Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 460
1.
Bioorg Chem ; 147: 107391, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677010

Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated. The System Structure Activity Relationship (SAR) study discovered a promising compound 33c, which has a strong inhibitory effect on ASK1. Noteworthy observations included a discernible reduction in lipid droplets within LO2 cells stained with Oil Red O, coupled with a decrease in LDL, CHO, and TG content within the NASH model cell group. Mechanistic inquiries revealed that compound 33c could inhibit the protein expression levels of the upregulated ASK1-p38/JNK signaling pathway in TNF-α treated HGC-27 cells and regulate apoptotic proteins. In summary, these findings suggest that compound 33c may be valuable for further research as a potential candidate compound against NASH.


Drug Design , Indazoles , MAP Kinase Kinase Kinase 5 , Molecular Docking Simulation , Protein Kinase Inhibitors , Humans , Apoptosis/drug effects , Dose-Response Relationship, Drug , Indazoles/pharmacology , Indazoles/chemical synthesis , Indazoles/chemistry , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/metabolism , Molecular Structure , Non-alcoholic Fatty Liver Disease/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism
2.
Bioorg Chem ; 147: 107376, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640722

The inhibition of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway with small molecules is a promising approach for cancer immunotherapy. Herein, novel small molecules compounds bearing various scaffolds including thiophene, thiazole, tetrahydroquinoline, benzimidazole and indazole were designed, synthesized and evaluated for their inhibitory activity against the PD-1/PD-L1 interaction. Among them, compound Z13 exhibited the most potent activity with IC50 of 189.6 nM in the homogeneous time-resolved fluorescence (HTRF) binding assay. Surface plasmon resonance (SPR) assay demonstrated that Z13 bound to PD-L1 with high affinity (KD values of 231 nM and 311 nM for hPD-L1 and mPD-L1, respectively). In the HepG2/Jurkat T co-culture cell model, Z13 decreased the viability rate of HepG2 cells in a concentration-dependent manner. In addition, Z13 showed significant in vivo antitumor efficacy (TGI = 52.6 % at 40 mg/kg) without obvious toxicity in the B16-F10 melanoma model. Furthermore, flow cytometry analysis demonstrated that Z13 inhibited tumor growth in vivo by activating the tumor immune microenvironment. These findings indicate that Z13 is a promising PD-1/PD-L1 inhibitor deserving further investigation.


Antineoplastic Agents , B7-H1 Antigen , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Indazoles , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Mice , Cell Proliferation/drug effects , Drug Discovery , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Mice, Inbred C57BL , Hep G2 Cells , Cell Survival/drug effects
3.
Bioorg Chem ; 130: 106261, 2023 01.
Article En | MEDLINE | ID: mdl-36399866

In this work, we have investigated the one pot strategy for the Cu(I)-mediated synthesis of new triazoles bearing nitroindazole moieties using different copper catalysts. The biological activity of newly synthesized nitroindazolyltriazoles towards Alzheimer's disease-related targets, namely cholinesterases, monoamine oxidases, and amyloid aggregation, were investigated. Predictions of target affinity, physicochemical parameters, gastrointestinal absorption and brain penetration were achieved by means of in silico tools.


Alzheimer Disease , Indazoles , Triazoles , Alzheimer Disease/drug therapy , Amyloidogenic Proteins , Brain , Cholinesterases , Monoamine Oxidase , Indazoles/chemical synthesis , Triazoles/chemical synthesis , Copper/chemistry , Catalysis
4.
Eur J Med Chem ; 229: 114080, 2022 Feb 05.
Article En | MEDLINE | ID: mdl-34992038

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Indazoles/chemical synthesis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Neuroprotective Agents/chemical synthesis , Parkinson Disease/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Animals , Brain , Disease Models, Animal , Drug Discovery , Humans , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lung , Male , Mice , Molecular Docking Simulation , Mutation , Neuroprotective Agents/pharmacokinetics , Phenotype , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Rodentia , Structure-Activity Relationship
5.
J Enzyme Inhib Med Chem ; 37(1): 151-167, 2022 Dec.
Article En | MEDLINE | ID: mdl-34894940

An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.


Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Leishmania major/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Indazoles/chemical synthesis , Indazoles/chemistry , Leishmania major/enzymology , Models, Molecular , Molecular Structure , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Structure-Activity Relationship
6.
Bioorg Med Chem ; 49: 116437, 2021 11 01.
Article En | MEDLINE | ID: mdl-34600239

AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.


Drug Discovery , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Axl Receptor Tyrosine Kinase
7.
J Am Chem Soc ; 143(36): 14464-14469, 2021 09 15.
Article En | MEDLINE | ID: mdl-34473484

An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive coupling of nitroarenes and anilines with good chemoselectivity and functional group tolerance. Mechanistic investigations support an autotandem catalytic reaction cascade in which the organophosphorus catalyst drives two sequential and mechanistically distinct reduction events via PIII/PV═O cycling in order to furnish the target N-N bond.


Aniline Compounds/chemistry , Hydrazines/chemical synthesis , Nitrobenzenes/chemistry , Catalysis , Indazoles/chemical synthesis , Organophosphorus Compounds/chemistry , Oxidation-Reduction
8.
J Med Chem ; 64(12): 8303-8332, 2021 06 24.
Article En | MEDLINE | ID: mdl-34110158

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan 2,3-dioxygenase (hTDO) have been closely linked to the pathogenesis of Parkinson's disease (PD); nevertheless, development of dual hIDO1 and hTDO inhibitors to evaluate their potential efficacy against PD is still lacking. Here, we report biochemical, biophysical, and computational analyses revealing that 1H-indazole-4-amines inhibit both hIDO1 and hTDO by a mechanism involving direct coordination with the heme ferrous and ferric states. Crystal structure-guided optimization led to 23, which manifested IC50 values of 0.64 and 0.04 µM to hIDO1 and hTDO, respectively, and had good pharmacokinetic properties and brain penetration in mice. 23 showed efficacy against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse motor coordination deficits, comparable to Madopar, an anti-PD medicine. Further studies revealed that different from Madopar, 23 likely has specific anti-PD mechanisms involving lowering IDO1 expression, alleviating dopaminergic neurodegeneration, reducing inflammatory cytokines and quinolinic acid in mouse brain, and increasing kynurenic acid in mouse blood.


Enzyme Inhibitors/therapeutic use , Indazoles/therapeutic use , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Tryptophan Oxygenase/antagonists & inhibitors , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain/pathology , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Indazoles/chemical synthesis , Indazoles/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Protein Binding , Structure-Activity Relationship , Tryptophan Oxygenase/metabolism
9.
Bioorg Chem ; 111: 104910, 2021 06.
Article En | MEDLINE | ID: mdl-33894432

A series of compounds were designed and synthesized based on the compound 11i bearing phenylpyrazole scaffold with histone deacetylase 6 (HDAC6) inhibitory activity. Most of the compounds showed considerable inhibitory activity against HDAC6 and compound A16 with good inhibitory activity was found therein. We further found that A16 had an inhibitory effect on inflammatory mediators (NO, TNF-α, IL-6) involved in inflammatory response and neuroendocrine regulation. In addition, A16 has a certain neuroprotective effect on PC12 cells injured by hydrogen peroxide. Acute toxicity assay showed that the LD50 of A16 was 274.47 mg/kg in mouse model. Furthermore, A16 displayed good stability properties in microsomes and plasma.


