Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 227
1.
Avian Pathol ; 51(4): 339-348, 2022 Aug.
Article En | MEDLINE | ID: mdl-35404721

Infectious bronchitis is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV). As well as the typical clinical respiratory signs, such as dyspnoea and tracheal rales, QX genotype strains can also cause damage to the urinary system and reproductive system. Our previous studies found that chickens infected with QX-type IBV also displayed damage to the bursa of Fabricius. To investigate the effects of different genotypes of IBV on the bursa of Fabricius, we challenged one-week-old SPF chickens with Mass, QX and TW genotype IBV strains and compared the clinical signs, gross lesions, histopathological damage, viral loads, and expression levels of inflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-α,ß, γ and TNF-α). The results showed that all three strains caused tissue damage, while significant temporal variations in the viral loads of the different infected groups were detected. IBV infection seriously interfered with the natural immune response mediated by inflammatory cytokines (IFN-α, IFN-ß, IL-6 and IFN-γ) in chickens. Our results suggested that IBV has potential immunological implications for chickens that may lead to poor production efficiency. RESEARCH HIGHLIGHTSAvian coronavirus IBV is an important pathogen of chickens.IBV has potential immunological implications in chickens.The bursal viral load of different IBV strains varies significantly.


Bursa of Fabricius , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Bursa of Fabricius/pathology , Bursa of Fabricius/virology , Chickens , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Cytokines/metabolism , Infectious bronchitis virus/classification , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Interleukin-6 , Poultry Diseases/pathology , Poultry Diseases/virology
2.
J Virol ; 96(5): e0208621, 2022 03 09.
Article En | MEDLINE | ID: mdl-34985993

Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.


Coronavirus Infections/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adenine/metabolism , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gene Expression Regulation , Humans , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-6/genetics , Interleukin-8/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Transcriptional Activation , Up-Regulation , Uridine/metabolism , Vero Cells
3.
J Virol ; 96(2): e0142921, 2022 01 26.
Article En | MEDLINE | ID: mdl-34669445

This study aims to explore the crosstalk between GRP78/PERK/ATF-4 signaling pathway and renal apoptosis induced by nephropathogenic infectious bronchitis virus (NIBV). Hy-Line brown chickens were divided into two groups (Con, n = 100 and Dis, n = 200). At 28 days of age, each chicken in the Dis group was intranasally injected with SX9 strain (10-5/0.2 ml). Venous blood and kidney tissues were collected at 1, 5, 11, 18 and 28 days postinfection. Our results showed that NIBV infection upregulated the levels of creatinine, uric acid, and calcium (Ca2+) levels. Histopathological examination revealed severe hemorrhage and inflammatory cell infiltration near the renal tubules. Meanwhile, NIBV virus particles and apoptotic bodies were observed by ultramicro electron microscope. In addition, RT-qPCR and Western blot showed that NIBV upregulated the expression of GRP78, PERK, eIF2α, ATF-4, CHOP, Caspase-3, Caspase-9, P53, Bax, and on the contrary, downregulated the expression of Bcl-2. Furthermore, immunofluorescence localization analysis showed that the positive expression of Bcl-2 protein was significantly decreased. Correlation analysis indicated that endoplasmic reticulum (ER) stress gene expression, apoptosis gene expression, and renal injury were potentially related. Taken together, NIBV infection can induce renal ER stress and apoptosis by activating of GRP78/PERK/ATF-4 signaling pathway, leading to kidney damage. IMPORTANCE Nephropathogenic infectious bronchitis virus (NIBV) induced renal endoplasmic reticulum stress in chickens. NIBV infection induced kidney apoptosis in chickens. GRP78/PERK/ATF-4 signaling pathway is potentially related to renal apoptosis induced by NIBV.


Activating Transcription Factor 4/metabolism , Apoptosis , Endoplasmic Reticulum Chaperone BiP/metabolism , Infectious bronchitis virus/pathogenicity , Kidney/pathology , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/genetics , Animals , Apoptosis/genetics , Calcium/metabolism , Chickens , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/genetics , Endoplasmic Reticulum Stress/genetics , Kidney/metabolism , Kidney/virology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/genetics , eIF-2 Kinase/genetics
4.
Virology ; 566: 75-88, 2022 01.
Article En | MEDLINE | ID: mdl-34890893

The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7- and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.


Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Infectious bronchitis virus/pathogenicity , Kidney/immunology , Lung/immunology , Poultry Diseases/immunology , Animals , Animals, Newborn , Avian Proteins/genetics , Avian Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Canada , Cell Movement , Chickens , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Gene Expression , Host-Pathogen Interactions/genetics , Infectious bronchitis virus/growth & development , Infectious bronchitis virus/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Kidney/virology , Lung/virology , Macrophages/immunology , Macrophages/virology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Poultry Diseases/pathology , Poultry Diseases/virology , Specific Pathogen-Free Organisms , Viral Load , Virus Replication
5.
Viruses ; 13(12)2021 12 11.
Article En | MEDLINE | ID: mdl-34960757

Infectious bronchitis virus (IBV) infection causes significant economic losses to various sectors of the poultry industry worldwide. Over the past few years, the incidence of false layer syndrome in Eastern Canadian layer flocks has been associated with the increased prevalence of the IBV Delmarva (DMV)/1639 strain. In this study, 1-day-old specific-pathogen-free (SPF) hens were infected with the Canadian DMV/1639 strain and observed until 16 weeks of age in order to determine if the IBV DMV/1639 strain is causing false layer syndrome. Early after infection, the virus showed a wide tissue distribution with characteristic gross and histopathological lesions in the respiratory tract and kidney. Around 60-70% of the infected hens demonstrated continuous cloacal viral shedding until the end of the experiment (at 16 weeks) which was associated with high IBV genome loads detected in the cecal tonsils. The experiment confirmed the field observations that the Canadian DMV/1639 strain is highly pathogenic to the female reproductive tract causing marked cystic lesions in the oviduct. Moreover, significant histopathological damage was observed in the ovary. Our study provides a detailed description of the pathological consequences of the IBV DMV/1639 strain circulating in an important poultry production sector.


Coronavirus Infections/veterinary , Infectious bronchitis virus/physiology , Infectious bronchitis virus/pathogenicity , Oviducts/virology , Poultry Diseases/virology , Animals , Chickens , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Female , Infectious bronchitis virus/genetics , Infectious bronchitis virus/isolation & purification , Oviducts/pathology , Poultry Diseases/pathology , Poultry Diseases/physiopathology , Reproduction , Specific Pathogen-Free Organisms , Virulence
6.
Virus Genes ; 57(6): 529-540, 2021 Dec.
Article En | MEDLINE | ID: mdl-34626348

Infectious bronchitis virus (IBV, genus Gammacoronavirus) causes an economically important and highly contagious disease in chicken. Random primed RNA sequencing was applied to two IBV positive clinical samples and one in ovo-passaged virus. The virome of a cloacal swab pool was dominated by IBV (82% of viral reads) allowing de novo assembly of a GI-13 lineage complete genome with 99.95% nucleotide identity to vaccine strain 793B. In addition, substantial read counts (16% of viral reads) allowed the assembly of a near-complete chicken astrovirus genome, while lower read counts identified the presence of chicken calicivirus and avian leucosis virus. Viral reads in a respiratory/intestinal tissue pool were distributed between IBV (22.53%), Sicinivirus (Picornaviridae, 24%), and avian leucosis virus (37.04%). A complete IBV genome with 99.95% nucleotide identity to vaccine strain H120 (lineage GI-1), as well as a near-complete avian leucosis virus genome and a partial Sicinivirus genome were assembled from the tissue sample data. Lower read counts identified chicken calicivirus, Avibirnavirus (infectious bursal disease virus, assembling to 98.85% of segment A and 69.66% of segment B closely related to D3976/1 from Germany, 2017) and avian orthoreovirus, while three avian orthoavulavirus 1 reads confirmed prior real-time RT-PCR result. IBV sequence variation analysis identified both fixed and minor frequency variations in the tissue sample compared to its in ovo-passaged virus. Metagenomic methods allow the determination of complete coronavirus genomes from clinical chicken samples while providing additional insights in RNA virus sequence diversity and coinfecting viruses potentially contributing to pathogenicity.


