Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.260
1.
Nature ; 625(7994): 377-384, 2024 Jan.
Article En | MEDLINE | ID: mdl-38057668

Cytokines mediate cell-cell communication in the immune system and represent important therapeutic targets1-3. A myriad of studies have highlighted their central role in immune function4-13, yet we lack a global view of the cellular responses of each immune cell type to each cytokine. To address this gap, we created the Immune Dictionary, a compendium of single-cell transcriptomic profiles of more than 17 immune cell types in response to each of 86 cytokines (>1,400 cytokine-cell type combinations) in mouse lymph nodes in vivo. A cytokine-centric view of the dictionary revealed that most cytokines induce highly cell-type-specific responses. For example, the inflammatory cytokine interleukin-1ß induces distinct gene programmes in almost every cell type. A cell-type-centric view of the dictionary identified more than 66 cytokine-driven cellular polarization states across immune cell types, including previously uncharacterized states such as an interleukin-18-induced polyfunctional natural killer cell state. Based on this dictionary, we developed companion software, Immune Response Enrichment Analysis, for assessing cytokine activities and immune cell polarization from gene expression data, and applied it to reveal cytokine networks in tumours following immune checkpoint blockade therapy. Our dictionary generates new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines, expands our knowledge of activation states of each immune cell type, and provides a framework to deduce the roles of specific cytokines and cell-cell communication networks in any immune response.


Cytokines , Immunity , Single-Cell Analysis , Animals , Mice , Cell Communication/drug effects , Cytokines/immunology , Gene Expression Profiling , Gene Expression Regulation , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunity/drug effects , Interleukin-18/immunology , Interleukin-1beta/immunology , Killer Cells, Natural/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction/drug effects , Software
2.
J Biol Chem ; 299(12): 105353, 2023 Dec.
Article En | MEDLINE | ID: mdl-37858677

The PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding. In this work, we further characterized the previously identified lead peptide, MN1.1, to identify key PD-1 binding residues and design an optimized peptide, MN1.4. We show MN1.4 is significantly more stable than MN1.1 in serum and retains the ability to block PD-1/PD-L1 complex formation. We further characterized the immunomodulatory effects of MN1.4 treatment by measuring markers of T cell activation in a co-culture model with ovarian cancer cells and peripheral blood mononuclear cells. We found MN1.4 treatment reduced cytokine secretion and suppressed T cell responses in a similar manner as recombinant PD-L1. Therefore, the PD-L1 interface region used to design MN1.4 appeared sufficient to initiate PD-1 signaling and likely represents the minimum necessary region of PD-L1 required for PD-1 recognition. We propose a peptide agonist for PD-1, such as MN1.4, could have several applications for treating autoimmune disorders caused by PD-1 deficiencies such as type 1 diabetes, inflammatory arthritis, or autoimmune side effects arising from monoclonal antibody-based cancer immunotherapies.


B7-H1 Antigen , Models, Molecular , Neoplasms , Signal Transduction , Humans , B7-H1 Antigen/chemistry , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Immunotherapy , Leukocytes, Mononuclear/metabolism , Neoplasms/drug therapy , Peptides/pharmacology , Programmed Cell Death 1 Receptor/agonists , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Mutation , Protein Structure, Quaternary , Cell Line, Tumor , Immunity/drug effects
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37446007

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Acetamides , Adenosine A2 Receptor Antagonists , Cell Polarity , Chemotactic Factors , Diabetic Nephropathies , Kidney Glomerulus , Macrophages , Purines , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Chemotactic Factors/antagonists & inhibitors , Chemotactic Factors/genetics , Chemotactic Factors/metabolism , Cell Polarity/drug effects , Cell Polarity/immunology , Macrophages/drug effects , Macrophages/immunology , Adenosine A2 Receptor Antagonists/pharmacology , Receptor, Adenosine A2B , Acetamides/pharmacology , Purines/pharmacology , Animals , Rats , Cell Movement/drug effects , Male , Rats, Sprague-Dawley , Transcription, Genetic/drug effects , Protein Biosynthesis/drug effects , Immunity/drug effects , Immunity/genetics
4.
Trends Cancer ; 9(7): 543-553, 2023 07.
Article En | MEDLINE | ID: mdl-37117135

