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/therapy
2.
Nutrients ; 16(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38794703

Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.


Disease Models, Animal , Gastrointestinal Microbiome , Hypoxia , Lactobacillus delbrueckii , Oxidative Stress , Probiotics , Animals , Mice , Hypoxia/complications , Probiotics/pharmacology , Male , Altitude Sickness/microbiology , Altitude Sickness/complications , Tight Junction Proteins/metabolism
3.
Chin J Nat Med ; 22(5): 426-440, 2024 May.
Article En | MEDLINE | ID: mdl-38796216

Chronic intermittent hypoxia (CIH), a principal pathophysiological aspect of obstructive sleep apnea (OSA), is associated with cognitive deficits. Clinical evidence suggests that a combination of Shengmaisan and Liuwei Dihuang Decoctions (SMS-LD) can enhance cognitive function by nourishing yin and strengthening the kidneys. This study aimed to assess the efficacy and underlying mechanisms of SMS-LD in addressing cognitive impairments induced by CIH. We exposed C57BL/6N mice to CIH for five weeks (20%-5% O2, 5 min/cycle, 8 h/day) and administered SMS-LD intragastrically (15.0 or 30 g·kg-1·day) 30 min before each CIH session. Additionally, AG490, a JJanus kinase 2 (JAK2) inhibitor, was administered via intracerebroventricular injection. Cognitive function was evaluated using the Morris water maze, while synaptic and mitochondrial structures were examined by transmission electron microscopy. Oxidative stress levels were determined using DHE staining, and the activation of the erythropoietin (ER)/ER receptor (EPOR)/JAK2 signaling pathway was analyzed through immunohistochemistry and Western blotting. To further investigate molecular mechanisms, HT22 cells were treated in vitro with either SMS-LD medicated serum alone or in combination with AG490 and then exposed to CIH for 48 h. Our results indicate that SMS-LD significantly mitigated CIH-induced cognitive impairments in mice. Specifically, SMS-LD treatment enhanced dendritic spine density, ameliorated mitochondrial dysfunction, reduced oxidative stress, and activated the EPO/EPOR/JAK2 signaling pathway. Conversely, AG490 negated SMS-LD's neuroprotective and cognitive improvement effects under CIH conditions. These findings suggest that SMS-LD's beneficial impact on cognitive impairment and synaptic and mitochondrial integrity under CIH conditions may predominantly be attributed to the activation of the EPO/EPOR/JAK2 signaling pathway.


Cognitive Dysfunction , Drugs, Chinese Herbal , Erythropoietin , Hypoxia , Janus Kinase 2 , Mice, Inbred C57BL , Signal Transduction , Animals , Janus Kinase 2/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Signal Transduction/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Male , Hypoxia/drug therapy , Hypoxia/complications , Receptors, Erythropoietin/metabolism , Oxidative Stress/drug effects , Humans
4.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767703

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Exosomes , Integrin beta1 , MicroRNAs , Telocytes , rac1 GTP-Binding Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Exosomes/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Mice , Telocytes/metabolism , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Hypoxia/metabolism , Hypoxia/genetics , Hypoxia/complications , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Vascular Remodeling/genetics , Neuropeptides
5.
Drug Discov Today ; 29(6): 104015, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719143

Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology. In this review, we highlight prominent mechanisms causing CHPH in adults and newborns, and emerging therapeutic targets of potential pharmaceuticals.


Drug Development , Hypertension, Pulmonary , Hypoxia , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypoxia/complications , Drug Development/methods , Infant, Newborn , Animals , Adult , Oxidative Stress/drug effects
6.
Crit Care ; 28(1): 174, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783367

