Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 705361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489957

RESUMEN

Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.


Asunto(s)
Muerte Celular Inmunogénica/efectos de la radiación , Alarminas/fisiología , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores , Terapia Combinada , Citocinas/fisiología , Relación Dosis-Respuesta en la Radiación , Ferroptosis/efectos de la radiación , Proteína HMGB1/fisiología , Humanos , Hipertermia Inducida , Ratones , Morfolinas/uso terapéutico , Necroptosis/efectos de la radiación , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/radioterapia , Piperazinas/uso terapéutico , Pirroles/uso terapéutico , Tolerancia a Radiación , Radiación Ionizante
2.
ACS Appl Mater Interfaces ; 13(33): 39934-39948, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34396771

RESUMEN

There are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors. A laser/glutathione (GSH)-activatable nanosystem with tumor penetration for achieving highly efficient immunotherapy is reported. The core of the nanosystem was synthesized by coordinating zinc ions with GSH-activatable oxaliplatin (OXA) prodrugs and carboxylated phthalocyanine. Such an OXA/phthalocyanine-based coordination polymer nanoparticle (OPCPN) was wrapped by a phospholipid bilayer and NTKPEG. NTKPEG is a PEGylated indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor prodrug containing a thioketal (TK) linker, which was modified on the OPCPN (OPCPN@NTKPEG). Upon the laser irradiation tumor site, ROS production of the OPCPN@NTKPEG triggers cleavage of NTKPEG by degradation of TK for promoted tumor penetration and uptake. OXA, phthalocyanine, and IDO1 inhibitor were released by the intracellular high-level GSH. OXA inhibits cell growth and is combined with photodynamic therapy (PDT) to induce immunogenic cell death (ICD). The IDO1 inhibitor reversed the ITM by suppressing IDO1-mediated Trp degradation and exhaustion of cytotoxic T cells. Laser/GSH-activatable drug delivery was more conducive to enhancing ICD and reversing ITM in deep tumors. Chemo-PDT with OPCPN@NTKPEG significantly regressed tumor growth and reduced metastasis by improved cancer immunotherapy.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Glutatión/química , Indoles/química , Nanopartículas/química , Oxaliplatino/química , Fármacos Fotosensibilizantes/química , Animales , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Liberación de Fármacos , Glutatión/metabolismo , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de la radiación , Inmunoterapia , Indoles/farmacocinética , Isoindoles , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Oxaliplatino/farmacocinética , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacocinética , Polietilenglicoles/química , Profármacos/química , Profármacos/farmacología , Distribución Tisular , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiación
3.
Mol Pharm ; 18(5): 2091-2103, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33886331

RESUMEN

As a noninvasive therapy, high-intensity focused ultrasound (HIFU) shows great potential in inducing anticancer immune responses. However, the overall anticancer efficacy of HIFU is still limited due to the rapid attenuation of ultrasound waves and inadequacy of ultrasound waves to spread to the whole tumor. Here, we combined HIFU with the ultrasound contrast agent/chemotherapeutic drug co-delivery nanodroplets to achieve synergistic enhancement of anticancer efficacy. Different from the widely used thermal HIFU irradiation, by which excessive heating would result in inactivation of immune stimulatory molecules, we used short acoustic pulses to trigger HIFU (mechanical HIFU, mHIFU) to improve anticancer immune responses. The nanodroplets displayed a mHIFU/glutathione (GSH)-dual responsive drug release property, and their cellular uptake efficacy and toxicity against cancer cells increased upon mHIFU irradiation. The generated immunogenic debris successfully induced the exposure of damage-associated molecular patterns on the cell surface for dendritic cells (DCs) maturation. In vivo experiments with tumor-bearing mice showed that the co-delivery nanodroplets in combination with mHIFU could effectively inhibit tumor growth by inducing immunogenic cell death, activating DCs maturation, and enhancing the effector T-cell infiltration within tumors. This work reveals that combined treatment with nanodroplets and mHIFU is a promising approach to eradicate tumors.