Immunotherapy has changed the treatment landscape for cancer over the past decade. Inhibitors of the immune checkpoint proteins cytotoxic T lymphocyte antigen (CTLA)-4, programmed death (PD)-1, and PD ligand 1 (PD-L1) can induce durable remissions in a subset of patients with metastatic disease. However, these treatments can be limited by inflammatory toxicities that can affect any organ system in the body and in some cases can be life threatening. Considerable progress has been made in understanding the drivers of these toxicities as well as effective management strategies. Further research into understanding the molecular and cellular mechanisms that drive toxicity will enable better prediction of toxicity and development of optimized therapies for these toxicities that avoid interfering with antitumor immunity. In this review, we discuss our current understanding of the inflammatory toxicities from immune checkpoint inhibitors (ICIs) and propose optimal treatment strategies for these toxicities.


Immune Checkpoint Inhibitors , Immunotherapy , Inflammation , Neoplasms , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Humans , Immunotherapy/adverse effects , Neoplasms/drug therapy , Neoplasms/immunology , Immunity/drug effects , Inflammation/chemically induced , Inflammation/prevention & control
5.
J Clin Invest ; 133(4)2023 02 15.
Article En | MEDLINE | ID: mdl-36512425

Autologous stem cell transplantation (ASCT) with subsequent lenalidomide maintenance is standard consolidation therapy for multiple myeloma, and a subset of patients achieve durable progression-free survival that is suggestive of long-term immune control. Nonetheless, most patients ultimately relapse, suggesting immune escape. TIGIT appears to be a potent inhibitor of myeloma-specific immunity and represents a promising new checkpoint target. Here we demonstrate high expression of TIGIT on activated CD8+ T cells in mobilized peripheral blood stem cell grafts from patients with myeloma. To guide clinical application of TIGIT inhibition, we evaluated identical anti-TIGIT antibodies that do or do not engage FcγR and demonstrated that anti-TIGIT activity is dependent on FcγR binding. We subsequently used CRBN mice to investigate the efficacy of anti-TIGIT in combination with lenalidomide maintenance after transplantation. Notably, the combination of anti-TIGIT with lenalidomide provided synergistic, CD8+ T cell-dependent, antimyeloma efficacy. Analysis of bone marrow (BM) CD8+ T cells demonstrated that combination therapy suppressed T cell exhaustion, enhanced effector function, and expanded central memory subsets. Importantly, these immune phenotypes were specific to the BM tumor microenvironment. Collectively, these data provide a logical rationale for combining TIGIT inhibition with immunomodulatory drugs to prevent myeloma progression after ASCT.


Hematopoietic Stem Cell Transplantation , Lenalidomide , Multiple Myeloma , Receptors, Immunologic , Animals , Mice , Immunity/drug effects , Immunity/genetics , Lenalidomide/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Neoplasm Recurrence, Local , Receptors, IgG , Stem Cell Transplantation/adverse effects , Transplantation, Autologous , Tumor Microenvironment , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism
6.
Proc Natl Acad Sci U S A ; 119(26): e2200348119, 2022 06 28.
Article En | MEDLINE | ID: mdl-35727974

Immune checkpoint inhibitors (ICIs) are essential components of the cancer therapeutic armamentarium. While ICIs have demonstrated remarkable clinical responses, they can be accompanied by immune-related adverse events (irAEs). These inflammatory side effects are of unclear etiology and impact virtually all organ systems, with the most common being sites colonized by the microbiota such as the skin and gastrointestinal tract. Here, we establish a mouse model of commensal bacteria-driven skin irAEs and demonstrate that immune checkpoint inhibition unleashes commensal-specific inflammatory T cell responses. These aberrant responses were dependent on production of IL-17 by commensal-specific T cells and induced pathology that recapitulated the cutaneous inflammation seen in patients treated with ICIs. Importantly, aberrant T cell responses unleashed by ICIs were sufficient to perpetuate inflammatory memory responses to the microbiota months following the cessation of treatment. Altogether, we have established a mouse model of skin irAEs and reveal that ICIs unleash aberrant immune responses against skin commensals, with long-lasting inflammatory consequences.