BACKGROUND: Dyspnea is a key symptom of de novo acute hypoxemic respiratory failure. This study explores dyspnea and its association with intubation and mortality in this population. METHODS: This was a secondary analysis of a multicenter, randomized, controlled trial. Dyspnea was quantified by a visual analog scale (dyspnea-VAS) from zero to 100 mm. Dyspnea was measured in 259 of the 310 patients included. Factors associated with intubation were assessed with a competing risks model taking into account ICU discharge. The Cox model was used to evaluate factors associated with 90-day mortality. RESULTS: At baseline (randomization in the parent trial), median dyspnea-VAS was 46 (interquartile range, 16-65) mm and was ≥ 40 mm in 146 patients (56%). The intubation rate was 45%. Baseline variables independently associated with intubation were moderate (dyspnea-VAS 40-64 mm) and severe (dyspnea-VAS ≥ 65 mm) dyspnea at baseline (sHR 1.96 and 2.61, p = 0.023), systolic arterial pressure (sHR 2.56, p < 0.001), heart rate (sHR 1.94, p = 0.02) and PaO2/FiO2 (sHR 0.34, p = 0.028). 90-day mortality was 20%. The cumulative probability of survival was lower in patients with baseline dyspnea-VAS ≥ 40 mm (logrank test, p = 0.049). Variables independently associated with mortality were SAPS 2 ≥ 25 (p < 0.001), moderate-to-severe dyspnea at baseline (p = 0.073), PaO2/FiO2 (p = 0.118), and treatment arm (p = 0.046). CONCLUSIONS: In patients admitted to the ICU for de novo acute hypoxemic respiratory failure, dyspnea is associated with a higher risk of intubation and with a higher mortality. TRIAL REGISTRATION: clinicaltrials.gov Identifier # NCT01320384.


Dyspnea , Respiratory Insufficiency , Humans , Dyspnea/etiology , Male , Female , Middle Aged , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Intubation, Intratracheal/statistics & numerical data , Intubation, Intratracheal/methods , Hypoxia/therapy , Hypoxia/physiopathology , Hypoxia/complications , Intensive Care Units/statistics & numerical data , Intensive Care Units/organization & administration , Proportional Hazards Models
7.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Article En | MEDLINE | ID: mdl-38692345

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Apoptosis , Furans , Inflammation , Mice, Inbred C57BL , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , Pyroptosis , Sulfonamides , Pyroptosis/drug effects , Animals , Mice , Apoptosis/drug effects , Oxidative Stress/drug effects , Sulfonamides/pharmacology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Furans/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Indenes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , para-Aminobenzoates/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Hypoxia/metabolism , Hypoxia/complications , Dipeptides
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710517

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
9.
Front Immunol ; 15: 1374236, 2024.
Article En | MEDLINE | ID: mdl-38605948

Despite undeniable advances in modern medicine, lung cancer still has high morbidity and mortality rates. Lung cancer is preventable and treatable, and it is important to identify new risk factors for lung cancer, especially those that can be treated or reversed. Obstructive sleep apnea (OSA) is a very common sleep-breathing disorder that is grossly underestimated in clinical practice. It can cause, exacerbate, and worsen adverse outcomes, including death and various diseases, but its relationship with lung cancer is unclear. A possible causal relationship between OSA and the onset and progression of lung cancer has been established biologically. The pathophysiological processes associated with OSA, such as sleep fragmentation, intermittent hypoxia, and increased sympathetic nervous excitation, may affect normal neuroendocrine regulation, impair immune function (especially innate and cellular immunity), and ultimately contribute to the occurrence of lung cancer, accelerate progression, and induce treatment resistance. OSA may be a contributor to but a preventable cause of the progression of lung cancer. However, whether this effect exists independently of other risk factors is unclear. Therefore, by reviewing the literature on the epidemiology, pathogenesis, and treatment of lung cancer and OSA, we hope to understand the relationships between the two and promote the interdisciplinary exchange of ideas between basic medicine, clinical medicine, respiratory medicine, sleep medicine, and oncology.


Lung Neoplasms , Sleep Apnea, Obstructive , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Lung Neoplasms/therapy , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/therapy , Risk Factors , Sympathetic Nervous System , Hypoxia/complications
10.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622371

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
11.
BMC Anesthesiol ; 24(1): 148, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637753