Asunto(s)
Antineoplásicos/farmacocinética , Medios de Contraste/farmacocinética , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Terapia Combinada/métodos , Medios de Contraste/administración & dosificación , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Liberación de Fármacos/efectos de la radiación , Sinergismo Farmacológico , Femenino , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de la radiación , Ratones , Nanopartículas/química , Nanopartículas/efectos de la radiación , Neoplasias/inmunología , Distribución Tisular , Ondas Ultrasónicas
4.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920544

RESUMEN

Radiation therapy (RT) can induce an immunogenic variant of regulated cell death that can initiate clinically relevant tumor-targeting immune responses. Immunogenic cell death (ICD) is accompanied by the exposure and release of damage-associated molecular patterns (DAMPs), chemokine release, and stimulation of type I interferon (IFN-I) responses. In recent years, intensive research has unraveled major mechanistic aspects of RT-induced ICD and has resulted in the identification of immunogenic factors that are released by irradiated tumor cells. However, so far, only a limited number of studies have searched for potential biomarkers that can be used to predict if irradiated tumor cells undergo ICD that can elicit an effective immunogenic anti-tumor response. In this article, we summarize the available literature on potential biomarkers of RT-induced ICD that have been evaluated in cancer patients. Additionally, we discuss the clinical relevance of these findings and important aspects that should be considered in future studies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Muerte Celular Inmunogénica/efectos de la radiación , Neoplasias/patología , Neoplasias/radioterapia , Radioterapia , Humanos , Transducción de Señal
5.
Nat Commun ; 12(1): 145, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420008

RESUMEN

Radiation therapy can potentially induce immunogenic cell death, thereby priming anti-tumor adaptive immune responses. However, radiation-induced systemic immune responses are very rare and insufficient to meet clinical needs. Here, we demonstrate a synergetic strategy for boosting radiation-induced immunogenic cell death by constructing gadolinium-hemin based nanoscale coordination polymers to simultaneously perform X-ray deposition and glutathione depletion. Subsequently, immunogenic cell death is induced by sensitized radiation to potentiate checkpoint blockade immunotherapies against primary and metastatic tumors. In conclusion, nanoscale coordination polymers-sensitized radiation therapy exhibits biocompatibility and therapeutic efficacy in preclinical cancer models, and has the potential for further application in cancer radio-immunotherapy.


Asunto(s)
Complejos de Coordinación/administración & dosificación , Muerte Celular Inmunogénica/efectos de los fármacos , Nanopartículas/administración & dosificación , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Animales , Línea Celular Tumoral/trasplante , Terapia Combinada/métodos , Complejos de Coordinación/química , Modelos Animales de Enfermedad , Femenino , Gadolinio/administración & dosificación , Gadolinio/química , Hemina/administración & dosificación , Hemina/química , Humanos , Muerte Celular Inmunogénica/efectos de la radiación , Ratones , Nanopartículas/química , Neoplasias/inmunología , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Estrés Oxidativo/efectos de la radiación , Polímeros/química
6.
Theranostics ; 10(24): 11197-11214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042278