Dermatitis , Immune Checkpoint Inhibitors , Microbiota , Animals , Dermatitis/immunology , Dermatitis/microbiology , Disease Models, Animal , Immune Checkpoint Inhibitors/adverse effects , Immunity/drug effects , Interleukin-17/metabolism , Mice , Microbiota/drug effects , Microbiota/immunology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/immunology , Symbiosis/drug effects , T-Lymphocytes/immunology
7.
J Virol ; 96(7): e0005722, 2022 04 13.
Article En | MEDLINE | ID: mdl-35319225

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


COVID-19 Drug Treatment , Heparin/analogs & derivatives , Cell Line , Cytokines/metabolism , Fenofibrate , Gene Knockdown Techniques , Glucuronidase/genetics , Glucuronidase/metabolism , Heparin/therapeutic use , Humans , Immunity/drug effects , Inflammation , Macrophages/drug effects , Macrophages/immunology , NF-kappa B , SARS-CoV-2
8.
Front Immunol ; 13: 822754, 2022.
Article En | MEDLINE | ID: mdl-35154141

Wild pigs usually showed high tolerance and resistance to several diseases in the wild environment, suggesting that the gut bacteria of wild pigs could be a good source for discovering potential probiotic strains. In our study, wild pig feces were sequenced and showed a higher relative abundance of the genus Lactobacillus (43.61% vs. 2.01%) than that in the domestic pig. A total of 11 lactic acid bacteria (LAB) strains including two L. rhamnosus, six L. mucosae, one L. fermentum, one L. delbrueckii, and one Enterococcus faecalis species were isolated. To investigate the synergistic effects of mixed probiotics strains, the mixture of 11 LAB strains from an intestinal ecology system was orally administrated in mice for 3 weeks, then the mice were challenged with Escherichia coli ATCC 25922 (2 × 109 CFU) and euthanized after challenge. Mice administrated with LAB strains showed higher (p < 0.05) LAB counts in feces and ileum. Moreover, alterations of specific bacterial genera occurred, including the higher (p < 0.05) relative abundance of Butyricicoccus and Clostridium IV and the lower (p < 0.05) abundance of Enterorhabdus in mice fed with mixed LAB strains. Mice challenged with Escherichia coli showed vacuolization of the liver, lower GSH in serum, and lower villus to the crypt proportion and Claudin-3 level in the gut. In contrast, administration of mixed LAB strains attenuated inflammation of the liver and gut, especially the lowered IL-6 and IL-1ß levels (p < 0.05) in the gut. Our study highlighted the importance of gut bacterial diversity and the immunomodulation effects of LAB strains mixture from wild pig in gut health.


Escherichia coli Infections/therapy , Intestinal Diseases/therapy , Lactobacillales/physiology , Probiotics/pharmacology , Animals , Escherichia coli/drug effects , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Immunity/drug effects , Intestinal Diseases/immunology , Intestinal Diseases/metabolism , Intestinal Diseases/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillales/isolation & purification , Male , Mice , Mice, Inbred C57BL , Probiotics/therapeutic use , Sus scrofa
9.
Cell Rep ; 38(7): 110363, 2022 02 15.
Article En | MEDLINE | ID: mdl-35172147

Thymic atrophy reduces naive T cell production and contributes to increased susceptibility to viral infection with age. Expression of tissue-restricted antigen (TRA) genes also declines with age and has been thought to increase autoimmune disease susceptibility. We find that diminished expression of a model TRA gene in aged thymic stromal cells correlates with impaired clonal deletion of cognate T cells recognizing an autoantigen involved in atherosclerosis. Clonal deletion in the polyclonal thymocyte population is also perturbed. Distinct age-associated defects in the generation of antigen-specific T cells include a conspicuous decline in generation of T cells recognizing an immunodominant influenza epitope. Increased catalase activity delays thymic atrophy, and here, we show that it mitigates declining production of influenza-specific T cells and their frequency in lung after infection, but does not reverse declines in TRA expression or efficient negative selection. These results reveal important considerations for strategies to restore thymic function.


