Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.011
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 290-293, 2024 Mar 14.
Article Zh | MEDLINE | ID: mdl-38716602

Myelodysplastic syndromes is a heterogeneous group of myeloid neoplastic disorders originating from hematopoietic stem cells and manifesting as pathological bone marrow hematopoiesis and a high risk of transformation to acute myeloid leukemia. In low-risk patients, the therapeutic goal is to improve hematopoiesis and quality of life. Roxadustat is the world's first oral small-molecule hypoxia-inducible factor prolyl hydroxylase inhibitor, which, unlike conventional erythropoietin, corrects anemia through various mechanisms. In this study, we retrospectively analyzed the changes in anemia, iron metabolism, lipids and inflammatory indexes in patients with low-risk myelodysplastic syndromes to evaluate its therapeutic efficacy and safety, and to provide theoretical and practical data for the application of roxadustat in myelodysplastic syndromes.


Anemia , Isoquinolines , Myelodysplastic Syndromes , Humans , Anemia/etiology , Anemia/drug therapy , Glycine/analogs & derivatives , Glycine/therapeutic use , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Isoquinolines/therapeutic use , Isoquinolines/administration & dosage , Myelodysplastic Syndromes/drug therapy , Prolyl-Hydroxylase Inhibitors/therapeutic use , Retrospective Studies
2.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Article En | MEDLINE | ID: mdl-38726798

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Apoptosis , Breast Neoplasms , Hypoxia-Inducible Factor-Proline Dioxygenases , Humans , Female , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Apoptosis/drug effects , Mice , Cell Hypoxia/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , NF-kappa B/metabolism , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/metabolism
3.
Nihon Yakurigaku Zasshi ; 159(3): 157-159, 2024.
Article Ja | MEDLINE | ID: mdl-38692879

Anemia in chronic kidney disease (CKD) occurs due to insufficient production of erythropoietin to compensate for the decrease in hemoglobin. Anemia in CKD has traditionally been treated with periodic injections of erythropoiesis-stimulating agents (ESAs), which are recombinant human erythropoietin preparations. Although ESA improved anemia in CKD and dramatically improved the quality of life of patients, there are some patients who are hyporesponsive to ESA, and the use of large doses of ESA in these patients may have a negative impact on patient prognosis. Currently, HIF prolyl hydroxylase (HIF-PH) inhibitors have been approved in Japan as a new treatment for anemia in CKD. HIF-PH inhibitors activate HIF and promote the production of endogenous erythropoietin. The 2019 Nobel Prize in Physiology or Medicine was awarded for groundbreaking research that uncovered the HIF pathway. Because HIF-PH inhibitors improve both erythropoietin production and iron metabolism, they are expected to be effective in treating ESA hyporesponsiveness and solve the inconvenience of injectable preparations. On the other hand, its effects are systemic and multifaceted, and long-term effects must be closely monitored.


Anemia , Humans , Anemia/drug therapy , Anemia/etiology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Erythropoietin/metabolism
4.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Article Ja | MEDLINE | ID: mdl-38692882

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
5.
Life Sci ; 346: 122641, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614299

AIMS: Kidney disease often leads to anemia due to a defect in the renal production of the erythroid growth factor erythropoietin (EPO), which is produced under the positive regulation of hypoxia-inducible transcription factors (HIFs). Chemical compounds that inhibit HIF-prolyl hydroxylases (HIF-PHs), which suppress HIFs, have been developed to reactivate renal EPO production in renal anemia patients. Currently, multiple HIF-PH inhibitors, in addition to conventional recombinant EPO reagents, are used for renal anemia treatment. This study aimed to elucidate the therapeutic mechanisms and drug-specific properties of HIF-PH inhibitors. METHODS AND KEY FINDINGS: Gene expression analyses and mass spectrometry revealed that HIF-PH inhibitors (daprodustat, enarodustat, molidustat, and vadadustat) alter Epo gene expression levels in the kidney and liver in a drug-specific manner, with different pharmacokinetics in the plasma and urine after oral administration to mice. The drug specificity revealed the dominant contribution of EPO induction in the kidneys rather than in the liver to plasma EPO levels after HIF-PH inhibitor administration. We also found that several HIF-PH inhibitors directly induce duodenal gene expression related to iron intake, while these drugs indirectly suppress hepatic hepcidin expression to mobilize stored iron for hemoglobin synthesis through induction of the EPO-erythroferrone axis. SIGNIFICANCE: Renal EPO induction is the major target of HIF-PH inhibitors for their therapeutic effects on erythropoiesis. Additionally, the drug-specific properties of HIF-PH inhibitors in EPO induction and iron metabolism have been shown in mice, providing useful information for selecting the proper HIF-PH inhibitor for each renal anemia patient.


