Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31.777
1.
Clin Exp Med ; 24(1): 96, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717644

Primary Sjögren's Syndrome (pSS) falls within the category of connective tissue diseases, characterized by the presence of autoantibodies such as antinuclear antibodies (ANA). However, according to the classification criteria for pSS, some patients may exhibit a negative result for autoantibodies. Patients with a negative result for autoantibodies may lack typical features of connective tissue diseases, and the immunological state as well as the extent of organ involvement and damage may differ from those with positive autoantibodies. This study aims to compare the clinical phenotypes of patients with positive and negative autoantibodies, providing insights for disease classification and treatment selection for clinicians. Patients with pSS were grouped based on the presence and titers of their autoantibodies. Subsequently, differences in organ damage and laboratory indicators were compared between these groups, aiming to analyze the value of autoantibody titers in assessing the condition of pSS. (1) Patients with positive ANA exhibited elevated levels of inflammatory indicators, including ESR, IgG levels, lip gland biopsy pathology grade, and overall organ involvement, in comparison with patients with negative ANA (P < 0.05). Furthermore, ANA-positivity correlated with a higher occurrence of multi-organ damage, particularly affecting the skin, mucous membranes, and the hematological system (P < 0.05). (2) As ANA titers increased, patients demonstrated elevated levels of IgG and an escalation in organ involvement (P < 0.05). (3) Patients in the positive autoantibody group (positive for antinuclear antibodies, anti-SSA, or anti-SSB antibodies) had higher IgG levels compared to the negative group (P < 0.05). (4) Patients with positive anti-SSA and anti-SSB antibodies exhibited higher levels of inflammatory indicators and IgG compared to other patients (P < 0.05); however, no significant differences were observed in terms of organ involvement and organ damage. Patients with positive ANA in pSS typically exhibit higher levels of inflammation and an increased likelihood of experiencing multi-organ damage. Furthermore, as the ANA titers increase, both inflammation levels and the risk of multi-organ damage also escalate. Additionally, the presence of anti-SSA and anti-SSB antibodies may contribute to an elevated risk of increased inflammation levels, but does not increase the risk of organ damage.


Antibodies, Antinuclear , Sjogren's Syndrome , Humans , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Sjogren's Syndrome/blood , Female , Middle Aged , Male , Adult , Aged , Inflammation/immunology , Inflammation/pathology , Immunoglobulin G/blood
2.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Article En | MEDLINE | ID: mdl-38722267

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Inflammatory Bowel Diseases , Isoflavones , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , MAP Kinase Signaling System/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Disease Models, Animal , Dextran Sulfate/toxicity , Inflammation/drug therapy , Inflammation/immunology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
3.
Medicine (Baltimore) ; 103(19): e38115, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728509

Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.


Blood Platelets , Inflammation , Humans , Blood Platelets/immunology , Inflammation/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Sepsis/immunology , Sepsis/blood , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/blood , Neutrophils/immunology
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732021

The most common manifestation of endometriosis, a condition characterized by the presence of endometrial-like tissue outside of the uterus, is the endometrioma, a cystic ovarian lesion. It is a commonly occurring condition associated with chronic pelvic pain exacerbated prior to and during menstruation, as well as infertility. The exact pathomechanisms of the endometrioma are still not fully understood. Emerging evidence suggests a pivotal role of immune dysregulation in the pathogenesis of endometriomas, primarily influencing both local and systemic inflammatory processes. Among the factors implicated in the creation of the inflammatory milieu associated with endometriomas, alterations in both serum and local levels of several cytokines stand out, including IL-6, IL-8, and IL-1ß, along with abnormalities in the innate immune system. While numerous signaling pathways have been suggested to play a role in the inflammatory process linked to endometriomas, only NF-κB has been conclusively demonstrated to be involved. Additionally, increased oxidative stress, both resulting from and contributing to endometriomas, has been identified as a primary driver of both systemic and local inflammation associated with the condition. This article reviews the current understanding of immune dysfunctions in the endometrioma and their implications for inflammation.


Endometriosis , Inflammation , Humans , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/metabolism , Female , Inflammation/immunology , Inflammation/pathology , Cytokines/metabolism , Oxidative Stress , Signal Transduction , Immunity, Innate , Animals
5.
Front Immunol ; 15: 1381319, 2024.
Article En | MEDLINE | ID: mdl-38742118

Introduction: Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods: Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results: We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion: Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.