Aging/immunology , Antigens/immunology , Immunity , Self Tolerance/immunology , T-Lymphocytes/immunology , Animals , Antioxidants/pharmacology , Apolipoproteins B/metabolism , Atrophy , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Catalase/metabolism , Dietary Supplements , Immunity/drug effects , Immunodominant Epitopes/immunology , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Orthomyxoviridae Infections/immunology , Oxidation-Reduction , Oxidative Stress/drug effects , Self Tolerance/drug effects , Stromal Cells/drug effects , Stromal Cells/enzymology , T-Lymphocytes/drug effects , Thymus Gland/pathology
10.
Sci Rep ; 12(1): 2132, 2022 02 08.
Article En | MEDLINE | ID: mdl-35136110

Although checkpoint inhibitors (CPIs) have changed the paradigm of cancer therapy, low response rates and serious systemic adverse events remain challenging. In situ vaccine (ISV), intratumoral injection of immunomodulators that stimulate innate immunity at the tumor site, allows for the development of vaccines in patients themselves. K3-SPG, a second-generation nanoparticulate Toll-like receptor 9 (TLR9) ligand consisting of K-type CpG oligodeoxynucleotide (ODN) wrapped with SPG (schizophyllan), integrates the best of conventional CpG ODNs, making it an ideal cancer immunotherapy adjuvant. Focusing on clinical feasibility for pancreaticobiliary and gastrointestinal cancers, we investigated the antitumor activity of K3-SPG-ISV in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). K3-SPG-ISV suppressed tumor growth more potently than K3-ISV or K3-SPG intravenous injections, prolonged survival, and enhanced the antitumor effect of CPIs. Notably, in PDAC model, K3-SPG-ISV alone induced systemic antitumor effect and immunological memory. ISV combination of K3-SPG and agonistic CD40 antibody further enhanced the antitumor effect. Our results imply that K3-SPG-based ISV can be applied as monotherapy or combined with CPIs to improve their response rate or, conversely, with CPI-free local immunotherapy to avoid CPI-related adverse events. In either strategy, the potency of K3-SPG-based ISV would provide the rationale for its clinical application to puncturable pancreaticobiliary and gastrointestinal malignancies.


Antineoplastic Agents, Immunological , Cancer Vaccines , Carcinoma, Pancreatic Ductal , Colorectal Neoplasms , Toll-Like Receptor 9 , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cancer Vaccines/administration & dosage , Carcinoma, Pancreatic Ductal/therapy , Colorectal Neoplasms/therapy , Drug Screening Assays, Antitumor , Immunity/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Toll-Like Receptor 9/agonists , Glucans/pharmacology , Glucans/therapeutic use
11.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35054795

Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.


Benzophenones/pharmacology , Immunologic Factors/pharmacology , Nanoparticles/chemistry , Osteogenesis , Polymers/pharmacology , Titanium/pharmacology , Alkaline Phosphatase/metabolism , Animals , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Shape/drug effects , Cell Shape/genetics , Cell Survival/drug effects , Cell Survival/genetics , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Immunity/drug effects , Inflammation/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis/drug effects , Osteogenesis/genetics , RAW 264.7 Cells , Surface Properties
12.
J Med Chem ; 65(3): 2434-2457, 2022 02 10.
Article En | MEDLINE | ID: mdl-35043615

A series of 2-phenylthiazole analogues were designed and synthesized as potential histone deacetylase 6 (HDAC6) inhibitors based on compound 12c (an HDAC6/tubulin dual inhibitor discovered by us recently) and CAY10603 (a known HDAC6 inhibitor). Among them, compound XP5 was the most potent HDAC6 inhibitor with an IC50 of 31 nM and excellent HDAC6 selectivity (SI = 338 for HDAC6 over HDAC3). XP5 also displayed high antiproliferative activity against various cancer cell lines including the HDACi-resistant YCC3/7 gastric cancer cells (IC50 = 0.16-2.31 µM), better than CAY10603. Further, XP5 (50 mg/kg) exhibited significant antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 63% without apparent toxicity. Moreover, XP5 efficiently enhanced the in vivo antitumor immune response when combined with a small-molecule PD-L1 inhibitor, as demonstrated by the increased tumor-infiltrating lymphocytes and reduced PD-L1 expression levels. Taken together, the above results suggest that XP5 is a promising HDAC6 inhibitor deserving further investigation.


