Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.587
1.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731500

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Phytochemicals , Plants, Medicinal , Plants, Medicinal/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Africa , Animals
2.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731567

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Macrophages , Phagocytosis , Polygonatum , Polysaccharides , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Polygonatum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Phagocytosis/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , RAW 264.7 Cells , Cytokines/metabolism , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Molecular Weight
3.
Adv Appl Microbiol ; 127: 45-142, 2024.
Article En | MEDLINE | ID: mdl-38763529

Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.


Fungal Polysaccharides , Fungal Polysaccharides/chemistry , Humans , Animals , Agaricales/chemistry , Agaricales/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Immunologic Factors/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
4.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791372

Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.


Morus , Plant Extracts , Morus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Plant Leaves/chemistry
5.
Molecules ; 29(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38792148

With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971-0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA.


Astragalus propinquus , Drugs, Chinese Herbal , Monosaccharides , Polysaccharides , Chromatography, High Pressure Liquid/methods , Monosaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/analysis , Astragalus propinquus/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mice , Animals , RAW 264.7 Cells , Astragalus Plant/chemistry , Immunologic Factors/analysis , Immunologic Factors/chemistry
6.
J Clin Invest ; 134(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38557498

BACKGROUNDPrecise stratification of patients with non-small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODSWe measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTSNonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSIONCombinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATIONUMIN000019674.FUNDINGThis study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.


Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Immunologic Factors/blood , Immunologic Factors/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
7.
J Agric Food Chem ; 72(17): 9856-9866, 2024 May 01.
Article En | MEDLINE | ID: mdl-38635925

The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.


Molecular Docking Simulation , Ovalbumin , Peptides , Ovalbumin/immunology , Ovalbumin/chemistry , Mice , Animals , RAW 264.7 Cells , Peptides/chemistry , Peptides/pharmacology , Peptides/immunology , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Macrophages/drug effects , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Amino Acid Sequence , Tandem Mass Spectrometry , Nitric Oxide/metabolism , Nitric Oxide/immunology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology
8.
Int J Biol Macromol ; 267(Pt 1): 131316, 2024 May.
Article En | MEDLINE | ID: mdl-38574908

Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.


Bacteroides , Cell Proliferation , Mice , Animals , RAW 264.7 Cells , Bacteroides/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Phagocytosis/drug effects , Viscosity , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Lycium/chemistry , Humans
9.
Int J Biol Macromol ; 267(Pt 1): 131467, 2024 May.
Article En | MEDLINE | ID: mdl-38599436

In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.


Flammulina , Flammulina/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
10.
J Med Chem ; 67(9): 7487-7503, 2024 May 09.
Article En | MEDLINE | ID: mdl-38688020

Although bactericidal cationic antimicrobial peptides (AMPs) have been well characterized, less information is available about the antibacterial properties and mechanisms of action of nonbactericidal AMPs, especially nonbactericidal anionic AMPs. Herein, a novel anionic antimicrobial peptide (Gy-CATH) with a net charge of -4 was identified from the skin of the frog Glyphoglossus yunnanensis. Gy-CATH lacks direct antibacterial effects but exhibits significantly preventive and therapeutic capacities in mice that are infected with Staphylococcus aureus, Enterobacteriaceae coli, methicillin-resistant Staphylococcus aureus (MRSA), or carbapenem-resistant E. coli (CREC). In vitro and in vivo investigations proved the regulation of Gy-CATH on neutrophils and macrophages involved in the host immune defense against infection. Moreover, Gy-CATH significantly reduced the extent of pulmonary fibrin deposition and prevented thrombosis in mice, which was attributed to the regulatory role of Gy-CATH in physiological anticoagulants and platelet aggregation. These findings show that Gy-CATH is a potential candidate for the treatment of bacterial infection.


