Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 372
1.
Biochem Biophys Res Commun ; 716: 150020, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38692011

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.


Fibroblasts , Indoles , Macrophages , Mice, Inbred C57BL , Osteopontin , Proto-Oncogene Proteins c-akt , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Osteopontin/metabolism , Osteopontin/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Signal Transduction/drug effects , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Male , Drug Therapy, Combination , Bleomycin
2.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Article En | MEDLINE | ID: mdl-38763774

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Autophagy , Bleomycin , Autophagy/drug effects , Humans , Animals , A549 Cells , Mice , Bleomycin/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Male
3.
Theranostics ; 14(7): 2794-2815, 2024.
Article En | MEDLINE | ID: mdl-38773984

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Bleomycin , Cytokines , Idiopathic Pulmonary Fibrosis , Macrophages , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Mice , Macrophages/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Cytokines/metabolism , Humans , Disease Models, Animal , Lung/pathology , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Mice, Transgenic , Male , Piperidines/pharmacology , Female , Acrylamides
4.
Respir Res ; 25(1): 195, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704585

BACKGROUND: Lipocalin-2 (LCN2) is a secretory glycoprotein upregulated by oxidative stress; moreover, patients with idiopathic pulmonary fibrosis (IPF) have shown increased LCN2 levels in bronchoalveolar lavage fluid (BALF). This study aimed to determine whether circulatory LCN2 could be a systemic biomarker in patients with IPF and to investigate the role of LCN2 in a bleomycin-induced lung injury mouse model. METHODS: We measured serum LCN2 levels in 99 patients with stable IPF, 27 patients with acute exacerbation (AE) of IPF, 51 patients with chronic hypersensitivity pneumonitis, and 67 healthy controls. Further, LCN2 expression in lung tissue was evaluated in a bleomycin-induced lung injury mouse model, and the role of LCN2 was investigated using LCN2-knockout (LCN2 -/-) mice. RESULTS: Serum levels of LCN2 were significantly higher in patients with AE-IPF than in the other groups. The multivariate Cox proportional hazards model showed that elevated serum LCN2 level was an independent predictor of poor survival in patients with AE-IPF. In the bleomycin-induced lung injury mouse model, a higher dose of bleomycin resulted in higher LCN2 levels and shorter survival. Bleomycin-treated LCN2 -/- mice exhibited increased BALF cell and protein levels as well as hydroxyproline content. Moreover, compared with wild-type mice, LCN2-/- mice showed higher levels of circulatory 8-isoprostane as well as lower Nrf-2, GCLC, and NQO1 expression levels in lung tissue following bleomycin administration. CONCLUSIONS: Our findings demonstrate that serum LCN2 might be a potential prognostic marker of AE-IPF. Moreover, LCN2 expression levels may reflect the severity of lung injury, and LCN2 may be a protective factor against bleomycin-induced acute lung injury and oxidative stress.


Biomarkers , Idiopathic Pulmonary Fibrosis , Lipocalin-2 , Mice, Inbred C57BL , Mice, Knockout , Animals , Lipocalin-2/blood , Lipocalin-2/metabolism , Lipocalin-2/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Male , Humans , Female , Biomarkers/blood , Biomarkers/metabolism , Mice , Aged , Middle Aged , Prognosis , Bleomycin/toxicity , Disease Progression , Disease Models, Animal
5.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article En | MEDLINE | ID: mdl-38622264

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
6.
Sci Adv ; 10(15): eadj1444, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38598637

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via µPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.


Idiopathic Pulmonary Fibrosis , Humans , Animals , Mice , Tissue Distribution , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/metabolism , Lung/diagnostic imaging , Lung/metabolism , Peptides/metabolism , Bleomycin
7.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589751

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Idiopathic Pulmonary Fibrosis , Nanoparticles , Humans , Pandemics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Lung , Drug Delivery Systems , Pyridones/therapeutic use
8.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670401

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Epithelial-Mesenchymal Transition , Forkhead Box Protein O3 , MAP Kinase Signaling System , Mice, Inbred C57BL , Plant Extracts , Pulmonary Fibrosis , Animals , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , A549 Cells , Mice , MAP Kinase Signaling System/drug effects , Epithelial-Mesenchymal Transition/drug effects , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Forkhead Box Protein O3/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Bleomycin , Antifibrotic Agents/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology
9.
Bioorg Chem ; 147: 107374, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636433