Erythropoietin , Hypoxia-Inducible Factor-Proline Dioxygenases , Kidney , Liver , Prolyl-Hydroxylase Inhibitors , Pyrazoles , Triazoles , Animals , Erythropoietin/metabolism , Mice , Kidney/metabolism , Kidney/drug effects , Liver/metabolism , Liver/drug effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Male , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Anemia/drug therapy , Anemia/metabolism , Mice, Inbred C57BL
6.
Nat Commun ; 15(1): 3533, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670937

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.


Hypoxia-Inducible Factor-Proline Dioxygenases , Immunity, Innate , Interferon Regulatory Factor-3 , Oxygen , Proline , Zebrafish , Animals , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Interferon Regulatory Factor-3/metabolism , Hydroxylation , Humans , Proline/metabolism , Mice , Oxygen/metabolism , HEK293 Cells , Phosphorylation , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
7.
Article En | MEDLINE | ID: mdl-38430605

Prolyl hydroxylase domain 2 (PHD2) is an important enzyme in the human body that perceives changes in oxygen concentration and regulates response in hypoxic environments. Evaluation of PHD2 inhibitory activity of natural products is crucial for drug development of hypoxia related diseases. At present, the detection of low concentration of α-ketoglutaric acid (the substrate of PHD2 enzymatic reaction) requires derivatization reactions or sample pretreatment, which undoubtedly increases the workload of PHD2 inhibitory activity evaluation. In this paper, a direct detection approach of α-ketoglutaric acid was established by using the online stacking strategy of capillary electrophoresis to evaluate the PHD2 inhibitory activity of natural products. Under optimized conditions, detection of a single sample can be achieved within 2 min. By calculation, the intraday precision RSD of the apparent electrophoretic mobility and peak areas of α-ketoglutaric acid are 0.92 % and 0.79 %, respectively, and the interday RSD were 1.27 % and 0.96 % respectively. The recoveries of the present approach were 97.9-105.2 %, and the LOQ and LOD were 2.0 µM and 5.0 µM, respectively. Furthermore, this approach was applied for the evaluation of inhibitory activity of PHD2 for 13 natural products, and PHD2 inhibitory activity of salvianolic acid A was firstly reported. The present work not only realizes evaluation of PHD2 inhibitory activity through direct detection of α-ketoglutaric acid, but also provides technical support for the discovery of potential drug molecules in hypoxia related diseases.


Biological Products , Electrophoresis, Capillary , Hypoxia-Inducible Factor-Proline Dioxygenases , Ketoglutaric Acids , Humans , Biological Products/pharmacology , Electrophoresis, Capillary/methods , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Ketoglutaric Acids/analysis
8.
Clin Exp Nephrol ; 28(5): 391-403, 2024 May.
Article En | MEDLINE | ID: mdl-38530490