Anti-Bacterial Agents , Antimicrobial Peptides , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/therapeutic use , Anura , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Escherichia coli/drug effects , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Thrombosis/prevention & control , Thrombosis/drug therapy
11.
Molecules ; 29(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675613

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Acne Vulgaris , Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Saponins , Humans , Acne Vulgaris/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/isolation & purification , Melanthiaceae/chemistry , Liliaceae/chemistry
12.
Angew Chem Int Ed Engl ; 63(23): e202401250, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38576254

A nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation. The photothermal effect endowed by R-NPT NP can ablate tumors directly and trigger immunogenic cell death to augment immunity after photoirradiation. The synergistic effect of GSH-liable TLR7/8 agonist and released immunogenic factors leads to a robust evocation of systematic immunity through promoted DC maturation and T cell infiltration. Thus, R-NPT NP with photoirradiation achieved 99.3 % and 98.2 % growth inhibition against primary and distal tumors, respectively.


Imides , Immunologic Factors , Immunotherapy , Naphthalenes , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Humans , Naphthalenes/chemistry , Naphthalenes/pharmacology , Imides/chemistry , Imides/pharmacology , Animals , Nanoparticles/chemistry , Mice , Tumor Microenvironment/drug effects , Photothermal Therapy , Imidazoles/chemistry , Imidazoles/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Cell Line, Tumor
13.
BMC Vet Res ; 20(1): 164, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678277

BACKGROUND: Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS: In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1ß) expression in RAW264.7 cells. CONCLUSIONS: This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.


Amphibian Proteins , Anti-Bacterial Agents , Phylogeny , Ranidae , Animals , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/genetics , Amino Acid Sequence , Skin/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , RAW 264.7 Cells , Sequence Alignment
14.
Nucl Med Biol ; 132-133: 108908, 2024.
Article En | MEDLINE | ID: mdl-38599145

INTRODUCTION: Site-specific immunomodulators (SSIs) are a novel class of therapeutics made from inactivated bacterial species designed to regulate the innate immune system in targeted organs. QBECO is a gut-targeted SSI that is being advanced clinically to treat and/or prevent inflammatory bowel disease, cancer, and serious infections of the gastrointestinal (GI) tract and proximal organs, and QBKPN is a lung-targeted SSI that is in clinical development for the treatment and/or prevention of chronic inflammatory lung disease, lung cancers and respiratory tract infections. While these SSIs have demonstrated both safety and proof-of-concept in preclinical and clinical studies, detailed understanding of their trafficking and biodistribution is yet to be fully characterized. METHODS: QBECO and QBKPN were radiolabeled with [89Zr] and injected subcutaneously into healthy mice. The mice underwent Positron Emission Tomography (PET) imaging every day for eight days to track biodistribution of the SSIs. Tissue from the site of injection was collected and immunohistologically probed for immune cell infiltration. RESULTS: Differential biodistribution of the two SSIs was seen, adhering to their site-specific targeting. QBKPN appeared to migrate from the site of injection (abdomen) to the cervical lymph nodes which are nearer to the respiratory tract and lungs. QBECO remained in the abdominal region, with lymphatic trafficking to the inguinal lymph nodes, which are nearer to GI-proximal tissues/organs. Immune infiltration at the site of injection comprised of neutrophils for both SSIs, and macrophages for only QBKPN. CONCLUSION: Radiolabeling of SSIs allows for longitudinal in vivo imaging of biodistribution and trafficking. PET imaging revealed differential biodistribution of the SSIs based on the organotropism of the bacteria from which the SSI is derived. Trafficking from the site of injection to the targeted site is in part mediated via the lymphatics and involves macrophages and neutrophils.


Positron-Emission Tomography , Animals , Mice , Positron-Emission Tomography/methods , Tissue Distribution , Bacteria , Female , Immunomodulating Agents/chemistry , Immunologic Factors/pharmacokinetics , Immunologic Factors/chemistry , Radioisotopes , Zirconium
15.
Int J Biol Macromol ; 269(Pt 1): 131761, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663705

Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-ß-D-Gal, 1,3,6-ß-D-Gal with a few 1,3-ß-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-ß-D-Gal, T-ß-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-ß-D-Glc and T-ß-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1ß, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 µg/mL to 400 µg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.