RESUMEN

Rationale: The development of a highly effective and tumor-specific therapeutic strategy, which can act against the primary tumor and also condition the host immune system to eliminate distant tumors, remains a clinical challenge. Methods: Herein, we demonstrate a facile yet versatile ZnO-capping and Doxorubicin (DOX)-loaded multifunctional nanocomposite (AuNP@mSiO2@DOX-ZnO) that integrates photothermal properties of gold nanoparticles (NPs), pH-responsive properties and preferential selectivity to tumor cells of ZnO QDs and chemotherapeutic agent into a single NP. The photothermal performance, pH-triggered release and preferential phagocytic ability were assessed. The induced anti-tumor immunity was determined by analyzing immune cell profile in tumor in vivo and molecular mechanism were identified by detecting expression of immunogenic cell death (ICD) markers in vitro. Moreover, mice models of unilateral and bilateral subcutaneous melanoma and lung metastasis were established to evaluate the antitumor effects. Results: As an efficient drug carrier, ZnO-capped NPs guarantee a high DOX payload and an in vitro, efficient release of at pH 5.0. In murine melanoma models, the nanocomposite can significantly inhibit tumor growth for a short period upon low-power laser irradiation. Importantly, ZnO NPs not only demonstrate preferential selectivity for melanoma cells but can also induce ICD. Meanwhile, AuNP@mSiO2-based photothermal therapy (PTT) and DOX are directly cytotoxic towards cancer cells and demonstrate an elevated ICD effect. The induced ICD promotes maturation of dendritic cells, further stimulating the infiltration of effector T cells into tumor sites, preventing tumor growth and distant lung metastases. Conclusions: This study highlights the novel mechanism of ZnO-triggered anti-tumor immunity via inducing ICD. Additionally, we shed light on the multifunctionality of nanocomposites in delivering localized skin tumor therapy as well as inhibiting metastatic growth, which holds great promise in clinical applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Muerte Celular Inmunogénica/efectos de los fármacos , Melanoma Experimental/terapia , Neoplasias Cutáneas/terapia , Animales , Línea Celular Tumoral/trasplante , Doxorrubicina/administración & dosificación , Femenino , Oro/química , Humanos , Muerte Celular Inmunogénica/efectos de la radiación , Rayos Láser , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Nanopartículas del Metal/química , Ratones , Nanocompuestos/química , Fotoquimioterapia/instrumentación , Fotoquimioterapia/métodos , Terapia Fototérmica/instrumentación , Terapia Fototérmica/métodos , Porosidad , Dióxido de Silicio/química , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Óxido de Zinc/química
8.
Cancer Biother Radiopharm ; 35(7): 497-510, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32255671

RESUMEN

Targeted α therapy (TAT) offers the potential for the targeted delivery of potent α-particle-emitting radionuclides that emit high linear energy transfer radiation. This leads to a densely ionizing radiation track over a short path. Localized radiation induces cytotoxic, difficult-to-repair, clustered DNA double-strand breaks (DSBs). To date, radium-223 (223Ra) is the only TAT approved for the treatment of patients with metastatic castration-resistant prostate cancer. Thorium-227 (227Th), the progenitor nuclide of 223Ra, offers promise as a wider-ranging alternative due to the availability of efficient chelators, such as octadentate 3,2-hydroxypyridinone (3,2-HOPO). The 3,2-HOPO chelator can be readily conjugated to a range of targeting moieties, enabling the generation of new targeted thorium-227 conjugates (TTCs). This review provides a comprehensive overview of the advances in the preclinical development of TTCs for hematological cancers, including CD22-positive B cell cancers and CD33-positive leukemia, as well as for solid tumors overexpressing renal cell cancer antigen CD70, membrane-anchored glycoprotein mesothelin in mesothelioma, prostate-specific membrane antigen in prostate cancer, and fibroblast growth factor receptor 2. As the mechanism of action for TTCs is linked to the formation of DSBs, the authors also report data supporting combinations of TTCs with inhibitors of the DNA damage response pathways, including those of the ataxia telangiectasia and Rad3-related protein, and poly-ADP ribose polymerase. Finally, emerging evidence suggests that TTCs induce immunogenic cell death through the release of danger-associated molecular patterns. Based on encouraging preclinical data, clinical studies have been initiated to investigate the safety and tolerability of TTCs in patients with various cancers.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias Hematológicas/radioterapia , Inmunoconjugados/uso terapéutico , Radiofármacos/uso terapéutico , Torio/uso terapéutico , Alarminas/metabolismo , Quelantes/química , Daño del ADN/efectos de la radiación , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Humanos , Inmunoconjugados/química , Muerte Celular Inmunogénica/efectos de la radiación , Medicina de Precisión/métodos , Piridonas/química , Radiofármacos/química , Radiofármacos/farmacología , Torio/química , Torio/farmacología , Resultado del Tratamiento
9.
ACS Appl Mater Interfaces ; 11(50): 46536-46547, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31751119