The incidence of idiopathic pulmonary fibrosis (IPF) has been steadily increasing each year, posing significant challenges in its treatment. In this study, we conducted the design and synthesis of 23 new inhibitors that specifically target the TGF-ß1/Smad3 pathway. Initially, we employed a cell model of TGF-ß-induced pulmonary fibrosis, using cell survival rate and HYP expression as indicators to identify the potent ingredient 5aa, which demonstrated significant anti-pulmonary fibrosis activity. Subsequently, we induced mice with bleomycin (BLM) to establish an experimental animal model of pulmonary fibrosis, and evaluated the pharmacodynamics of 5aa in vivo against pulmonary fibrosis. The alterations in HYP and collagen levels in BLM-induced pulmonary fibrosis mice were analyzed using ELISA and immunohistochemistry techniques. The results indicated that compound 5aa effectively suppressed the fibrotic response induced by TGF-ß1, inhibited the expression of the fibrotic marker α-SMA, and hindered the EMT process in NIH3T3 cells. Additionally, oral administration of 5aa demonstrated significant therapeutic effects in a mouse model of IPF, comparable to the established drug Nintedanib. Moreover, compound 5aa exhibited higher bioavailability in vivo compared to Nintedanib. These collective outcomes suggest that 5aa holds promise as a potential inhibitor of TGF-ß1/Smad3 signaling for the treatment of IPF.


Idiopathic Pulmonary Fibrosis , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Smad3 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Mice , Signal Transduction/drug effects , Molecular Structure , Humans , Bleomycin , Structure-Activity Relationship , Mice, Inbred C57BL , NIH 3T3 Cells , Dose-Response Relationship, Drug , Male
10.
Eur J Pharmacol ; 972: 176572, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38614381

Idiopathic pulmonary fibrosis (IPF) is the severe form of interstitial pneumonias. Acute exacerbation (AE) of IPF is characterized by progressive lung fibrosis with the irreversible lung function decline and inflammation, and is often fatal with poor prognosis. However, the physiological and molecular mechanisms in AE of IPF are still not fully understood. In this study, we investigated the mechanism underlying AE of IPF, using bleomycin (BLM) and lipopolysaccharide (LPS) (BLM + LPS)-treated mice. The mice were treated with a single dose of 1.5 mg/kg BLM (on day 0) and/or 0.5 mg/kg LPS (on day 14), and maintained for another 7 days (total 21 days). Administration of BLM + LPS more severely aggravated the respiratory function, fibrosis, and inflammation in the lungs, together with the elevated interleukin-6 level in bronchoalveolar lavage fluid, than the control or BLM alone-treated mice. Moreover, the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay demonstrated that subsequent treatment with LPS elevated cell death in the lungs of BLM-administered mice. Furthermore, the expression levels of mixed lineage kinase domain-like protein (MLKL), a marker of necroptotic cell death, and CD68-positive macrophages were increased, and most of them were co-stained in the lungs of BLM + LPS-treated mice. These results, taken together, indicate that BLM + LPS treatment showed more exacerbated the respiratory function with extensive fibrosis and inflammation than treatment with BLM alone in mice. Fibrosis and inflammation in AE of IPF seen in BLM + LPS-administered mice included an increase in macrophages and their necroptotic cell death.


Bleomycin , Idiopathic Pulmonary Fibrosis , Lipopolysaccharides , Macrophages , Animals , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Mice , Male , Macrophages/drug effects , Macrophages/pathology , Macrophages/metabolism , Disease Progression , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Necroptosis/drug effects , Interleukin-6/metabolism , Bronchoalveolar Lavage Fluid/cytology
11.
Redox Biol ; 72: 103148, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603946

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Apoptosis , Bleomycin , Fibroblasts , Reactive Oxygen Species , Selenious Acid , Bleomycin/adverse effects , Animals , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Selenious Acid/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Cell Proliferation/drug effects
12.
Respir Res ; 25(1): 153, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566174

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Idiopathic Pulmonary Fibrosis , beta Catenin , Adult , Animals , Humans , beta Catenin/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Wnt Signaling Pathway , Bleomycin/toxicity
13.
Respir Investig ; 62(3): 388-394, 2024 May.
Article En | MEDLINE | ID: mdl-38460356