Chickens/virology , Genomics , Infectious bronchitis virus/classification , Infectious bronchitis virus/genetics , Virome/genetics , Animals , Infectious bronchitis virus/pathogenicity , Poultry Diseases/virology
7.
Viruses ; 13(9)2021 08 26.
Article En | MEDLINE | ID: mdl-34578280

Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.


Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Host-Pathogen Interactions/immunology , Immunity, Innate , Infectious bronchitis virus/immunology , Poultry Diseases/immunology , Animals , Chickens/virology , Coronavirus Infections/prevention & control , Infectious bronchitis virus/pathogenicity , Poultry Diseases/prevention & control , Vaccination , Vaccine Development , Viral Vaccines/immunology
8.
Viruses ; 13(8)2021 07 28.
Article En | MEDLINE | ID: mdl-34452342

Infectious bronchitis virus (IBV) induces respiratory and urogenital disease in chickens. Although IBV replicates in the gastrointestinal tract, enteric lesions are uncommon. We have reported a case of runting-stunting syndrome in commercial broilers from which an IBV variant was isolated from the intestines. The isolate, CalEnt, demonstrated an enteric tissue tropism in chicken embryos and SPF chickens experimentally. Here, we determined the full genome of CalEnt and compared it to other IBV strains, in addition to comparing the pathobiology of CalEnt and M41 in commercial broilers. Despite the high whole-genome identity to other IBV strains, CalEnt is rather unique in its nucleotide composition. The S gene phylogenetic analyses showed great similarity between CalEnt and Cal 99. Clinically, vent staining was slightly more frequent in CalEnt-infected birds than those challenged with M41. Furthermore, IBV IHC detection was more evident and the viral shedding in feces was overall higher with the CalEnt challenge compared with M41. Despite underlying intestinal lesions caused by coccidiosis and salmonellosis vaccination, microscopic lesions in CalEnt-infected chickens were more severe than in M41-infected chickens or controls, supporting the enteric tropism of CalEnt. Further studies in SPF chickens are needed to determine the pathogenesis of the virus, its molecular mechanisms for the enteric tropism, and its influence in intestinal health.


Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Infectious bronchitis virus/physiology , Intestines/virology , Poultry Diseases/virology , Viral Tropism , Animals , Chickens , Coronavirus Infections/economics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Genome, Viral , Infectious bronchitis virus/isolation & purification , Infectious bronchitis virus/pathogenicity , Intestines/pathology , Poultry Diseases/economics , Poultry Diseases/pathology , Virus Shedding
9.
Infect Genet Evol ; 94: 105006, 2021 10.
Article En | MEDLINE | ID: mdl-34293479

During 2016 to 2020, GVI-1 type infectious bronchitis virus (IBV) strains were sporadically reported across China, indicating a new epidemic trend of the virus. Here we investigated the molecular characteristics and pathogenicity of two newly isolated GVI-1 type IBV virus strains (CK/CH/TJ1904 and CK/CH/NP2011) from infected chicken farms in China. Genetic evolution analysis of the S1 gene showed the highest homology with the GVI-1 representative strain, TC07-2. Phylogenetic analysis and recombination analysis of the virus genomes indicated that newly isolated strains in China may be independently derived from recombination events that occurred between GI-19 and GI-22 strains and early GVI-1 viruses. Interestingly, unlike the deduced parental GI-19 or GI-22 strains, CK/CH/TJ1904 and CK/CH/NP2011 showed affinity for the trachea rather than the kidney and were less pathogenic. This difference may be because of recombination events that occurred during the long co-existence of the GVI-1 viruses with prevalent GI-19 and GI-22 strains. Considering the new trend, it is very important to permanently monitor circulating strains and to develop new vaccines to counteract emerging new-type IBVs.


Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Poultry Diseases/virology , Animals , China , Coronavirus Infections/virology , Evolution, Molecular , Genome, Viral , Phylogeny , Virulence
10.
Viruses ; 13(6)2021 06 17.
Article En | MEDLINE | ID: mdl-34204473