RESUMEN

Local hypoxia in solid malignancies often results in resistance to radiotherapy (RT) and chemotherapy (CT), which may be one of the main reasons for their failure in clinical application. Especially, oxygen is an essential element for enhancing DNA damage caused by ionizing radiation in radiotherapy. Here, two biomimetic oxygen delivery systems were designed by encapsulating hemoglobin (Hb) alone into a liposome (Hb-Lipo) or co-encapsulating Hb and doxorubicin (DOX) into a liposome (DOX-Hb-Lipo). Our data indicated that both Hb-Lipo and DOX-Hb-Lipo could effectively alleviate hypoxia in tumors. We demonstrated that RT plus tumor-targeting delivery of oxygen mediated by Hb-Lipo could significantly overcome the tolerance of hypoxic cancer cells to RT, showing significantly enhanced cancer-cell killing and tumor growth inhibition ability, mainly attributing to hypoxia alleviation and increased reactive oxygen species production under RT in cancer cells. Furthermore, a melanoma model that was quite insensitive to both RT and CT was used to test the efficacy of chemoradiotherapy combined with hypoxia alleviation. RT plus Hb-Lipo only caused a limited increase in antitumor activity. However, extremely strong tumor inhibition could be obtained by RT combined with DOX-Hb-Lipo-mediated CT, attributed to radio-triggered DOX release and enhanced immunogenic cell death induced by RT under an oxygen supplement. Our study provided a valuable reference for overcoming hypoxia-induced radioresistance and a useful therapeutic strategy for cancers that are extremely insensitive to chemo- or radiotherapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Sistemas de Liberación de Medicamentos , Oxígeno/farmacología , Tolerancia a Radiación/efectos de los fármacos , Neoplasias de la Mama/patología , Quimioradioterapia/métodos , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/farmacología , Liberación de Fármacos/efectos de los fármacos , Liberación de Fármacos/efectos de la radiación , Femenino , Hemoglobinas/química , Hemoglobinas/farmacología , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de la radiación , Liposomas/química , Liposomas/farmacología , Células MCF-7 , Oxígeno/química , Radiación Ionizante , Especies Reactivas de Oxígeno/química , Hipoxia Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cell Death Dis ; 10(8): 578, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31371700

RESUMEN

Extracorporeal photochemotherapy (ECP) is employed for the management of cutaneous T cell lymphoma (CTCL). ECP involves the extracorporeal exposure of white blood cells (WBCs) to a photosensitizer, 8-methoxypsoralen (8-MOP), in the context of ultraviolet A (UVA) radiation, followed by WBC reinfusion. Historically, the therapeutic activity of ECP has been attributed to selective cytotoxicity on circulating CTCL cells. However, only a fraction of WBCs is exposed to ECP, and 8-MOP is inactive in the absence of UVA light, implying that other mechanisms underlie the anticancer effects of ECP. Recently, ECP has been shown to enable the physiological differentiation of monocytes into dendritic cells (DCs) that efficiently cross-present tumor-associated antigens (TAAs) to CD8+ T lymphocytes to initiate cognate immunity. However, the source of TAAs and immunostimulatory signals for such DCs remains to be elucidated. Here, we demonstrate that 8-MOP plus UVA light reduces melanoma cell viability along with the emission of ICD-associated danger signals including calreticulin (CALR) exposure on the cell surface and secretion of ATP, high mobility group box 1 (HMGB1) and type I interferon (IFN). Consistently, melanoma cells succumbing to 8-MOP plus UVA irradiation are efficiently engulfed by monocytes, ultimately leading to cross-priming of CD8+ T cells against cancer. Moreover, malignant cells killed by 8-MOP plus UVA irradiation in vitro vaccinate syngeneic immunocompetent mice against living cancer cells of the same type, and such a protection is lost when cancer cells are depleted of calreticulin or HMGB1, as well as in the presence of an ATP-degrading enzyme or antibodies blocking type I IFN receptors. ECP induces bona fide ICD, hence simultaneously providing monocytes with abundant amounts of TAAs and immunostimulatory signals that are sufficient to initiate cognate anticancer immunity.


Asunto(s)
Antígenos de Neoplasias/genética , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/terapia , Metoxaleno/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de la radiación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Proteína HMGB1/genética , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de la radiación , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/efectos de la radiación , Linfoma Cutáneo de Células T/patología , Ratones , Monocitos/efectos de los fármacos , Monocitos/efectos de la radiación , Fotoféresis , Fármacos Fotosensibilizantes/farmacología , Receptor de Interferón alfa y beta/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...