Antineoplastic Agents/therapeutic use , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/therapeutic use , Immunity/drug effects , Melanoma/drug therapy , Thiazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , G2 Phase Cell Cycle Checkpoints/drug effects , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/toxicity , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/toxicity , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Male , Melanoma/therapy , Mice , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Thiazoles/toxicity
13.
J Med Chem ; 65(3): 1883-1897, 2022 02 10.
Article En | MEDLINE | ID: mdl-35073068

Cancer is a leading cause of death worldwide. Recent research studies have revealed that GM3 derivatives have considerable promise as potential therapeutic agents for cancer. To discover novel GM3 derivatives as potential antitumor agents, a one-pot enzymatic synthesis was established, yielding 14 GM3 derivatives in high total yields (22-41%). Subsequently, the inhibitory activities of GM3 derivatives were assessed by wound-healing assays and Transwell assays and tumor-bearing animal models. Among all the GM3 derivatives, N-12 showed excellent migration and invasion inhibitory effects in cells and marked antitumor activity in C57BL/6 mice. The subsequent analysis of cancer tissues and serum samples revealed that N-12 induces tumor inhibition, which was closely related to immune response. Taken together, N-12 can be further developed as an effective therapeutic for the treatment of cancer. An RNA-sequencing (RNA-seq) analysis was then performed and indicated that the antitumor mechanism of N-12 involved focal adhesion and ECM-receptor interaction signaling pathways.


Antineoplastic Agents/therapeutic use , G(M3) Ganglioside/analogs & derivatives , G(M3) Ganglioside/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cytokines/metabolism , G(M3) Ganglioside/chemical synthesis , G(M3) Ganglioside/pharmacokinetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunity/drug effects , Immunotherapy , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Necrosis/chemically induced , Signal Transduction/drug effects
14.
BMC Cancer ; 22(1): 100, 2022 Jan 24.
Article En | MEDLINE | ID: mdl-35073851

BACKGROUND: Platinum chemoresistance results in high-grade serous ovarian cancer (HGSOC) disease recurrence. Recent treatment advances using checkpoint inhibitor immunotherapy has not benefited platinum-resistant HGSOC. In ovarian cancer, DNA methyltransferase inhibitors (DNMTi) block methylation and allow expression of silenced genes, primarily affecting immune reactivation pathways. We aimed to determine the epigenome and transcriptome response to sequential treatment with DNMTi and carboplatin in HGSOC. METHODS: In vitro studies with azacitidine or carboplatin alone and in sequential combination. Response was determined by cell growth, death and apoptosis. Genome-wide DNA methylation levels and transcript expression were compared between untreated and azacitidine and carboplatin sequential treatment. RESULTS: Sequential azacitidine and carboplatin significantly slowed cell growth in 50% of cell lines compared to carboplatin alone. The combination resulted in significantly higher cell death in 25% of cell lines, and significantly higher cell apoptosis in 37.5% of cell lines, than carboplatin alone. Pathway analysis of upregulated transcripts showed that the majority of changes were in immune-related pathways, including those regulating response to checkpoint inhibitors. CONCLUSIONS: Sequential azacitidine and carboplatin treatment slows cell growth, and demethylate and upregulate pathways involved in immune response, suggesting that this combination may be used to increase HGSOC response to immune checkpoint inhibitors in platinum-resistant patients who have exhausted all currently-approved avenues of treatment.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azacitidine/administration & dosage , Carboplatin/administration & dosage , Immunity/drug effects , Neoplasms, Cystic, Mucinous, and Serous/drug therapy , Ovarian Neoplasms/drug therapy , Cell Growth Processes/drug effects , Cell Growth Processes/immunology , Cell Line, Tumor , DNA Methylation/drug effects , DNA Methylation/immunology , Female , Humans , Immune Checkpoint Inhibitors/administration & dosage , Neoplasm Grading , Neoplasms, Cystic, Mucinous, and Serous/immunology , Ovarian Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
15.
Toxicology ; 468: 153103, 2022 02 28.
Article En | MEDLINE | ID: mdl-35090963