Infectious bronchitis viruses (IBVs) are evolving continuously via genetic drift and genetic recombination, making disease prevention and control difficult. In this study, we undertook genetic and pathogenic characterization of recombinant IBVs isolated from chickens in South Korea between 2003 and 2019. Phylogenetic analysis showed that 46 IBV isolates belonged to GI-19, which includes nephropathogenic IBVs. Ten isolates formed a new cluster, the genomic sequences of which were different from those of reference sequences. Recombination events in the S1 gene were identified, with putative parental strains identified as QX-like, KM91-like, and GI-15. Recombination detection methods identified three patterns (rGI-19-I, rGI-19-II, and rGI-19-III). To better understand the pathogenicity of recombinant IBVs, we compared the pathogenicity of GI-19 with that of the rGI-19s. The results suggest that rGI-19s may be more likely to cause trachea infections than GI-19, whereas rGI-19s were less pathogenic in the kidney. Additionally, the pathogenicity of rGI-19s varied according to the genotype of the major parent. These results indicate that genetic recombination between heterologous strains belonging to different genotypes has occurred, resulting in the emergence of new recombinant IBVs in South Korea.


Chickens/virology , Genotype , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Phylogeny , Recombination, Genetic , Animals , Genomics , Infectious bronchitis virus/classification , Poultry Diseases/epidemiology , Poultry Diseases/virology , Republic of Korea/epidemiology , Sequence Analysis, RNA , Virulence
11.
Int J Mol Sci ; 22(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073283

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and IL-6. Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated the roles of the integrated stress response (ISR) and activator protein-1 (AP-1) family proteins in regulating coronavirus-induced IL-8 and IL-6 upregulation. The mRNA expression of IL-8 and IL-6 was significantly induced in cells infected with infectious bronchitis virus (IBV), a gammacoronavirus, and porcine epidemic diarrhea virus, an alphacoronavirus. Overexpression of a constitutively active phosphomimetic mutant of eukaryotic translation initiation factor 2α (eIF2α), chemical inhibition of its dephosphorylation, or overexpression of its upstream double-stranded RNA-dependent protein kinase (PKR) significantly enhanced IL-8 mRNA expression in IBV-infected cells. Overexpression of the AP-1 protein cJUN or its upstream kinase also increased the IBV-induced IL-8 mRNA expression, which was synergistically enhanced by overexpression of cFOS. Taken together, this study demonstrated the important regulatory roles of ISR and AP-1 proteins in IL-8 production during coronavirus infection, highlighting the complex interactions between cellular stress pathways and the innate immune response.


Coronavirus Infections/metabolism , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/metabolism , Interleukin-8/metabolism , Unfolded Protein Response/genetics , Alphacoronavirus/metabolism , Alphacoronavirus/pathogenicity , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gammacoronavirus/metabolism , Gammacoronavirus/pathogenicity , Gene Expression Regulation , Humans , Immunity, Innate , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-8/genetics , Phosphorylation , Porcine epidemic diarrhea virus/metabolism , Porcine epidemic diarrhea virus/pathogenicity , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Up-Regulation , Vero Cells , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
12.
Infect Genet Evol ; 93: 104980, 2021 09.
Article En | MEDLINE | ID: mdl-34182190

This study demonstrates that infectious bronchitis virus (IBV) strain M41, which is pathogenic for chickens, is nonpathogenic for pheasants. However, M41 replicated in the respiratory tracts of most inoculated pheasants and the virus was shed from their respiratory tracts in the early stages of infection (4 and 8 dpc). Similarly, the attenuated IBV H120 vaccine strain also replicated and the virus was shed from their respiratory tracts of most inoculated pheasants, whereas the pheasant coronavirus (PhCoV) I0623/17 replicated in the respiratory tracts of all challenged pheasants, which then shed virus for a long period of time. Strain M41 also replicated in selected tissues of the inoculated pheasants, including the lung, kidney, proventriculus, and cecal tonsil, although the viral titers were very low. Therefore, it was important to establish whether the H120 vaccine, which has a limited replication capacity in pheasants, induces a protective immune response to both "homologous" M41 and "heterologous" I0623/17 challenge. Vaccination with H120 induced humoral responses, and the replication of M41 was reduced or restricted in the tissues of the H120-vaccinated pheasants compared with its replication in unvaccinated birds. This implies that partial protection was conferred on pheasants by vaccination with the H120 vaccine. Prolonged viral replication and a large number of birds shedding virus into the respiratory tract were also observed in the unvaccinated pheasants after inoculation with M41. However, only limited protection against challenge with PhCoV I0623/17 was conferred on pheasants vaccinated with H120, largely because the replication of H120 in pheasants was limited, thus, limiting the immune responses induced by it. The low amino acid identity of the S1 subunit of the S proteins of H120 and I0623/17 might also account, at least in part, for the poor cross-protective immunity induced by H120. These results suggest that further work is required to rationally design vaccines that confer effective protection against PhCoV infection in commercial pheasant stocks.