BACKGROUND: The antifibrotic agents pirfenidone and nintedanib have been shown to be effective in patients with idiopathic pulmonary fibrosis (IPF). However, discontinuation of antifibrotic drugs is a major clinical concern because of the lack of alternative treatment options. Therefore, we identified factors that may be useful for predicting the termination of antifibrotic agents. METHODS: We retrospectively recruited 280 IPF patients treated with antifibrotic drugs between 2009 and 2018 from seven regional core hospitals in Gunma prefecture, Japan. RESULTS: At four months, the short-term discontinuation group exhibited a significantly worse prognosis in the pirfenidone group and a poorer prognosis in the nintedanib group compared to that in the continuation group. The discontinuation group of pirfenidone at 4 months exhibited lower albumin and higher C-reactive protein (CRP) levels in the sera compared to the group that continued treatment for more than 4 months. In multivariate analysis, the Glasgow prognostic score (GPS), well known as a predictor of cancer prognosis, which comprises serum CRP and albumin levels, predicted early discontinuation and prognosis in the pirfenidone group, whereas the body mass index (BMI) predicted early discontinuation of nintedanib. A high GPS, with both albumin <3.5 g/dL and CRP >1.0 mg/dL, was associated with a poorer prognosis in the pirfenidone group. CONCLUSION: GPS and BMI were significant factors for short-term pirfenidone and nintedanib discontinuation, respectively. Initial evaluation of GPS and BMI prior to antifibrotic therapy may contribute to less interrupted IPF management, thus leading to better prognostic outcomes in patients with IPF.


Antifibrotic Agents , Idiopathic Pulmonary Fibrosis , Indoles , Humans , Body Mass Index , Prognosis , Retrospective Studies , Treatment Outcome , Idiopathic Pulmonary Fibrosis/chemically induced , Pyridones/therapeutic use , Albumins
14.
Phytomedicine ; 128: 155368, 2024 Jun.
Article En | MEDLINE | ID: mdl-38498951

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the abnormal proliferation of fibroblast and excessive deposition of extracellular matrix (ECM), accompanied by inflammation and ultimately respiratory failure. Yinhuang granule (YHG), with clinical properties of clearing heat, detoxifying and anti-inflammation, is commonly used to heal upper respiratory diseases in China for decades. PURPOSE: To explore the improvement of YHG on bleomycin (BLM)-induced IPF in mice and its possible engaged mechanism. METHODS: The mortality rate was recorded, lung function was determined and hematoxylin-eosin (H&E) staining was carried out to explore the alleviation of YHG on BLM-caused IPF in mice. Hydroxyproline, collagen I and collagen III contents were detected, and Sirius red and Masson staining were conducted to evaluate YHG's alleviation on lung fibrosis. The underlying mechanism was predicted by network pharmacology, and confirmed by Real-time polymerase chain reaction (RT-PCR), Western-blot (WB) and enzyme linked immunosorbent assay (ELISA). The binding affinity between related key proteins and active compounds in YHG was calculated by using molecular docking, and further validated by cellular thermal shift assay (CESTA). RESULTS: YHG (400, 800 mg/kg) weakened lung damage and pulmonary fibrosis in mice induced by BLM. Network pharmacology and experimental validation displayed that inflammation and angiogenesis participated in the YHG-provided improvement on IPF, and key involved molecules included tumor necrosis factor-α (TNFα), vascular endothelial growth factor-A (VEGFA), interleukine-6 (IL-6), etc. The data of molecular docking presented that some main active compounds from YHG had a high binding affinity with TNFR1 or VEGFR2, and some of them were further validated by CESTA. CONCLUSION: YHG effectively improved the BLM-induced IPF in mice via reducing inflammation and angiogenesis.


Bleomycin , Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Molecular Docking Simulation , Network Pharmacology , Vascular Endothelial Growth Factor A , Animals , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Vascular Endothelial Growth Factor A/metabolism , Male , Tumor Necrosis Factor-alpha/metabolism , Humans , Lung/drug effects , Mice, Inbred C57BL , Disease Models, Animal
15.
Eur J Pharmacol ; 969: 176459, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38438063

Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the ß-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.


Alveolar Epithelial Cells , Benzylisoquinolines , Idiopathic Pulmonary Fibrosis , Mice , Animals , Mitophagy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Cellular Senescence , Fibrosis , Protein Kinases/metabolism , Bleomycin/toxicity , Ubiquitin-Protein Ligases/metabolism
16.
Cell Death Differ ; 31(4): 417-430, 2024 Apr.
Article En | MEDLINE | ID: mdl-38374230

Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.