BACKGROUND: Vadadustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor developed for treating anemia in chronic kidney disease (CKD). The purpose of this post-hoc analysis was to investigate the factors affecting the responsiveness to vadadustat in anemia patients with nondialysis-dependent (NDD) or hemodialysis-dependent (HDD) CKD in two Japanese phase 3 studies. METHODS: Of 151 and 162 patients enrolled in NDD-CKD and HDD-CKD studies, 136 and 140 patients, respectively, were included and divided into subgroups for the analysis. To assess vadadustat responsiveness, the resistance index was defined as the mean body weight-adjusted dose of vadadustat (mg/kg) at weeks 20-24 divided by the mean hemoglobin (g/dL) at weeks 20-24. Multivariate analysis was performed to identify the variables affecting the resistance index. RESULTS: Independent factors identified as determinants for better response to vadadustat were as follows: high baseline hemoglobin, low baseline eGFR, high week-20-24 ferritin, and CKD not caused by autoimmune disease/glomerulonephritis/vasculitis in NDD-CKD; and male sex, high baseline C-reactive protein, and low baseline erythropoiesis-stimulating agent resistance index (ERI) in HDD-CKD. CONCLUSIONS: In this post-hoc analysis, several factors were identified as affecting the response to vadadustat. These results may provide useful information leading to an appropriate dose modification for vadadustat. CLINICAL TRIAL REGISTRATION: NCT03329196 (MT-6548-J01) and NCT03439137 (MT-6548-J03).


Anemia , Glycine , Glycine/analogs & derivatives , Hemoglobins , Picolinic Acids , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Male , Anemia/drug therapy , Anemia/etiology , Female , Aged , Middle Aged , Glycine/therapeutic use , Hemoglobins/metabolism , Hemoglobins/analysis , Japan , Renal Dialysis , Treatment Outcome , Glomerular Filtration Rate , Prolyl-Hydroxylase Inhibitors/therapeutic use , Ferritins/blood , Hematinics/therapeutic use , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Double-Blind Method , East Asian People
9.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38474262

Detrimental molecular processes in multiple sclerosis (MS) lead to the cellular accumulation of lipid peroxidation products and iron in the CNS, which represents the main driving force for ferroptosis. Ferroptosis is an iron-dependent form of regulated cell death, with proposed roles in neurodegeneration, oligodendrocyte loss and neuroinflammation in the pathogenesis of MS. Ferroptosis-related gene expression signature and molecular markers, which could reflect MS severity and progression, are currently understudied in humans. To tackle these challenges, we have applied a curated approach to create and experimentally analyze a comprehensive panel of ferroptosis-related genes covering a wide range of biological processes associated with ferroptosis. We performed the first ferroptosis-related targeted RNAseq on PBMCs from highly distinctive MS phenotype groups: mild relapsing-remitting (RR) (n = 24) and severe secondary progressive (SP) (n = 24), along with protein detection of GPX4 and products of lipid peroxidation (MDA and 4-HNE). Out of 138 genes, 26 were differentially expressed genes (DEGs), indicating changes in both pro- and anti-ferroptotic genes, representing a molecular signature associated with MS severity. The top three DEGs, as non-core ferroptosis genes, CDKN1A, MAP1B and EGLN2, were replicated by qPCR to validate findings in independent patient groups (16 RR and 16 SP MS). Co-expression and interactions of DEGs were presented as additional valuable assets for deeper understanding of molecular mechanisms and key targets related to MS severity. Our study integrates a wide genetic signature and biochemical markers related to ferroptosis in easily obtainable PBMCs of MS patients with clinical data and disease severity, thus providing novel molecular markers which can complement disease-related changes in the brain and undergo further research as potential therapeutic targets.