Inflammation , Pancreatic Ducts , Single-Cell Analysis , Transcriptome , Humans , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/immunology , Inflammation/immunology , Inflammation/genetics , Gene Expression Profiling , Diabetes Mellitus/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Cells, Cultured , Inflammation Mediators/metabolism
6.
Front Immunol ; 15: 1393283, 2024.
Article En | MEDLINE | ID: mdl-38742111

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Endotoxins , Immune Tolerance , Immunity, Innate , Immunologic Memory , Humans , Animals , Endotoxins/immunology , Inflammation/immunology , Adaptive Immunity , Trained Immunity
7.
Front Immunol ; 15: 1369726, 2024.
Article En | MEDLINE | ID: mdl-38742117

Background: The inflammatory response plays an essential role in the tumor microenvironment (TME) of colorectal cancer (CRC) by modulating tumor growth, progression, and response to therapy through the recruitment of immune cells, production of cytokines, and activation of signaling pathways. However, the molecular subtypes and risk score prognostic model based on inflammatory response remain to be further explored. Methods: Inflammation-related genes were collected from the molecular signature database and molecular subtypes were identified using nonnegative matrix factorization based on the TCGA cohort. We compared the clinicopathological features, immune infiltration, somatic mutation profile, survival prognosis, and drug sensitivity between the subtypes. The risk score model was developed using LASSO and multivariate Cox regression in the TCGA cohort. The above results were independently validated in the GEO cohort. Moreover, we explored the biological functions of the hub gene, receptor interacting protein kinase 2 (RIPK2), leveraging proteomics data, in vivo, and in vitro experiments. Results: We identified two inflammation-related subtypes (inflammation-low and inflammation-high) and have excellent internal consistency and stability. Inflammation-high subtype showed higher immune cell infiltration and increased sensitivity to common chemotherapeutic drugs, while inflammation-low subtype may be more suitable for immunotherapy. Besides, the two subtypes differ significantly in pathway enrichment and biological functions. In addition, the 11-gene signature prognostic model constructed from inflammation-related genes showed strong prognostic assessment power and could serve as a novel prognostic marker to predict the survival of CRC patients. Finally, RIPK2 plays a crucial role in promoting malignant proliferation of CRC cell validated by experiment. Conclusions: This study provides new insights into the heterogeneity of CRC and provides novel opportunities for treatment development and clinical decision making.


Colorectal Neoplasms , Inflammation , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Tumor Microenvironment/immunology , Prognosis , Inflammation/immunology , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Animals , Female , Male , Mice , Gene Expression Profiling , Transcriptome , Cell Line, Tumor
10.
Front Immunol ; 15: 1394925, 2024.
Article En | MEDLINE | ID: mdl-38690282

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Energy Metabolism , Oxidative Stress , Sepsis , Sirtuins , Humans , Sepsis/drug therapy , Sepsis/immunology , Sepsis/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism/drug effects , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/immunology
11.
Front Immunol ; 15: 1353922, 2024.
Article En | MEDLINE | ID: mdl-38745645

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Dendritic Cells , Inflammation , Interleukin-4 , Mast Cells , Mice, Inbred C57BL , Toll-Like Receptor 2 , Zymosan , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Inflammation/immunology , Inflammation/metabolism , Interleukin-4/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Mice, Knockout
12.
Front Immunol ; 15: 1385858, 2024.
Article En | MEDLINE | ID: mdl-38745674

Mechanisms underlying long COVID remain poorly understood. Patterns of immunological responses in individuals with long COVID may provide insight into clinical phenotypes. Here we aimed to identify these immunological patterns and study the inflammatory processes ongoing in individuals with long COVID. We applied an unsupervised hierarchical clustering approach to analyze plasma levels of 42 biomarkers measured in individuals with long COVID. Logistic regression models were used to explore associations between biomarker clusters, clinical variables, and symptom phenotypes. In 101 individuals, we identified three inflammatory clusters: a limited immune activation cluster, an innate immune activation cluster, and a systemic immune activation cluster. Membership in these inflammatory clusters did not correlate with individual symptoms or symptom phenotypes, but was associated with clinical variables including age, BMI, and vaccination status. Differences in serologic responses between clusters were also observed. Our results indicate that clinical variables of individuals with long COVID are associated with their inflammatory profiles and can provide insight into the ongoing immune responses.


Biomarkers , COVID-19 , Inflammation , SARS-CoV-2 , Humans , Biomarkers/blood , Male , Female , COVID-19/immunology , COVID-19/blood , Middle Aged , SARS-CoV-2/immunology , Inflammation/blood , Inflammation/immunology , Aged , Post-Acute COVID-19 Syndrome , Cluster Analysis , Adult
13.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747289

CXCL8 and other chemokines have been implicated in tissue inflammation and are attractive candidates for therapeutic targeting to treat human disease.