Bleomycin , Mice, Inbred C57BL , Oxidative Stress , Pulmonary Fibrosis , Animals , Humans , Male , Mice , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/deficiency , Oxidative Stress/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Reactive Oxygen Species/metabolism , Signal Transduction
17.
Biomed Pharmacother ; 173: 116298, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394850

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease; its cause is unknown, and it leads to notable health problems. Currently, only two drugs are recommended for IPF treatment. Although these drugs can mitigate lung function decline, neither can improve nor stabilize IPF or the symptoms perceived by patients. Therefore, the development of novel treatment options for pulmonary fibrosis is required. The present study investigated the effects of a novel compound, caffeic acid ethanolamide (CAEA), on human pulmonary fibroblasts and evaluated its potential to mitigate bleomycin-induced pulmonary fibrosis in mice. CAEA inhibited TGF-ß-induced α-SMA and collagen expression in human pulmonary fibroblasts, indicating that CAEA prevents fibroblasts from differentiating into myofibroblasts following TGF-ß exposure. In animal studies, CAEA treatment efficiently suppressed immune cell infiltration and the elevation of TNF-α and IL-6 in bronchoalveolar lavage fluid in mice with bleomycin-induced pulmonary fibrosis. Additionally, CAEA exerted antioxidant effects by recovering the enzymatic activities of oxidant scavengers. CAEA directly inhibited activation of TGF-ß receptors and protected against bleomycin-induced pulmonary fibrosis through inhibition of the TGF-ß/SMAD/CTGF signaling pathway. The protective effect of CAEA was comparable to that of pirfenidone, a clinically available drug. Our findings support the potential of CAEA as a viable method for preventing the progression of pulmonary fibrosis.


Bleomycin , Caffeic Acids , Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Bleomycin/toxicity , Antioxidants/metabolism , Lung , Idiopathic Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta/metabolism , Fibroblasts , Anti-Inflammatory Agents/adverse effects , Mice, Inbred C57BL
18.
J Ethnopharmacol ; 324: 117737, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38228229

ETHNOPHARMACOLOGICAL RELEVANCE: Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. AIM OF THE STUDY: Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. MATERIALS AND METHODS: In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-ß1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylin-eosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type Ⅰ (Collagen Ⅰ), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. RESULTS: Using TGF-ß1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and α-smooth muscle actin (α-SMA), and reduced the deposition of FN and Collagen Ⅰ. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen Ⅰ in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. CONCLUSIONS: Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-ß1/Smad3 signaling pathway.


Idiopathic Pulmonary Fibrosis , Transforming Growth Factor beta1 , Mice , Animals , Humans , Transforming Growth Factor beta1/metabolism , Smad7 Protein/metabolism , Smad7 Protein/pharmacology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Collagen Type I/metabolism , Bleomycin , Disease Models, Animal , Signal Transduction
19.
J Nanobiotechnology ; 22(1): 14, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38166847

Idiopathic pulmonary fibrosis (IPF) is a highly debilitating and fatal chronic lung disease that is difficult to cure clinically. IPF is characterized by a gradual decline in lung function, which leads to respiratory failure and severely affects patient quality of life and survival. Oxidative stress and chronic inflammation are believed to be important pathological mechanisms underlying the onset and progression of IPF, and the vicious cycle of NOX4-derived ROS, NLRP3 inflammasome activation, and p38 MAPK in pulmonary fibrogenesis explains the ineffectiveness of single-target or single-drug interventions. In this study, we combined astragaloside IV (AS-IV) and ligustrazine (LIG) based on the fundamental theory of traditional Chinese medicine (TCM) of "tonifying qi and activating blood" and loaded these drugs onto nanoparticles (AS_LIG@PPGC NPs) that were inhalable and could penetrate the mucosal barrier. Our results suggested that inhalation of AS_LIG@PPGC NPs significantly improved bleomycin-induced lung injury and fibrosis by regulating the NOX4-ROS-p38 MAPK and NOX4-NLRP3 pathways to treat and prevent IPF. This study not only demonstrated the superiority, feasibility, and safety of inhalation therapy for IPF intervention but also confirmed that breaking the vicious cycle of ROS and the NLRP3 inflammasome is a promising strategy for the successful treatment of IPF. Moreover, this successful nanoplatform is a good example of the integration of TCM and modern medicine.


Idiopathic Pulmonary Fibrosis , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Medicine, Chinese Traditional , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Quality of Life , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Fibrosis , Inflammation/pathology , p38 Mitogen-Activated Protein Kinases
20.
Respir Res ; 25(1): 26, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38200596

BACKGROUND: Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS: Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS: Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION: IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.


Idiopathic Pulmonary Fibrosis , Humans , Animals , Mice , Idiopathic Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells , Epithelial Cells , Bleomycin/toxicity , Epithelium
...