Coronavirus Infections/veterinary , Galliformes , Infectious bronchitis virus/physiology , Viral Vaccines/pharmacology , Animals , Antibodies, Neutralizing/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Infectious bronchitis virus/immunology , Infectious bronchitis virus/pathogenicity , Poultry Diseases/prevention & control , Poultry Diseases/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Attenuated/pharmacology
13.
Vet Microbiol ; 254: 109014, 2021 Mar.
Article En | MEDLINE | ID: mdl-33636510

TW-like infectious bronchitis virus (IBV) with high pathogenicity is becoming the predominant IBV type circulating in China. To develop vaccines against TW-like IBV strains and investigate the critical genes associated with their virulence, GD strain was attenuated by 140 serial passages in specific-pathogen-free embryonated eggs and the safety and efficacy of the attenuated GD strain (aGD) were examined. The genome sequences of GD and aGD were also compared and the effects of mutations in the S gene were observed. The results revealed that aGD strain showed no obvious pathogenicity with superior protective efficacy against TW-like and QX-like virulent IBV strains. The genomes of strains aGD and GD shared high similarity (99.87 %) and most of the mutations occurred in S gene. Recombinant IBV strain rGDaGD-S, in which the S gene was replaced with the corresponding regions from aGD, showed decreased pathogenicity compared with its parental strain. In conclusion, attenuated TW-like IBV strain aGD is a potential vaccine candidate and the S gene is responsible for its attenuation. Our research has laid the foundation for future exploration of the attenuating molecular mechanism of IBV.


Chickens/virology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics , Virulence Factors/genetics , Animals , Chick Embryo , Coronavirus Infections/prevention & control , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Reverse Genetics/methods , Serial Passage , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
14.
BMC Genomics ; 22(1): 67, 2021 Jan 20.
Article En | MEDLINE | ID: mdl-33472590

BACKGROUND: Avian infectious bronchitis virus (IBV) is a gamma coronavirus that severely affects the poultry industry worldwide. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs with a length of more than 200 nucleotides, have been recently recognized as pivotal factors in the pathogenesis of viral infections. However, little is known about the function of lncRNAs in host cultured cells in response to IBV infection. RESULTS: We used next-generation high throughput sequencing to reveal the expression profiles of mRNAs and lncRNAs in IBV-infected HD11 cells. Compared with the uninfected cells, we identified 153 differentially expressed (DE) mRNAs (106 up-regulated mRNAs, 47 down-regulated mRNAs) and 181 DE lncRNAs (59 up-regulated lncRNAs, 122 down-regulated lncRNAs) in IBV-infected HD11 cells. Moreover, gene ontology (GO) and pathway enrichment analyses indicated that DE mRNAs and lncRNAs were mainly involved in cellular innate immunity, amino acid metabolism, and nucleic acid metabolism. In addition, 2640 novel chicken lncRNAs were identified, and a competing endogenous RNA (ceRNAs) network centered on gga-miR-30d and miR-146a-5p was established. CONCLUSIONS: We identified expression profiles of mRNAs and lncRNAs during IBV infection that provided new insights into the pathogenesis of IBV.


Chickens/genetics , Gene Expression Profiling/methods , Macrophages/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Animals , Cell Line , Chickens/virology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Gene Ontology , Infectious bronchitis virus/pathogenicity , Macrophages/virology , Poultry Diseases/genetics , Poultry Diseases/virology , Signal Transduction/genetics , Virulence
15.
Virus Res ; 292: 198229, 2021 01 15.
Article En | MEDLINE | ID: mdl-33207263