Interleukin-8 , Humans , Interleukin-8/metabolism , Interleukin-8/genetics , Animals , Inflammation/immunology , Inflammation/metabolism
14.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747912

BACKGROUND: The goal was to study the difference of virological, immunologic, and inflammatory indicators between Epstein-Barr associated infectious mononucleosis (EBV-IM) and EBV associated hemophagocytic lymphohistiocytosis (EBV-HLH) and to explore the evaluation indicators for monitoring the therapeutic efficacy of EBV-HLH. METHODS: Twenty children with EBV-IM (IM group) and 10 children with EBV-HLH (HLH group) were selected. Virology indicators were detected; the absolute count of lymphocyte, and lymphocyte subsets were detected; the levels of immunoglobulin and ferritin were assayed. RESULTS: Compared to the IM group, the HLH group showed a decrease in EBV-specific VCA-IgM antibody levels (U = 29.0, p = 0.006) and an increase in EBV-specific NA-IgG antibody levels (U = 17.0, p = 0.001), while there was no significant difference in EB-DNA loads (t = 0.417, p = 0.680). The counts of lymphocytes, and various lymphocyte subsets in the HLH group were lower than those in the IM group. Inflammatory markers in the HLH group were significantly higher than those in IM group. Dynamic monitoring of virological, immunological, and inflammatory indicators in HLH patients during treatment showed that EBV DNA gradually decreased in patients with good prognosis. Inflammatory indicators significantly decreased and returned to normal, lymphocyte count significantly increased and returned to normal during treatment. However, patients with poor prognosis showed rebound increase in EBV DNA and inflammatory indicators in the later stage of treatment, while lymphocyte count further decreased with the recurrence of the disease. CONCLUSIONS: Exhausted and damaged immune function in host by persistent stimulation of EB viral antigen is one of the main pathogeneses of EB-HLH. Lymphocyte count and serum ferritin level are effective indicators to monitor the therapeutic efficacy during the treatment to HLH.


Epstein-Barr Virus Infections , Herpesvirus 4, Human , Infectious Mononucleosis , Lymphohistiocytosis, Hemophagocytic , Humans , Child , Male , Female , Child, Preschool , Herpesvirus 4, Human/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/virology , Lymphohistiocytosis, Hemophagocytic/blood , Infectious Mononucleosis/immunology , Infectious Mononucleosis/blood , Infectious Mononucleosis/virology , Infectious Mononucleosis/diagnosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , DNA, Viral/blood , Inflammation/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Load , Ferritins/blood , Lymphocyte Count , Adolescent , Infant , Lymphocyte Subsets/immunology
16.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38740432

Subclinical vascular impairment can be exacerbated in individuals who experience sustained inflammation after COVID-19 infection. Our study explores the prevalence and impact of autoantibodies on vascular dysfunction in healthy COVID-19 survivors, an area that remains inadequately investigated. Focusing on autoantibodies against the atypical chemokine receptor 1 (ACKR1), COVID-19 survivors demonstrated significantly elevated anti-ACKR1 autoantibodies, correlating with systemic cytokines, circulating damaged endothelial cells, and endothelial dysfunction. An independent cohort linked these autoantibodies to increased vascular disease outcomes during a median 6.7-yr follow-up. We analyzed a single-cell transcriptome atlas of endothelial cells from diverse mouse tissues, identifying enriched Ackr1 expressions in venous regions of the brain and soleus muscle vasculatures, which holds intriguing implications for tissue-specific venous thromboembolism manifestations reported in COVID-19. Functionally, purified immunoglobulin G (IgG) extracted from patient plasma did not trigger cell apoptosis or increase barrier permeability in human vein endothelial cells. Instead, plasma IgG enhanced antibody-dependent cellular cytotoxicity mediated by patient PBMCs, a phenomenon alleviated by blocking peptide or liposome ACKR1 recombinant protein. The blocking peptide uncovered that purified IgG from COVID-19 survivors possessed potential epitopes in the N-terminal extracellular domain of ACKR1, which effectively averted antibody-dependent cellular cytotoxicity. Our findings offer insights into therapeutic development to mitigate autoantibody reactivity in blood vessels in chronic inflammation.