BACKGROUND: Anesthesia for spinal muscular atrophy (SMA) patients undergoing spinal deformity surgery is challenging. We report an unusual case of an SMA girl who developed severe intraoperative hypoxemia and hypotension during posterior spinal fusion related with surgical positioning. CASE PRESENTATION: A 13-yr-old girl diagnosed with SMA type 2, severe kyphoscoliosis and thoracic deformity was scheduled for elective posterior spinal fusion. She developed severe hypoxemia and profound hypotension intraoperatively in the prone position with surgical table tilted 45° to the right. Though transesophageal echocardiography (TEE) could not be performed due to limited mouth opening, her preoperative computed tomography revealed a severely distorted thoracic cavity with much reduced volume of the right side. A reasonable explanation was when the surgeons performed surgical procedure with the tilted surgical table, the pressure was directly put on the shortest diameter of the significantly deformed thoracic cavity, causing severe compression of the pulmonary artery, resulting in both hypoxemia and hypotension. The patient stabilized when the surgical table was tilted back and successfully went through the surgery in the leveled prone position. CONCLUSIONS: Spinal fusion surgery is beneficial for SMA patients in preventing scoliosis progression and improving ventilation. However, severe scoliosis and thoracic deformities put them at risk of both hemodynamic and respiratory instability during surgical positioning. When advanced monitoring like TEE is not practical intraoperatively, preoperative imaging may help with differential diagnosis, and guide the surgical positioning to minimize mechanical compression of the thoracic cavity, thereby helping the patient complete the surgery safely.


Hypotension , Muscular Atrophy, Spinal , Scoliosis , Spinal Fusion , Female , Humans , Hypotension/etiology , Hypoxia/complications , Muscular Atrophy, Spinal/complications , Retrospective Studies , Scoliosis/surgery , Spinal Fusion/adverse effects , Spinal Fusion/methods , Treatment Outcome , Adolescent
12.
Medicine (Baltimore) ; 103(16): e37891, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640271

RATIONALE: Traumatic bronchial rupture in infants usually necessitates surgical intervention, with few reports documenting instances of multiple cardiac arrests occurring during surgery under conditions of severe hypoxemia. PATIENT CONCERNS: A 3-year-old boy after trauma presented with severe hypoxemia for 2 days and was urgently transferred to the operating room for surgery, 6 episodes of cardiac arrest happend during surgery. DIAGNOSES: The baby was diagnosed with bronchial rupture based on the history of trauma, clinica manifestations, and intraoperative findings. INTERVENTIONS: Intrathoracic cardiac compression and intravenous adrenaline were administrated. OUTCOMES: The normal sinus rhythm of the heart was successfully restored within 1 minute on each occasion, facilitating the smooth completion of the surgical procedure. By the end of surgery, SpO2 levels had rebounded to 95% and remained stable. LESSONS: Inadequate management of bronchial ruptures in infants frequently coincides with severe hypoxemia, necessitating immediate surgical intervention. Prompt identification and management of cardiac arrest by anesthetists during surgery is imperative to reduce mortality.


Epinephrine , Heart Arrest , Male , Infant , Humans , Child, Preschool , Heart Arrest/etiology , Rupture/surgery , Rupture/complications , Hypoxia/complications , Operating Rooms
13.
Eur Radiol Exp ; 8(1): 50, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570418

BACKGROUND: Heartbeat-based cross-sectional area (CSA) changes in the right main pulmonary artery (MPA), which reflects its distensibility associated with pulmonary hypertension, can be measured using dynamic ventilation computed tomography (DVCT) in patients with and without chronic obstructive pulmonary disease (COPD) during respiratory dynamics. We investigated the relationship between MPA distensibility (MPAD) and respiratory function and how heartbeat-based CSA is related to spirometry, mean lung density (MLD), and patient characteristics. METHODS: We retrospectively analyzed DVCT performed preoperatively in 37 patients (20 female and 17 males) with lung cancer aged 70.6 ± 7.9 years (mean ± standard deviation), 18 with COPD and 19 without. MPA-CSA was separated into respiratory and heartbeat waves by discrete Fourier transformation. For the cardiac pulse-derived waves, CSA change (CSAC) and CSA change ratio (CSACR) were calculated separately during inhalation and exhalation. Spearman rank correlation was computed. RESULT: In the group without COPD as well as all cases, CSACR exhalation was inversely correlated with percent residual lung volume (%RV) and RV/total lung capacity (r = -0.68, p = 0.003 and r = -0.58, p = 0.014). In contrast, in the group with COPD, CSAC inhalation was correlated with MLDmax and MLD change rate (MLDmax/MLDmin) (r = 0.54, p = 0.020 and r = 0.64, p = 0.004) as well as CSAC exhalation and CSACR exhalation. CONCLUSION: In patients with insufficient exhalation, right MPAD during exhalation was decreased. Also, in COPD patients with insufficient exhalation, right MPAD was reduced during inhalation as well as exhalation, which implied that exhalation impairment is a contributing factor to pulmonary hypertension complicated with COPD. RELEVANCE STATEMENT: Assessment of MPAD in different respiratory phases on DVCT has the potential to be utilized as a non-invasive assessment for pulmonary hypertension due to lung disease and/or hypoxia and elucidation of its pathogenesis. KEY POINTS: • There are no previous studies analyzing all respiratory phases of right main pulmonary artery distensibility (MPAD). • Patients with exhalation impairment decreased their right MPAD. • Analysis of MPAD on dynamic ventilation computed tomography contributes to understanding the pathogenesis of pulmonary hypertension due to lung disease and/or hypoxia in patients with expiratory impairment.