Ferroptosis , Multiple Sclerosis , Humans , Transcriptome , Neoplasm Recurrence, Local , Patient Acuity , Iron , Hypoxia-Inducible Factor-Proline Dioxygenases
10.
Life Sci ; 344: 122564, 2024 May 01.
Article En | MEDLINE | ID: mdl-38492922

AIMS: Prolyl hydroxylase domain 2 (PHD2), encoded by the Egln1 gene, serves as a pivotal regulator of the hypoxia-inducible factor (HIF) pathway and acts as a cellular oxygen sensor. Somatic inactivation of Phd2 in mice results in polycythemia and congestive heart failure. However, due to the embryonic lethality of Phd2 deficiency, its role in development remains elusive. Here, we investigated the function of two egln1 paralogous genes, egln1a and egln1b, in zebrafish. MAIN METHODS: The egln1 null zebrafish were generated using the CRISPR/Cas9 system. Quantitative real-time PCR assays and Western blot analysis were employed to detect the effect of egln1 deficiency on the hypoxia signaling pathway. The hypoxia response of egln1 mutant zebrafish were assessed by analyzing heart rate, gill agitation frequency, and blood flow velocity. Subsequently, o-dianisidine staining and in situ hybridization were used to investigate the role of egln1 in zebrafish hematopoietic function. KEY FINDINGS: Our data show that the loss of egln1a or egln1b individually has no visible effects on growth rate. However, the egln1a; egln1b double mutant displayed significant growth retardation and elevated mortality at around 2.5 months old. Both egln1a-null and egln1b-null zebrafish embryo exhibited enhanced tolerance to hypoxia, systemic hypoxic response that include hif pathway activation, increased cardiac activity, and polycythemia. SIGNIFICANCE: Our research introduces zebrafish egln1 mutants as the first congenital embryonic viable systemic vertebrate animal model for PHD2, providing novel insights into hypoxic signaling and the progression of PHD2- associated disease.


Hypoxia-Inducible Factor-Proline Dioxygenases , Hypoxia , Polycythemia , Zebrafish , Animals , Mice , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Polycythemia/genetics , Procollagen-Proline Dioxygenase/genetics , Zebrafish/genetics , Zebrafish/metabolism
11.
Adv Ther ; 41(4): 1526-1552, 2024 Apr.
Article En | MEDLINE | ID: mdl-38363463

INTRODUCTION: Thromboembolic events have occurred in clinical trials of roxadustat. This post hoc analysis explored potential factors related to thromboembolic events in dialysis-dependent patients treated with roxadustat in four phase 3 clinical trials in Japan. METHODS: Thromboembolic events with onset before and after week 12 were evaluated. Baseline risk factors for thromboembolic events were investigated by Cox regression analyses. Nested case-control analyses using conditional logistic models with matched pairs of case-control data explored relationships between thromboembolic events and laboratory parameters. RESULTS: Of the 444 patients, 56 thromboembolic events were observed in 44 patients during ≤ 52 weeks of treatment. The proportion of venous and arterial thromboembolic events gradually increased after week 12. Baseline risk factors included hemodialysis (vs peritoneal dialysis), advanced age (≥ 65 years), shorter dialysis vintage (< 4 months), and history of thromboembolism. The absence of concomitant intravenous or oral iron therapy (including ferric citrate) was associated with thromboembolic events before week 12 (hazard ratio 11.25; 95% confidence interval [CI] 3.36-37.71; vs presence). Case-control analysis revealed that low average transferrin saturation (< 10%; unadjusted odds ratio [OR] 6.25; 95% CI 1.52-25.62; vs ≥ 20%), high average transferrin level (≥ 2.5 g/L; unadjusted OR 4.36; 95% CI 1.23-15.39; vs < 2.0 g/L), and high average roxadustat dose (≥ 150 mg; unadjusted OR 5.95; 95% CI 1.07-33.16; vs < 50 mg) over the previous 8 weeks before the event onset were associated with thromboembolic events after week 12. However, adjustment for iron status extinguished the significant relationship between roxadustat dose and events. Multivariate case-control analysis showed that increased transferrin from baseline (≥ 1.0 g/L; adjusted OR 7.85; 95% CI 1.82-33.90; vs < 0.5 g/dL) and decreased mean corpuscular volume (< - 2 fL; adjusted OR 5.55; 95% CI 1.73-17.83; vs ≥ 0 fL) were associated with increased risk of thromboembolic events. CONCLUSION: In addition to established risk factors, iron deficiency may be related to thromboembolic events. Graphical Abstract available for this article. TRIAL REGISTRATION: NCT02780726, NCT02952092, NCT02780141, NCT02779764.