Lepidium , NF-kappa B , Polysaccharides , Signal Transduction , Lepidium/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Mice , NF-kappa B/metabolism , Animals , Signal Transduction/drug effects , RAW 264.7 Cells , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Molecular Weight , Cytokines/metabolism
16.
Carbohydr Res ; 534: 108945, 2023 Dec.
Article En | MEDLINE | ID: mdl-37738818

Armillaria luteo-virens (A. luteo-virens) is a kind of edible fungus mainly exists in Qinghai-Tibet of China, but at present only very few studies focus on the bioactivities of its polysaccharides. This study aimed to purify and characterize the structure features of a novel intracellular polysaccharide (ALP-A) derived from A. luteo-virens and explore its potential anti-tumor and immunomodulatory activities. Through systematic separation and purification, we obtained a homogeneous ALP-A with an average molecular weight of 23693Da. Structural analysis indicated that ALP-A was mainly composed of glucose and mannose with a molar ratio of 6.02:1. The repeating unit of ALP-A was →4) -α-D-Glcp-(1→ backbone with α-Glcp-(1→ and α-Manp-(6→ side chains which branched at O-2 position. The anti-tumor assays in vivo suggested that ALP-A could effectively restrain S180 solid tumor growth, protect immune organs and promote the secretion of cytokines (IL2, IL6 and TNF-α) in serum. Besides, in vitro immunomodulatory assays indicated that ALP-A could improve proliferation, phagocytic capacity and raise the level of NO and cytokines in Raw264.7 cells. These results demonstrate that ALP-A which possess potential antitumor and immunomodulatory abilities can be developed as a new functional food.


Armillaria , Animals , Mice , Immunologic Factors/chemistry , Cytokines , Polysaccharides/chemistry , RAW 264.7 Cells
17.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article En | MEDLINE | ID: mdl-37511270

Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.


Multiple Myeloma , Thalidomide , Humans , Thalidomide/pharmacology , Immunomodulating Agents , beta Catenin/genetics , beta Catenin/metabolism , Transcription Factors/metabolism , Systems Biology , Adaptor Proteins, Signal Transducing/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Ubiquitin-Protein Ligases/metabolism , Multiple Myeloma/metabolism
18.
Int J Biol Macromol ; 244: 125204, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37271268

Polysaccharides LNP-1 and LNP-2 were extracted and purified from Lepista nuda, and their structural characteristics and biological activities were evaluated. The molecular weights of LNP-1 and LNP-2 were determined to be 16,263 Da and 17,730 Da, respectively. The monosaccharide composition analysis showed that LNP-1 and LNP-2 were composed of fucose, mannose, glucose, and galactose in a molar ratio of 1.00:2.42:1.09:4.04 and 1.00:2.39:1.61:4.23, respectively. The structure analysis revealed that these two polysaccharides were mainly composed of T-Fuc, T-Man, T-Glc, 1,6-Glc 1,6-Gal, and 1,2,6-Man, 1,2,6-Gal. Additionally, LNP-2 contained an additional 1,4-Glc glycosidic linkage in comparison to LNP-1. Both LNP-1 and LNP-2 exhibited anti-proliferation effects on A375 cells, but not on HepG2 cells. Furthermore, LNP-2 showed better cellular antioxidant activity (CAA) than LNP-1. RT-PCR results indicated that LNP-1 and LNP-2 could induce macrophages to secrete immune-modulatory factors NO, IL-6, and TNF-α by regulating their mRNA expression. Overall, this study provides a theoretical basis for the further development of the structure-function relationship of polysaccharides from L. nuda.