Hypertension, Pulmonary , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Male , Humans , Female , Pulmonary Artery/diagnostic imaging , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/complications , Retrospective Studies , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/complications , Tomography, X-Ray Computed/methods , Hypoxia/complications
14.
J Cardiothorac Surg ; 19(1): 172, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570837

OBJECTIVE: To review and analyze the airway and anesthesia management methods for patients who underwent endoscopic closure of tracheoesophageal fistula (TEF) and to summarize the experience of intraoperative airway management. METHOD: We searched the anesthesia information system of the First Affiliated Hospital of Nanjing Medical University for anesthesia cases of TEF from July 2020 to July 2023 and obtained a total of 34 anesthesia records for endoscopic TEF occlusion. The intraoperative airway management methods and vital signs were recorded, and the patients' disease course and follow-up records were analyzed and summarized. RESULTS: The airway management strategies used for TEF occlusion patients included nasal catheter oxygen (NCO, n = 5), high-flow nasal cannula oxygen therapy (HFNC, n = 4) and tracheal intubation (TI, n = 25). The patients who underwent tracheal intubation with an inner diameter of 5.5 mm had stable hemodynamics and oxygenation status during surgery, while intravenous anesthesia without intubation could not effectively inhibit the stress response caused by occluder implantation, which could easily cause hemodynamic fluctuations, hypoxemia, and carbon dioxide accumulation. Compared with those in the TI group, the NCO group and the HFNC group had significantly longer surgical times, and the satisfaction score of the endoscopists was significantly lower. In addition, two patients in the NCO group experienced postoperative hypoxemia. CONCLUSION: During the anesthesia process for TEF occlusions, a tracheal catheter with an inner diameter of 5.5 mm can provide a safe and effective airway management method.


Anesthesia , Tracheoesophageal Fistula , Humans , Tracheoesophageal Fistula/surgery , Tracheoesophageal Fistula/etiology , Retrospective Studies , Intubation, Intratracheal/adverse effects , Oxygen , Hypoxia/complications , Anesthesia/adverse effects
15.
Sci Rep ; 14(1): 7924, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575644

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Dehydrocholesterols , Ferroptosis , Hypoxia-Ischemia, Brain , Animals , Mice , Animals, Newborn , Brain , Hypoxia/complications , Oxygen/therapeutic use , Ischemia/complications , Iron/therapeutic use
16.
Med Sci Monit ; 30: e943443, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678319

BACKGROUND Necrotizing enterocolitis (NEC) is a potentially life-threatening disease that affects the intestine of the neonate, causing necrosis and general inflammation. Treatment consists of feeding cessation and antibiotic therapy. In more severe cases, surgical intervention is necessary. Recently, different NEC models have been used to study the development of novel diagnostic and therapeutic methods. This work modified an experimental NEC model in rat pups by a single exposure of animals to NEC-causing factors and testing the impact of mother's milk on prevalence of the disease. MATERIAL AND METHODS Fifty rat pups were subjected to the NEC protocol, in which they were exposed to 100% nitrogen atmosphere and cold stress for set periods of time and formula feeding with exposure to mother's milk and artificial milk. Twenty-nine pups were used for control. After a set time of 72 h, bowel fragments were obtained and examined histologically by hematoxylin-eosin staining with a modified 3-grade scale. RESULTS Histological features of NEC were present in most of the samples (10/14) in the group exposed to 1 min of hypoxia (P=0.016), 10 min of cold stress (P=0.4) and formula feeding every 3 h with no mother's milk (P=0.001). In the group of 11 animals with the same stress conditions but fed mother's milk right after birth, only 1 sample of NEC was present. CONCLUSIONS The modified experimental NEC model based on formula feeding and single exposure to hypothermia and hypoxia was assessed statistically and histologically. In this model, mother's milk had a protective effect against necrotizing enterocolitis.