Roxadustat is an oral medicine that treats anemia in patients with chronic kidney disease (CKD). Thromboembolic events, or blood vessels blocked by a blood clot, have occurred in clinical trials of roxadustat. This study explored potential factors that may be related to thromboembolic events in roxadustat-treated patients with anemia of CKD on dialysis before and after week 12. This study found that hemodialysis (vs peritoneal dialysis), advanced age (older than 65 years), short amount of time on dialysis (less than 4 months), previous history of thromboembolic events, and not receiving iron therapy were risk factors for thromboembolic events before week 12. Iron deficiency and high roxadustat dose were risk factors for thromboembolic events after week 12. When iron status was also considered, we did not find that roxadustat dose was related to thromboembolic events. A different model found that increased levels of transferrin, a protein that transports iron, from baseline and decreased mean corpuscular volume, or smaller red blood cells, increased the risk of thromboembolic events. Patients with anemia of CKD on dialysis may benefit from more intentional monitoring and management of iron while receiving roxadustat.


Anemia , Renal Insufficiency, Chronic , Humans , Aged , Anemia/drug therapy , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Japan/epidemiology , Hypoxia-Inducible Factor-Proline Dioxygenases/therapeutic use , Glycine/adverse effects , Isoquinolines/adverse effects , Iron/analysis , Iron/therapeutic use , Transferrins , Hemoglobins/analysis
12.
Cancer Med ; 13(3): e6998, 2024 Feb.
Article En | MEDLINE | ID: mdl-38400673

BACKGROUND: Hypoxia inducible factors, HIF-1α and HIF-2α, and their main regulators, the prolyl hydroxylase domain proteins (PHDs), mediate cellular response to hypoxia and contribute to tumor progression in clear cell renal cell carcinoma (ccRCC). These biomarkers may improve the value of traditional histopathological features in predicting disease progression after nephrectomy for localized ccRCC and guide patient selection for adjuvant treatments. PATIENTS AND METHODS: In this study, we analyzed the associations of PHD2 and PHD3 with histopathological tumor features and recurrence-free survival (RFS) in a retrospective cohort of 173 patients who had undergone surgery for localized ccRCC at Helsinki University Hospital (HUH), Finland. An external validation cohort of 191 patients was obtained from Turku University Hospital (TUH), Finland. Tissue-microarrays (TMA) were constructed using the primary tumor samples. Clinical parameters and follow-up information from 2006 to 2019 were obtained from electronic medical records. The cytoplasmic and nuclear expression of PHD2, and PHD3 were scored based on immunohistochemical staining and their associations with histopathological features and RFS were evaluated. RESULTS: Nuclear PHD2 and PHD3 expression in cancer cells were associated with lower pT-stage and Fuhrman grade compared with negative nuclei. Patients with positive nuclear expression of PHD2 and PHD3 in cancer cells had favorable RFS compared with patients having negative tumors. The nuclear expression of PHD2 was independently associated with a decreased risk of disease recurrence or death from RCC in multivariable analysis. These results were observed in both cohorts. CONCLUSIONS: The absence of nuclear PHD2 and PHD3 expression in ccRCC was associated with poor RFS and the nuclear expression of PHD2 predicted RFS regardless of other known histopathological prognostic factors. Nuclear PHD2 and PHD3 are potential prognostic biomarkers in patients with localized ccRCC and should be further investigated and validated in prospective studies.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Mixed Function Oxygenases , Prospective Studies , Retrospective Studies , Neoplasm Recurrence, Local , Hypoxia-Inducible Factor-Proline Dioxygenases , Hypoxia , Kidney Neoplasms/pathology , Biomarkers , Hypoxia-Inducible Factor 1, alpha Subunit
13.
Sci Rep ; 14(1): 3874, 2024 02 16.
Article En | MEDLINE | ID: mdl-38365865

Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.