Infectious bronchitis virus (IBV) of GI-19 (QX), GI-7 (TW), GI-13 (4/91) and GI-1 (Mass) lineages have been frequently detected in China in recent years. Here, An IBV strain, referred as GD17/04, was isolated from the dead yellow feather chicken vaccinated with H52 and 4/91 vaccines, whose genome sequence was obtained through high-throughput sequencing. Then it has been confirmed by the RDP and SimPlot analysis that GD17/04 is a recombinant strain deriving from YX10, 4/91, TW 2575/98 and H52 strains. Therein S1 gene of GD17/04 consists of sequences of TW2575/98 and 4/91, the former for the region of 20,371 to 21,072 nt and 21,847 to 21,975 nt, the latter for the sandwiched region of 21,073 to 21,846 nt. Moreover, as a nephropathogenic variant which caused high morbidity of 100 % and mortality of 60 %, unlike most other IBV strains, GD17/04 can cause obvious cell lesion in primary CEK cell, and even in DF-1 cells, without the process of continuous passage. As the few IBV strain can infect avian passage cell line, GD17/04 provides a material basis for further study of the interaction mechanism between IBV and avian host. Collectively, the findings highlight the significance that biological characteristics of novel strain should be studied, in addition to constant epidemiologic and molecular surveillance for IBV.


Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Poultry Diseases/virology , Animals , Cell Line , Chickens , China , Coronavirus Infections/mortality , Coronavirus Infections/virology , Genome, Viral , Infectious bronchitis virus/classification , Infectious bronchitis virus/physiology , Phylogeny , Poultry Diseases/mortality , Recombination, Genetic , Virulence
16.
Arch Virol ; 165(12): 2777-2788, 2020 Dec.
Article En | MEDLINE | ID: mdl-32964293

Besides the vaccine strains, the Malaysian variant (MV) and QX-like are the predominant IBVs detected on commercial poultry farms. These two virus strains are distinct based on genomic and pathogenicity studies. In this study, we determined the sequence of the S1 gene and compared the pathogenicity of serial passage 70 (P70) of Malaysian QX-like (QX/P70) and MV (MV/P70) strains with that of their respective wild-type viruses. The nucleotide and amino acid sequences of the complete S1 genes of QX/P70 and MV/P70 showed 1.4 to 1.6% and 3.0 to 3.3% variation, respectively, when compared to the wild-type virus. Most of the mutations were insertions and substitutions in the hypervariable regions (HVRs), primarily in HVR 3. Furthermore, selection pressure analysis showed that both viruses are under purifying selection. A pathogenicity study in specific-pathogen-free (SPF) chickens showed a reduction in respiratory and kidney lesions in chickens inoculated with MV/P70, but not with QX/P70, when compared to the respective wild-type viruses. However, MV/P70 is still pathogenic and can cause ciliary damage. In conclusion, the MV IBV strain is more responsive than the QX-like IBV strain following the attenuation process used for the development of a live attenuated IBV vaccine.


Coronavirus Infections/veterinary , Infectious bronchitis virus/genetics , Poultry Diseases/pathology , Poultry Diseases/virology , Animals , Chickens , Coronavirus Infections/virology , Infectious bronchitis virus/pathogenicity , Poultry Diseases/prevention & control , Sequence Analysis, Protein , Serial Passage , Specific Pathogen-Free Organisms , Vaccines, Attenuated/immunology
17.
Appl Microbiol Biotechnol ; 104(19): 8427-8437, 2020 Oct.
Article En | MEDLINE | ID: mdl-32813067

Infectious bronchitis virus (IBV) is a member of genus gamma-coronavirus in the family Coronaviridae, causing serious economic losses to the poultry industry. Reverse genetics is a common technique to study the biological characteristics of viruses. So far, there is no BAC reverse genetic system available for rescue of IBV infectious clone. In the present study, a new strategy for the construction of IBV infectious cDNA clone was established. The full-length genomic cDNA of IBV vaccine strain H120 was constructed in pBAC vector from four IBV fragment subcloning vectors by homologous recombination, which contained the CMV promoter at the 5' end and the hepatitis D virus ribozyme (HDVR) sequence and bovine growth hormone polyadenylation (BGH) sequence after the polyA tail at the 3' end of the full-length cDNA. Subsequently, using the same technique, another plasmid pBAC-H120/SCS1 was also constructed, in which S1 gene from IBV H120 strain was replaced with that of a virulent SC021202 strain. Recombinant virus rH120 and rH120/SCS1 were rescued by transfecting the plasmids into BHK cells and passaged in embryonated chicken eggs. Finally, the pathogenicity of both the recombinant virus strains rH120 and rH120/SCS1 was evaluated in SPF chickens. The results showed that the chimeric rH120/SCS1 strain was not pathogenic compared with the wild-type IBV SC021202 strain and the chickens inoculated with rH120/SCS1 could resist challenge infection by IBV SC021202. Taken together, our results indicate that BAC reverse genetic system could be used to rescue IBV in vitro and IBV S1 protein alone might not be the key factor for IBV pathogenicity. KEY POINTS: • BAC vector was used to construct IBV full-length cDNA by homologous recombination. • Based on four subcloning vectors, a recombinant chimeric IBV H120/SCS1 was constructed and rescued. • Pathogenicity of H120/SCS1 was similar to that of H120, but different to that of SC021202.


Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Viral Proteins/genetics , Animals , Chick Embryo , Chickens , Coronavirus Infections/veterinary , DNA, Complementary , Homologous Recombination , Poultry Diseases/virology , Recombinant Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics
18.
Virology ; 550: 1-7, 2020 11.
Article En | MEDLINE | ID: mdl-32853833

Avian coronavirus infectious bronchitis virus (IBV) is an important pathogen threatening poultry production worldwide. Here, two recombinant IBVs (rYN-1a-aYN and rYN-1b-aYN) were generated in which ORF1a or ORF1b of the virulent YN genome were replaced by the corresponding regions from the attenuated strain aYN. The pathogenicity and virulence of rIBVs were evaluated in ovo and in vivo. The results revealed that mutations in the ORF1a gene during passage in embryonated eggs caused the decreased pathogenicity of virulent IBV YN strain, proven by determination of virus replication in ECEs and CEK cells, the observation of clinical signs, gross lesions, microscopic lesions, tracheal ciliary activity and virus distribution in chickens following exposure to rIBVs. However, mutations in ORF1b had no obvious effect on virus replication in both ECEs and CEK cells, or pathogenicity in chickens. Our findings demonstrate that the replicase 1a gene of avian coronavirus IBV is a determinant of pathogenicity.


Coronavirus Infections/veterinary , Infectious bronchitis virus/pathogenicity , Poultry Diseases/pathology , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/pathogenicity , Viral Proteins/genetics , Virulence Factors/genetics , Animals , Cell Line , Chick Embryo , Chickens , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cricetulus , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression , Germ-Free Life , Infectious bronchitis virus/genetics , Infectious bronchitis virus/growth & development , Mutation , Poultry Diseases/transmission , Poultry Diseases/virology , RNA-Dependent RNA Polymerase/metabolism , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Viral Proteins/metabolism , Virulence , Virulence Factors/metabolism , Virus Replication
19.
Genes (Basel) ; 11(8)2020 08 10.
Article En | MEDLINE | ID: mdl-32785186

The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.


Chickens/genetics , Chickens/virology , Coronavirus Infections/veterinary , Host-Pathogen Interactions/genetics , Membrane Proteins/genetics , Animals , Coronavirus Infections/genetics , Gene Expression Regulation, Viral , Host-Pathogen Interactions/physiology , Infectious bronchitis virus/pathogenicity , Infectious bronchitis virus/physiology , Organ Culture Techniques , Poultry Diseases/etiology , Poultry Diseases/genetics , Poultry Diseases/virology , Viral Load , Viral Tropism
20.
Methods Mol Biol ; 2203: 135-143, 2020.
Article En | MEDLINE | ID: mdl-32833210

Several techniques are currently available to quickly and accurately quantify the number of virus particles in a sample, taking advantage of advanced technologies improving old techniques or generating new ones, generally relying on partial detection methods or structural analysis. Therefore, characterization of virus infectivity in a sample is often essential, and classical virological methods are extremely powerful in providing accurate results even in an old-fashioned way. In this chapter, we describe in detail the techniques routinely used to estimate the number of viable infectious coronavirus particles in a given sample. All these techniques are serial dilution assays, also known as titrations or end-point dilution assays (EPDA).


Coronavirus/pathogenicity , Viral Plaque Assay/methods , Animals , Cells, Cultured , Coronavirus/growth & development , Infectious bronchitis virus/growth & development , Infectious bronchitis virus/pathogenicity , Trachea/cytology
...