Autoantibodies , COVID-19 , SARS-CoV-2 , Humans , Autoantibodies/immunology , COVID-19/immunology , Animals , Mice , Female , Male , SARS-CoV-2/immunology , Inflammation/immunology , Middle Aged , Endothelium, Vascular/metabolism , Endothelium, Vascular/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Endothelial Cells/metabolism , Endothelial Cells/immunology , Adult , Aged
18.
Rev Invest Clin ; 76(2): 65-79, 2024.
Article En | MEDLINE | ID: mdl-38718804

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Adipose Tissue , Inflammation , Metabolic Diseases , Obesity , Humans , Adipose Tissue/metabolism , Adipose Tissue/immunology , Obesity/immunology , Obesity/metabolism , Inflammation/immunology , Inflammation/metabolism , Metabolic Diseases/immunology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Energy Metabolism/physiology , Adipocytes/metabolism , Adipocytes/immunology , Lipid Metabolism/physiology , Animals , Homeostasis
19.
Am J Reprod Immunol ; 91(5): e13848, 2024 May.
Article En | MEDLINE | ID: mdl-38720643

PROBLEM: Systemic chronic inflammation (SCI) is a prevalent characteristic observed in various diseases originating from different tissues, while the association of SCI with preterm birth (PTB) remains uncertain. This study aimed to analyze the association between a nonspecific biomarker of SCI and PTB, while also exploring the trajectories of SCI in pregnant women at risk of PTB. METHOD OF STUDY: The study used data from the Electronic Medical Record System (EMRS) of a hospital in Zhejiang, China and 9226 pregnant women were included. The duration of pregnancy was categorized into four distinct periods: the first, early-second, late-second, and third trimester. Latent class trajectory modeling (LCTM) was used to identify the trajectories of SCI during pregnancy. RESULTS: The elevated WBC counts in the late-second (OR = 1.14, 95% CI: 1.06-1.23) and third (OR = 1.16, 95% CI: 1.09-1.24) trimester were both positively associated with an evaluated risk of PTB. Moreover, significant dose-response relationships were observed. There were three distinct SCI trajectories found: progressing SCI (2.89%), high SCI (7.13%), and low SCI (89.98%). Pregnant women with progressive SCI had the highest risk of PTB (OR = 3.03, 95% CI: 1.47-6.25). CONCLUSIONS: In conclusion, elevated SCI after 23 weeks was a risk factor for PTB in healthy women, even if the SCI indicator was within normal range. Pregnant women with progressive SCI during pregnancy had the highest risk of PTB.


Inflammation , Premature Birth , Humans , Female , Pregnancy , Premature Birth/epidemiology , Premature Birth/immunology , Adult , Inflammation/immunology , China/epidemiology , Chronic Disease , Biomarkers/blood , Risk Factors , Pregnancy Complications/epidemiology , Pregnancy Complications/immunology , Pregnancy Trimesters
20.
Autoimmunity ; 57(1): 2350202, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38721694

Yinchenhao Decoction (YCHD) is a classic prescription in traditional Chinese medicine (TCM). It appears to play an important role in anti-inflammation and autoimmunity protection. As one of the key active ingredients in YCHD, quercetin is a novel anti-inflammatory metabolite that exerts protective effects in many autoimmune diseases. However, its role in autoimmune hepatitis (AIH)-related hepatic injury has not been studied. The aim of this study was to reveal the hepatocyte protective mechanism of quercetin. In this study, we used Concanavalin A (Con A) to establish an in vitro hepatocyte injury-associated AIH model. Brl3a hepatocyte injury was induced by the supernatant of J774A.1 cells treated with Con A. We found that quercetin mitigated Con A-induced via macrophage-mediated Brl3a hepatocyte injury. Quercetin administration reduced the levels of alanine transaminase (ALT) and aspartate transaminase (AST) in the supernatant of Con A-treated Brl3a cells and attenuated the infiltration of J774A.1 macrophages induced by Con A. Moreover, quercetin effectively inhibited the expression of proinflammatory cytokines including interleukin-1ß (IL-1ß) by Con A. Furthermore, quercetin decreased hepatocyte apoptosis and ferroptosis levels in the macrophage-induced hepatocyte injury model. In conclusion, our study indicates that quercetin alleviates macrophage-induced hepatocyte damage by reducing the inflammatory response, apoptosis and ferroptosis. Our work suggests that quercetin might be a potential therapeutic strategy for AIH.


Anti-Inflammatory Agents , Apoptosis , Ferroptosis , Hepatocytes , Macrophages , Quercetin , Quercetin/pharmacology , Quercetin/therapeutic use , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Ferroptosis/drug effects , Apoptosis/drug effects , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/pathology , Hepatitis, Autoimmune/metabolism , Hepatitis, Autoimmune/etiology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/immunology , Concanavalin A , Cytokines/metabolism
...