Prolyl-Hydroxylase Inhibitors , Shock, Hemorrhagic , Rats , Animals , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Pharmaceutical Preparations , Shock, Hemorrhagic/drug therapy , Hypoxia/drug therapy , Prolyl Hydroxylases , Hypoxia-Inducible Factor-Proline Dioxygenases
14.
Br J Cancer ; 130(4): 597-612, 2024 03.
Article En | MEDLINE | ID: mdl-38184692

BACKGROUND: The expression of Egl-9 family hypoxia-inducible factor 3 (EGLN3) is notably decreased in various malignancies, including gastric cancer (GC). While the predominant focus has been on the hydroxylase activity of EGLN3 for its antitumour effects, recent findings have suggested nonenzymatic roles for EGLN3. METHODS: This study assessed the clinical significance of EGLN3 expression in GC and explored the connection between EGLN3 DNA promoter methylation and transcriptional silencing. To investigate the effect of EGLN3 on GC cells, a gain-of-function strategy was adopted. RNA sequencing was conducted to identify the key effector molecules and signalling pathways associated with EGLN3. RESULTS: EGLN3 expression was significantly reduced in GC tissues, correlating with poorer patient prognosis. EGLN3 hypermethylation disrupts transcriptional equilibrium, contributing to deeper tumour invasion and lymph node metastasis, thus exacerbating GC progression. Conversely, restoration of EGLN3 expression in GC cells substantially inhibited cell proliferation and metastasis. EGLN3 was also found to impede the malignant progression of GC cells by downregulating Jumonji C domain-containing protein 8-mediated activation of the NF-κB pathway, independent of its hydroxylase activity. CONCLUSIONS: EGLN3 has the potential to hinder the spread of GC cells through a nonenzymatic mechanism, thereby shedding light on the complex nature of GC progression.


NF-kappa B , Stomach Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Signal Transduction/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Mixed Function Oxygenases/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
15.
J Am Heart Assoc ; 13(3): e033109, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38258662

BACKGROUND: Intraplaque angiogenesis occurs in response to atherosclerotic plaque hypoxia, which is driven mainly by highly metabolically active macrophages. Improving plaque oxygenation by increasing macrophage hypoxic signaling, thus stimulating intraplaque angiogenesis, could restore cellular function and neovessel maturation, and decrease plaque formation. Prolyl hydroxylases (PHDs) regulate cellular responses to hypoxia. We therefore aimed to elucidate the role of myeloid PHD2, the dominant PHD isoform, on intraplaque angiogenesis in a murine model for venous bypass grafting. METHODS AND RESULTS: Myeloid PHD2 conditional knockout (PHD2cko) and PHD2 wild type mice on an Ldlr-/- background underwent vein graft surgery (n=11-15/group) by interpositioning donor caval veins into the carotid artery of genotype-matched mice. At postoperative day 28, vein grafts were harvested for morphometric and compositional analysis, and blood was collected for flow cytometry. Myeloid PHD2cko induced and improved intraplaque angiogenesis by improving neovessel maturation, which reduced intraplaque hemorrhage. Intima/media ratio was decreased in myeloid PHD2cko vein grafts. In addition, PHD2 deficiency prevented dissection of vein grafts and resulted in an increase in vessel wall collagen content. Moreover, the macrophage proinflammatory phenotype in the vein graft wall was attenuated in myeloid PHD2cko mice. In vitro cultured PHD2cko bone marrow-derived macrophages exhibited an increased proangiogenic phenotype compared with control. CONCLUSIONS: Myeloid PHD2cko reduces vein graft disease and ameliorates vein graft lesion stability by improving intraplaque angiogenesis.