Agaricales , Antioxidants , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry
19.
Int J Biol Macromol ; 245: 125452, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37331538

Polysaccharides derived from microorganisms exhibit diverse structures and bioactivities, making them promising candidates for the treatment of various diseases. However, marine-derived polysaccharides and their activities are relatively little known. In this work, fifteen marine strains were isolated from surface sediments in the Northwest Pacific Ocean for screening of EPS production. Planococcus rifietoensis AP-5 produced a maximum yield of EPS at 4.80 g/L. The purified EPS (referred to as PPS) had a molecular weight of 51,062 Da and contained amino, hydroxyl, and carbonyl groups as its major functional groups. PPS primarily consisted of →3)-α-D-Galp-(1 â†’ 4)-α-D-Manp-(1 â†’ 2)-α-D-Manp-(1 â†’ 4)-α-D-Manp-(1 â†’ 4,6)-α-D-Glcp-(1 â†’ 6)-ß-D-Galp-(1→, with a branch consisting of T-ß-D-Glcp-(1→. Additionally, surface morphology of PPS was hollow, porous, and sphere-like stack. PPS primarily contained C, N, and O elements, with a surface area of 33.76 m2/g, a pore volume of 0.13 cc/g, and a pore diameter of 1.69 nm, respectively. Based on the TG curve, the degradation temperature of PPS was measured to be 247 °C. Furthermore, PPS demonstrated immunomodulatory activity through dose-dependently upregulating the expression level of cytokines. It significantly enhanced the cytokine secretion at a concentration of 5 µg/mL. To sum up, this study offers valuable insights for screening marine polysaccharide-based immunomodulators.


Immunologic Factors , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Cytokines , Molecular Weight
20.
ACS Biomater Sci Eng ; 9(6): 3522-3534, 2023 06 12.
Article En | MEDLINE | ID: mdl-37233985

Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation. As regulatory T cell (Treg) modulation can reduce the activity of cytotoxic T-effector populations, this strategy can be used to promote immune acceptance of both biomaterials and cellular transplants, such as islets. A new class of poly(lactic-co-glycolic acid) (PLGA) and PLGA/PBAE-blend aAPCs containing transforming growth factor beta and conjugated with anti-CD3 and anti-CD28 antibodies, called tolerogenic aAPCs (TolAPCs), are specifically designed to generate a tolerogenic response by inducing Tregs. We characterized TolAPCs' physical and chemical properties via advanced particle imaging and sizing modalities and investigated their impact on the local and systemic immune system across BALB/c and C57BL/6 mouse strains as well as healthy male and female mice via histologic, gene expression, and immunofluorescence staining methods. Strain-specific differences were observed, whereas sex made no difference in the TolAPC response. TolAPCs stimulated the expansion of FOXP3+ Tregs and provided islet cell protection, maintaining improved glucose-stimulated insulin secretion in vitro when co-cultured with cytotoxic CD8+ T cells. We also explored the ability of this TolAPC platform to promote tolerance in a streptozotocin-induced murine T1D C57BL/6 mouse model. We achieved partial islet protection over the first few days following co-injection with PLGA/PBAE TolAPCs; however, grafts failed soon thereafter. Analysis of the local injection site demonstrated that other immune cell types, including APCs and cytotoxic natural killer cells, increased in the islet injection site. While we aimed to promote a localized tolerogenic microenvironment in vivo using biodegradable TolAPCs to induce Tregs and extend islet transplant durability, further TolAPC improvements will be required to both elongate efficacy and control additional immune cell responders.


Islets of Langerhans , T-Lymphocytes, Regulatory , Islets of Langerhans/immunology , Islets of Langerhans/surgery , Pancreas Transplantation , T-Lymphocytes, Regulatory/immunology , Male , Animals , Mice , Female , Diabetes Mellitus, Type 1/immunology , Immunologic Factors/chemistry , Immunologic Factors/therapeutic use , Particle Size
...