Drug Design , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Indazoles/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Mice , Molecular Structure , Structure-Activity Relationship , Surface Properties
10.
Molecules ; 26(8)2021 Apr 08.
Article En | MEDLINE | ID: mdl-33917871

Indazole is an important scaffold in medicinal chemistry. At present, the progress on synthetic methodologies has allowed the preparation of several new indazole derivatives with interesting pharmacological properties. Particularly, the antiprotozoal activity of indazole derivatives have been recently reported. Herein, a series of 22 indazole derivatives was synthesized and studied as antiprotozoals. The 2-phenyl-2H-indazole scaffold was accessed by a one-pot procedure, which includes a combination of ultrasound synthesis under neat conditions as well as Cadogan's cyclization. Moreover, some compounds were derivatized to have an appropriate set to provide structure-activity relationships (SAR) information. Whereas the antiprotozoal activity of six of these compounds against E. histolytica, G. intestinalis, and T. vaginalis had been previously reported, the activity of the additional 16 compounds was evaluated against these same protozoa. The biological assays revealed structural features that favor the antiprotozoal activity against the three protozoans tested, e.g., electron withdrawing groups at the 2-phenyl ring. It is important to mention that the indazole derivatives possess strong antiprotozoal activity and are also characterized by a continuous SAR.


Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Cheminformatics , Indazoles/chemical synthesis , Indazoles/pharmacology , Antiprotozoal Agents/chemistry , Entamoeba histolytica/drug effects , Giardia lamblia/drug effects , Indazoles/chemistry , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trichomonas vaginalis/drug effects , Ultrasonics
11.
Eur J Med Chem ; 220: 113482, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-33906048

Apoptosis signal-regulating kinase 1 (ASK1, MAP3K5), a member of the mitogen-activated protein kinase (MAPK) signaling pathway, is involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has emerged as a promising therapeutic strategy for inflammatory disease. A series of novel ASK1 inhibitors with 1H-indazole scaffold were designed, synthesized and evaluated for their ASK1 kinase activity and AP1-HEK293 cell inhibitory effect. Systematic structure-activity relationship (SAR) efforts led to the discovery of promising compound 15, which showed excellent in vitro ASK1 kinase activity and potent inhibitory effects on ASK1 in AP1-HEK293 cells. In a tumor necrosis factor-α (TNF-α)-induced HT-29 intestinal epithelial cell model, compound 15 exhibited a significantly protective effect on cell viability comparable to that of GS-4997; moreover, compound 15 exhibited no obvious cytotoxicity against HT-29 cells at concentrations up to 25 µM. Mechanistic research demonstrated that compound 15 suppresses phosphorylation in the ASK1-p38/JNK signaling pathway in HT-29 cells, and regulates the expression levels of apoptosis-related proteins. Altogether, these results show that compound 15 may serve as a potential candidate compound for the treatment of inflammatory bowel disease (IBD).


Antineoplastic Agents/pharmacology , Drug Design , Indazoles/pharmacology , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , MAP Kinase Kinase Kinase 5/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Drug Test Anal ; 13(7): 1412-1429, 2021 Jul.
Article En | MEDLINE | ID: mdl-33908179

The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of ß-arrestin 2 (ßarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the ßarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the ßarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards ßarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the ßarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.


Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , GTP-Binding Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemical synthesis , Cannabinoids/chemistry , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Structure-Activity Relationship , beta-Arrestin 2/metabolism
14.
Drug Test Anal ; 13(7): 1383-1401, 2021 Jul.
Article En | MEDLINE | ID: mdl-33787091

Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest and most structurally diverse classes of new psychoactive substances (NPS). Despite this, pharmacological data are often lacking following the identification of a new SCRA in drug markets. In this first of a three-part series, we describe the synthesis, analytical characterization, and binding affinity of a proactively generated, systematic library of 30 indole, indazole, and 7-azaindole SCRAs related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA featuring a 4-pentenyl (4en-P), butyl (B/BUT), or 4-cyanobutyl (4CN-B/BUT) tail and a methyl l-valinate (MMB), methyl l-tert-leucinate (MDMB), methyl l-phenylalaninate (MPP), l-valinamide (AB), l-tert-leucinamide (ADB), l-phenylalaninamide (APP), adamantyl (A), or cumyl head group. Competitive radioligand binding assays demonstrated that the indazole core conferred the highest CB1 binding affinity (Ki = 0.17-39 nM), followed by indole- (Ki = 0.95-160 nM) and then 7-azaindole-derived SCRAs (Ki = 5.4-271 nM). Variation of the head group had the greatest effect on binding, with tert-leucine amides and methyl esters (Ki = 0.17-14 nM) generally showing the greatest affinities, followed by valine derivatives (Ki = 0.72-180 nM), and then phenylalanine derivatives (Ki = 2.5-271 nM). Adamantyl head groups (Ki = 8.8-59 nM) were suboptimal for binding, whereas the cumyl analogues consistently conferred high affinity (Ki = 0.62-36 nM). Finally, both butyl (Ki = 3.1-163 nM) and 4-cyanobutyl (Ki = 5.5-44 nM) tail groups were less favorable for CB1 binding than their corresponding 4-pentenyl counterparts (Ki = 0.72-25 nM).


Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemical synthesis , Cannabinoids/chemistry , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Radioligand Assay , Receptor, Cannabinoid, CB1/metabolism , Structure-Activity Relationship
15.
Eur J Med Chem ; 214: 113219, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33618175

Fibroblast growth factor receptor 4 (FGFR4) is a member of the fibroblast growth factor receptor family, which is closely related to the occurrence and development of hepatocellular carcinoma (HCC). In this article, a series of indazole derivatives were designed and synthesized by using computer-aided drug design (CADD) and structure-based design strategies, and then they were evaluated for their inhibition of FGFR4 kinase and antitumor activity. F-30 was subtly selective for FGFR4 compared to FGFR1; it affected cell growth and migration by inhibiting FGFR4 pathways in HCC cell lines in a dose-dependent manner.


Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Design , Indazoles/pharmacology , Liver Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, Fibroblast Growth Factor, Type 4 , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 37: 127843, 2021 04 01.
Article En | MEDLINE | ID: mdl-33556576

A series of 11 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles (2-12) has been prepared starting from 1-benzyl-5-nitroindazol-3-ol 13, and evaluated against sensitive and resistant isolates of the sexually transmitted protozoan Trichomonas vaginalis. Compounds 2, 3, 6, 9, 10 and 11 showed trichomonacidal profiles with IC50 < 20 µM against the metronidazole-sensitive isolate. Moreover, all these compounds submitted to cytotoxicity assays against mammalian cells exhibited low non-specific cytotoxic effects, except compounds 3 and 9 which displayed moderate cytotoxicity (CC50 = 74.7 and 59.1 µM, respectively). Those compounds with trichomonacidal effect were also evaluated against a metronidazole-resistant culture. Special mention deserve compounds 6 and 10, which displayed better IC50 values (1.3 and 0.5 µM respectively) than that of the reference drug (IC50 MTZ = 3.0 µM). The high activity of these compounds against the resistant isolate reinforces the absence of cross-resistance with the reference drug. The remarkable trichomonacidal results against resistant T. vaginalis isolates suggest the interest of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles to be considered as good prototypes to continue in the development of new drugs with enhanced trichomonacidal activity, aiming to increase the non-existent drugs to face clinical resistance efficiently for those patients in whom therapy with 5-nitroimidazoles is contraindicated.


Antiparasitic Agents/pharmacology , Indazoles/pharmacology , Trichomonas Infections/drug therapy , Trichomonas vaginalis/drug effects , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Dose-Response Relationship, Drug , Drug Resistance/drug effects , Indazoles/chemical synthesis , Indazoles/chemistry , Molecular Structure , Structure-Activity Relationship , Trichomonas Infections/parasitology
17.
Eur J Med Chem ; 214: 113232, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33550184

Over 50 tetrahydroindazoles were synthesized after 7-bromo-3,6,6-trimethyl-1-(pyridin-2-yl)-5,6,7,7a-tetrahydro-1H-indazol-4(3aH)-one (3) was identified as a hit compound in a high throughput screen for inhibition of CDK2 in complex with cyclin A. The activity of the most promising analogues was evaluated by inhibition of CDK2 enzyme complexes with various cyclins. Analogues 53 and 59 showed 3-fold better binding affinity for CDK2 and 2- to 10-fold improved inhibitory activity against CDK2/cyclin A1, E, and O compared to screening hit 3. The data from the enzyme and binding assays indicate that the binding of the analogues to a CDK2/cyclin complex is favored over binding to free CDK2. Computational analysis was used to predict a potential binding site at the CDK2/cyclin E1 interface.


Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Binding Sites/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/metabolism , Cyclins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
18.
Eur J Med Chem ; 209: 112911, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33071056

Structurally diverse heterotricyclic compounds are recognized as monoamine oxidase (MAO) inhibitors and thus represent an appealing scaffold in development and optimization of novel MAO inhibitors. Herein we explored the chemical space of pyrimido[1,2-b]indazoles as MAO inhibitors by preparing a small library of (hetero)aryl derivatives. An efficient synthetic strategy was developed starting from commercially available 1H-indazol-3-amines, which were converted to various 3-bromoheterotricyclic derivatives and further functionalized via Suzuki-Miyaura coupling reaction. Derivatives 4a-t selectively inhibited human MAO-B isoform in a reversible and competitive manner as confirmed by kinetic experiments and docking studies. Selected derivatives were not cytotoxic to neuroblastoma SH-SY5Y cells. Moreover, analogue 4i protected human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced cell death, which confirms the applicability of the pyrimido[1,2-b]indazoles as potential antiparkinsonian agents.


Antiparkinson Agents/chemical synthesis , Indazoles/chemical synthesis , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/metabolism , Neuroblastoma/drug therapy , Neuroprotective Agents/chemical synthesis , Small Molecule Libraries/chemical synthesis , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , Bromides/chemistry , Coordination Complexes/chemistry , Humans , Indazoles/chemistry , Indazoles/pharmacokinetics , Metals/chemistry , Molecular Docking Simulation , Monoamine Oxidase Inhibitors/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , Protein Binding , Small Molecule Libraries/pharmacokinetics , Structure-Activity Relationship , Tyramine/chemistry
19.
Bioorg Med Chem Lett ; 31: 127686, 2021 01 01.
Article En | MEDLINE | ID: mdl-33242574

IRAK4 is a key mediator of innate immunity. There is a high interest in identifying novel IRAK4 inhibitors for the treatment of inflammatory autoimmune diseases. We describe here a highly potent and selective IRAK4 inhibitor (HS271) that exhibited superior enzymatic and cellular activities, as well as excellent pharmacokinetic properties. HS271 displayed robust in vivo anti-inflammatory efficacy as evaluated in rat models of LPS induced TNFα production and collagen-induced arthritis.


Amines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Drug Discovery , Indazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Amines/chemical synthesis , Amines/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Dose-Response Relationship, Drug , Haplorhini , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipopolysaccharides/antagonists & inhibitors , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis
20.
J Med Chem ; 63(23): 14821-14839, 2020 12 10.
Article En | MEDLINE | ID: mdl-33197196

Pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified that increase the risk for developing Parkinson's disease in a dominantly inherited fashion. These pathogenic variants, of which G2019S is the most common, cause abnormally high kinase activity, and compounds that inhibit this activity are being pursued as potentially disease-modifying therapeutics. Because LRRK2 regulates important cellular processes, developing inhibitors that can selectively target the pathogenic variant while sparing normal LRRK2 activity could offer potential advantages in heterozygous carriers. We conducted a high-throughput screen and identified a single selective compound that preferentially inhibited G2019S-LRRK2. Optimization of this scaffold led to a series of novel, potent, and highly selective G2019S-LRRK2 inhibitors.


Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Tetrazoles/pharmacology , Animals , HEK293 Cells , High-Throughput Screening Assays , Humans , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics
...