Hypoxia-Inducible Factor-Proline Dioxygenases , Plaque, Atherosclerotic , Vascular Remodeling , Animals , Mice , Angiogenesis , Disease Models, Animal , Hypoxia , Mice, Knockout , Plaque, Atherosclerotic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
16.
Front Biosci (Landmark Ed) ; 29(1): 18, 2024 01 17.
Article En | MEDLINE | ID: mdl-38287821

BACKGROUND: Environmental and genetic factors are jointly involved in the development of chronic obstructive pulmonary disease (COPD). The EGLN1 gene is a major factor in upstream regulation of the hypoxia-inducible pathway. EGLN1 negatively regulates the hypoxia-inducible factors HIF-lα and HIF-2α by regulating the concentration of oxygen, mainly in a hypoxic environment. Hypoxia is a common physiologic condition during the progression of COPD, and several studies have identified genetic variants in EGLN1 as a key factor in the adaptation to hypoxic environments. However, it is still unclear whether there is an association between EGLN1 variants and the risk of developing COPD. METHODS: A case-control study was conducted in the Gannan Tibetan Autonomous Prefecture, Gansu Province. A total of 292 COPD patients and 297 healthy controls were enrolled to assess the association of EGLN1 single nucleotide polymorphisms (SNPs) (rs41303095 A>G, rs480902 C>T, rs12097901 C>G, rs2153364 G>A) with COPD susceptibility. RESULTS: The EGLN1 rs41303095 A>G, rs480902 C>T, rs12097901 C>G, and rs2153364 G>A polymorphisms were not associated with COPD susceptibility (p > 0.05). CONCLUSIONS: The EGLN1 rs41303095 A>G, rs480902 C>T, rs12097901 C>G and rs2153364 G>A polymorphisms were found in this study not to be associated with susceptibility to COPD in Gannan Tibetans.


Altitude , East Asian People , Hypoxia , Humans , Case-Control Studies , Hypoxia/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
17.
J Med Chem ; 67(2): 1393-1405, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38189253

Stabilization of hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase domain enzymes (PHDs) represents a breakthrough in treating anemia associated with chronic kidney disease. Here, we identified a novel scaffold for noncarboxylic PHD inhibitors by utilizing structure-based drug design (SBDD) and generative models. Iterative optimization of potency and solubility resulted in compound 15 which potently inhibits PHD thus stabilizing HIF-α in vitro. X-ray cocrystal structure confirmed the binding model was distinct from previously reported carboxylic acid PHD inhibitors by pushing away the R383 and Y303 residues resulting in a larger inner subpocket. Furthermore, compound 15 demonstrated a favorable in vitro/in vivo absorption, distribution, metabolism, and excretion (ADME) profile, low drug-drug interaction risk, and clean early safety profiling. Functionally, oral administration of compound 15 at 10 mg/kg every day (QD) mitigated anemia in a 5/6 nephrectomy rat disease model.


Anemia , Prolyl-Hydroxylase Inhibitors , Renal Insufficiency, Chronic , Rats , Animals , Prolyl Hydroxylases , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Anemia/drug therapy , Renal Insufficiency, Chronic/drug therapy , Administration, Oral , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
18.
Hum Genomics ; 18(1): 7, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38291512

The present study investigated two single nucleotide polymorphisms (SNPs)-rs479200 and rs516651 in the host EGLN1/PHD2 gene for their association with COVID-19 severity. A retrospective cohort of 158 COVID-19 patients from the Indian population (March 2020 to June 2021) was enrolled. Notably, the frequency of C allele (0.664) was twofold higher than T allele (0.336) in severe COVID-19 patients. Here, we report a novel finding that the C allele of rs479200 in the EGLN1 gene imparts a high risk of severe COVID-19 (odds ratio-6.214 (1.84-20.99) p = 0.003; 9.421 (2.019-43.957) p = 0.004), in additive inheritance model (adjusted and unadjusted, respectively).