Benzene can impair peripheral immunity and immune organs; however, the recovery of benzene impairment has rarely been reported. In this study, we developed an immune dysfunction mouse model using a benzene gavage (500 mg/kg). Female Balb/c mice were treated with Bombyx batryticatus (BB, 5 g/kg), raw pinellia (RP, 5 g/kg), or a combination of Valproic acid and Coenzyme Q10 (CM, 150 mg/kg VPA & 100 mg/kg CoQ10) medication for four weeks. The immune function of the peripheral blood mononuclear cells (PBMCs), spleen, and thymus was determined to evaluate whether the observed impairment could be altered by medications in the mouse model. Results showed that medications could alleviate benzene-induced structural and functional damage of spleen and thymus. Benzene exposure decreased the ATP level of PBMC, which can be improved by BB, RP or CM. Importantly, BB, RP or CM could relieve benzene induced-oxidative stress by increasing the activities of glutathione peroxidase (GSH) and superoxide dismutase (SOD) and decreasing the contents of malondialdehyde (MDA). In conclusion, BB, RP, and CM were able to alleviate the benzene-induced immune dysfunction and redox imbalance. Improvement of the oxidative and antioxidant imbalance may represent a mechanism by which medicine prevents benzene-induced immune dysfunction.


Benzene/toxicity , Immunity/drug effects , Leukocytes, Mononuclear/drug effects , Spleen/drug effects , Thymus Gland/drug effects , Adenosine Triphosphate/blood , Animals , Bombyx/chemistry , Female , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred BALB C , Pinellia/chemistry , Plant Extracts/pharmacology , Specific Pathogen-Free Organisms , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Ubiquinone/pharmacology , Valproic Acid/pharmacology
17.
J Med Chem ; 65(3): 1848-1866, 2022 02 10.
Article En | MEDLINE | ID: mdl-35025488

Immunogenic cell death (ICD) can engage a specific immune response and establish a long-term immunity in hepatocellular carcinoma (HCC). Herein, we design and synthesize a series of Pt(II)-N-heterocyclic carbene (Pt(II)-NHC) complexes derived from 4,5-diarylimidazole, which show strong anticancer activities in vitro. Among them, 2c displays much higher anticancer activities than cisplatin and other Pt(II)-NHC complexes, especially in HCC cancer cells. In addition, we find that 2c is a type II ICD inducer, which can successfully induce endoplasmic reticulum stress (ERS) accompanied by reactive oxygen species (ROS) generation and finally lead to the release of damage-associated molecular patterns (DAMPs) in HCC cells. Importantly, 2c shows a great anti-HCC potential in a vaccination mouse model and leads to the in vivo immune cell activation in the CCl4-induced liver injury model.


Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Coordination Complexes/therapeutic use , Immunogenic Cell Death/drug effects , Liver Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Calreticulin/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Dendritic Cells/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/therapeutic use , Immunity/drug effects , Male , Mice, Inbred C57BL , Platinum/chemistry , Reactive Oxygen Species/metabolism , T-Lymphocytes/metabolism
18.
Environ Toxicol Pharmacol ; 90: 103818, 2022 Feb.
Article En | MEDLINE | ID: mdl-35074562

The aim of this study was to reveal the effects of foodborne fluoxetine on morphological and condition profile, hematological profile, biochemical and oxidative stress indices on juvenile rainbow trout. The study was performed according to OECD Guideline No. 215. Fluoxetine was incorporated into Biomar 921 pellets at a dose of 0.047 mg/kg (environmental concentration), 0.577 mg/kg and 6.7 mg/kg. There was statistically significant change in hematological profile, including an increasing trend in neutrophil/lymphocyte ratio and a decreasing trend in the number of lymphocytes. Measurements of oxidative stress indicated decreased activity of the detoxifying enzyme glutathione-S-transferase in the liver and kidney. However, the measurement of GR, GPx, CAT, SOD activity, and TBARS showed no changes. Histopathological examination revealed damage to the proximal tubules of caudal kidney in exposed groups. This study confirms that fluoxetine has a significant effect on immune response.