Animals, Newborn , Disease Models, Animal , Enterocolitis, Necrotizing , Hypoxia , Milk , Animals , Enterocolitis, Necrotizing/pathology , Rats , Hypoxia/complications , Milk/metabolism , Hypothermia , Female , Incidence , Rats, Sprague-Dawley
17.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Article En | MEDLINE | ID: mdl-38660801

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System , Signal Transduction , Animals , Female , Humans , Male , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hypoxia/metabolism , Hypoxia/complications , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics
18.
Int Heart J ; 65(2): 318-328, 2024.
Article En | MEDLINE | ID: mdl-38556339

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Citrates , Hypertension, Pulmonary , Rats , Animals , Male , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/chemically induced , Monocrotaline/adverse effects , Rats, Sprague-Dawley , Vascular Remodeling , Hypoxia/complications , Hypoxia/drug therapy , Hypoxia/metabolism , Pulmonary Artery , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Disease Models, Animal
19.
Clin Exp Hypertens ; 46(1): 2332695, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38527024

BACKGROUND: Endothelial dysfunction of the pulmonary artery contributes to hypoxia-induced pulmonary arterial hypertension (PAH). Omentin-1, as a novel adipocytokine, plays an important protective role against cardiovascular diseases. However, the effect and underlying mechanisms of omentin-1 against PAH remain unclear. METHODS: PAH was induced in SD (Sprague & Dawley) rats via a low-oxygen chamber for 4 weeks. Hemodynamic evaluation was undertaken using a PowerLab data acquisition system, and histopathological analysis was stained with hematoxylin and eosin (H&E). Endothelial function of pulmonary artery was assessed using wire myography. RESULTS: We found that omentin-1 significantly improved pulmonary endothelial function in rats exposed to hypoxia and attenuated PAH. Mechanistically, we found that omentin-1 increased phosphorylated 5'­adenosine monophosphate­activated protein kinase (p­AMPK) level and reduced endoplasmic reticulum (ER) stress and increased NO production in pulmonary artery from rats exposed to hypoxia. However, the effect of omentin-1 was abolished by treatment with AMPK inhibitor (Compound C). CONCLUSIONS: Our results reveal a protective effect of omentin-1 in PAH via inhibiting ER stress through AMPKα signaling and provide an agent with translational potential for the treatment of PAH.


AMP-Activated Protein Kinases , Pulmonary Arterial Hypertension , Rats , Animals , AMP-Activated Protein Kinases/metabolism , Pulmonary Arterial Hypertension/metabolism , Signal Transduction , Pulmonary Artery , Rats, Sprague-Dawley , Hypoxia/complications , Hypoxia/metabolism , Endoplasmic Reticulum Stress
20.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542217

Obstructive sleep apnoea (OSA) and components of metabolic syndrome (MetS) are inextricably connected. Considering the increasing burden of MetS and OSA, in the present review, we aimed to collate and summarise the potential pathophysiological mechanisms linking these pathologies. In short, obesity appears to promote OSA development via multiple pathways, some of which are not directly related to mass but rather to metabolic complications of obesity. Simultaneously, OSA promotes weight gain through central mechanisms. On the other hand, diabetes mellitus contributes to OSA pathophysiology mainly through effects on peripheral nerves and carotid body desensitization, while intermittent hypoxia and sleep fragmentation are the principal culprits in OSA-mediated diabetes. Apart from a bidirectional pathophysiological relationship, obesity and diabetes mellitus together additively increase cardiovascular risk in OSA patients. Additionally, the emergence of new drugs targeting obesity and unequivocal results of the available studies underscore the need for further exploration of the mechanisms linking MetS and OSA, all with the aim of improving outcomes in these patients.


Diabetes Mellitus , Metabolic Syndrome , Sleep Apnea, Obstructive , Humans , Metabolic Syndrome/metabolism , Obesity/metabolism , Hypoxia/complications
...