COVID-19 , Humans , Alleles , Retrospective Studies , COVID-19/epidemiology , COVID-19/genetics , Polymorphism, Single Nucleotide/genetics , Asian People , Genetic Predisposition to Disease , Gene Frequency , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
19.
Genet Test Mol Biomarkers ; 28(1): 10-21, 2024 Jan.
Article En | MEDLINE | ID: mdl-38294357

Objective: To conduct bioinformatics analysis on the prognostic effect, mechanism of action, and drug sensitivity of Egl-9 family hypoxia-inducible factor 1 (EGLN1) expression on cervical cancer. Methods: Bioinformatics were obtained from Gene Expression Profiling Interactive Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), and the human cancer metastasis database (HCMDB), and the effect of EGLN1 expression level on the prognosis of cervical cancer was comprehensively analyzed. The protein-protein interaction network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the possible mechanism of EGLN1 affecting the prognosis of cervical cancer was discussed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, Gene Set Cancer Analysis (GSCALite) was used to predict sensitive drugs online. Results: The higher the expression level of EGLN1, the shorter the tumor-free survival time and overall survival time of cervical cancer. The higher the stage of cervical cancer, the higher the expression level of EGLN1. The expression of EGLN1 affects the degree of immune infiltration, the variation of somatic copy number, and the level of N6-methyladenosine (m6A) modification in cervical cancer. COX regression model suggested that EGLN1 was an independent prognostic factor of cervical cancer. Conclusions: The high expression of EGLN1 in cervical cancer is an independent risk factor for the prognosis of cervical cancer, which affects the prognosis of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) through different signal pathways. It is expected to be used to predict the sensitive anticancer drugs for the treatment of cervical cancer.


Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Biomarkers , Computational Biology , Databases, Factual , Hypoxia-Inducible Factor-Proline Dioxygenases
20.
Am J Nephrol ; 55(2): 255-259, 2024.
Article En | MEDLINE | ID: mdl-37231827

Renal anemia is treated with erythropoiesis-stimulating agents (ESAs), even though epoetin alfa and darbepoetin increase the risk of cardiovascular death and thromboembolic events, including stroke. Hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitors have been developed as an alternative to ESAs, producing comparable increases in hemoglobin. However, in advanced chronic kidney disease, HIF-PHD inhibitors can increase the risk of cardiovascular death, heart failure, and thrombotic events to a greater extent than that with ESAs, indicating that there is a compelling need for safer alternatives. Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major cardiovascular events, and they increase hemoglobin, an effect that is related to an increase in erythropoietin and an expansion in red blood cell mass. SGLT2 inhibitors increase hemoglobin by ≈0.6-0.7 g/dL, resulting in the alleviation of anemia in many patients. The magnitude of this effect is comparable to that seen with low-to-medium doses of HIF-PHD inhibitors, and it is apparent even in advanced chronic kidney disease. Interestingly, HIF-PHD inhibitors act by interfering with the prolyl hydroxylases that degrade both HIF-1α and HIF-2α, thus enhancing both isoforms. However, HIF-2α is the physiological stimulus to the production of erythropoietin, and upregulation of HIF-1α may be an unnecessary ancillary property of HIF-PHD inhibitors, which may have adverse cardiac and vascular consequences. In contrast, SGLT2 inhibitors act to selectively increase HIF-2α, while downregulating HIF-1α, a distinctive profile that may contribute to their cardiorenal benefits. Intriguingly, for both HIF-PHD and SGLT2 inhibitors, the liver is likely to be an important site of increased erythropoietin production, recapitulating the fetal phenotype. These observations suggest that the use of SGLT2 inhibitors should be seriously evaluated as a therapeutic approach to treat renal anemia, yielding less cardiovascular risk than other therapeutic options.


Anemia , Erythropoietin , Hematinics , Prolyl-Hydroxylase Inhibitors , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Anemia/drug therapy , Anemia/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/therapeutic use , Epoetin Alfa/therapeutic use , Erythropoiesis , Erythropoietin/metabolism , Hematinics/adverse effects , Hemoglobins , Hypoxia-Inducible Factor-Proline Dioxygenases , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
...