Fluoxetine/toxicity , Oncorhynchus mykiss/immunology , Animal Feed , Animals , Antidepressive Agents, Second-Generation/toxicity , Blood Cell Count , Food Contamination , Immunity/drug effects , Kidney Tubules, Proximal/drug effects , Oncorhynchus mykiss/blood , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
19.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article En | MEDLINE | ID: mdl-35012988

Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αßT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.


Antineoplastic Agents/metabolism , Carcinogens/toxicity , Langerhans Cells/metabolism , 4-Nitroquinoline-1-oxide/toxicity , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/pathology , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/pathology , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Histones/metabolism , Humans , Immunity/drug effects , Langerhans Cells/drug effects , Phagocytes/drug effects , Phagocytes/metabolism , Phagocytes/pathology , Quinolones/toxicity , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Tongue/pathology , Transcriptome/genetics
20.
J Ethnopharmacol ; 287: 114965, 2022 Apr 06.
Article En | MEDLINE | ID: mdl-34990767

ETHNOPHARMACOLOGICAL RELEVANCE: Coronavirus and influenza virus infection seriously threaten human health. Cangma Huadu Granules (CMHD) is an in-hospital preparation composed of eight traditional Chinese medicines (TCM), which has been clinically used against COVID-19 in China and may be a promising candidate for the treatment of influenza. However, the role of its treatment urgently needs to be studied. AIM OF THE STUDY: To evaluate the therapeutic effects of CMHD on pneumonia induced by coronavirus (HCoV-229E) and influenza A virus (H1N1/FM1) in mice and explore its mechanism of anti-infection. MATERIALS AND METHODS: Mice were infected with HCoV-229E or H1N1/FM1 virus through the nasal cavity. CMHD (12.1, 6.05 and 3.03 g/kg/d) or the positive control drugs were administered intragastrically. The lung index and histopathological changes were used to evaluate the therapeutic effect of CMHD. The expression of TNF-α, IL-1ß, IL-6 and IL-4 in Serum and the proportion of CD4+ and CD8+ T lymphocytes in peripheral blood were detected to evaluate the anti-inflammatory and immune regulation effects of CMHD, respectively. Furthermore, the levels of p-NF-κBp65/ NF-κB p65, which was the key targets of the NF-κB pathway was analyzed. RESULTS: In HCoV-229E-induced pneumonia, the lung index was markedly reduced, and lung pathology was improved in mice that treated with CMHD (12.1, 6.05 g/kg/d). Meanwhile, the expression of TNF-α, IL-6 were obviously inhibited, but the expression of IL-4 was significantly increased in CMHD groups. Compared with the model group, CMHD could also markedly upregulate the level of CD4+ and CD8+. Furthermore, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. In H1N1-induced pneumonia, the lung index of mice in the CMHD (12.1 g/kg/d) treatment group was lower than that in the model group, and less inflammatory infiltration could be seen in the lung pathological. Moreover, CMHD could also obviously decrease the expression of TNF-α, IL-1ß, IL-6, but significantly increase the expression of IL-4. Except for that, CMHD could also markedly downregulate the level of CD4+ and upregulate the level of CD8+ compared with the model group. In addition, CMHD has a markedly effect on inhibit the expression of p-NF-κB p65/NF-κB p65 in the lung. CONCLUSION: CMHD can significantly combats viral infections caused by HCoV-229E and H1N1, and the mechanism may be related to its multiple functions of anti-inflammatory, immunity regulating and inhibiting NF-κB signal transduction pathway.


Anti-Inflammatory Agents/pharmacology , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Medicine, Chinese Traditional/methods , Orthomyxoviridae Infections/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Coronavirus 229E, Human/drug effects , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Immunity/drug effects , Male , Mice, Inbred BALB C , Mice, Inbred ICR , Pneumonia/drug therapy , Pneumonia/pathology , T-Lymphocytes/metabolism , Transcription Factor RelA/metabolism
...