Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.190
1.
Gut Microbes ; 16(1): 2348441, 2024.
Article En | MEDLINE | ID: mdl-38706224

Colorectal cancer (CRC), a malignant tumor worldwide, is associated with gut microbiota. The influence of gut microbe-derived metabolites on CRC has attracted a lot of attention. However, the role of immunity mediated by commensal microbiota-derived metabolites in tumorigenesis of CRC is not intensively explored. Here we monitored the gut microbial dysbiosis in CRC mouse model (ApcMin/+ model) without dietary and pharmacological intervention, followed by characterized of metabolites enriched in CRC model mice. Profound changes of gut microbiome (bacteriome) were observed during intestinal disorders. Metabolomic profiling indicated that agmatine, derived from the gut bacteria i.e. Blautia, Odoribacter, Alistipes and Paraprevotella, could interact with Rnf128 to suppress the Rnf128-mediated ubiquitination of ß-catenin to further upregulate the downstream targets of ß-catenin including Cyclin D1, Lgr5, CD44 and C-myc, thus activating Wnt signaling. The activated Wnt signaling pathway promoted dysplasia of intestinal cells and inflammatory infiltration of lymphocytes via inducing the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α) and downregulation of anti-inflammatory cytokine (IL-10), thereby contributing to colorectal carcinogenesis. Therefore, our study presented novel insights into the roles and mechanisms of gut microbiota in pathogenesis of CRC.


Carcinogenesis , Colorectal Neoplasms , Gastrointestinal Microbiome , Inflammation , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Mice , Inflammation/metabolism , Inflammation/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Mice, Inbred C57BL , beta Catenin/metabolism , Dysbiosis/microbiology , Humans , Disease Models, Animal , Cytokines/metabolism , Symbiosis , Male
2.
Front Endocrinol (Lausanne) ; 15: 1368334, 2024.
Article En | MEDLINE | ID: mdl-38711980

Introduction: Studies have shown that the gut microbiota is associated with male infertility (MI). However, their causal relationship and potential mediators need more evidence to prove. We aimed to investigate the causal relationship between the gut microbiome and MI and the potential mediating role of inflammatory cytokines from a genetic perspective through a Mendelian randomization approach. Methods: This study used data from genome-wide association studies of gut microbes (Mibiogen, n = 18, 340), inflammatory cytokines (NFBC1966, FYPCRS, FINRISK 1997 and 2002, n=13, 365), and male infertility (Finngen, n=120, 706) to perform two-way Mendelian randomization (MR), mediated MR, and multivariate MR(MVMR) analyses. In this study, the inverse variance weighting method was used as the primary analysis method, and other methods were used as supplementary analysis methods. Results: In the present study, two gut microbes and two inflammatory cytokines were found to have a potential causal relationship with MI. Of the two gut microorganisms causally associated with male infertility, Anaerotruncus increased the risk of male infertility (odds ratio = 1.81, 95% confidence interval = 1.18-2.77, P = 0.0062), and Bacteroides decreased the risk of male infertility (odds ratio = 0.57, 95% confidence interval = 0.33-0.96, P = 0.0363). In addition, of the two inflammatory cytokines identified, hepatocyte growth factor(HGF) reduced the risk of male infertility (odds ratio = 0.50, 95% confidence interval = 0.35-0.71, P = 0.0001), Monocyte chemotactic protein 3 (MCP-3) increased the risk of male infertility (odds ratio = 1.28, 95% confidence interval = 1.03-1.61, P = 0.0039). Mediated MR analysis showed that HGF mediated the causal effect of Bacteroides on MI (mediated percentage 38.9%). Multivariate MR analyses suggest that HGF may be one of the pathways through which Bacteroides affects MI, with other unexplored pathways. Conclusion: The present study suggests a causal relationship between specific gut microbiota, inflammatory cytokines, and MI. In addition, HGF may mediate the relationship between Bacteroides and MI.


Cytokines , Gastrointestinal Microbiome , Genome-Wide Association Study , Infertility, Male , Mendelian Randomization Analysis , Male , Humans , Infertility, Male/microbiology , Infertility, Male/genetics , Cytokines/genetics , Cytokines/metabolism , Inflammation/microbiology , Adult , Polymorphism, Single Nucleotide
3.
Nat Commun ; 15(1): 3756, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704381

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Fallopian Tubes , Gonorrhea , Inflammation , Interleukin-17 , Neisseria gonorrhoeae , Humans , Female , Fallopian Tubes/microbiology , Fallopian Tubes/pathology , Fallopian Tubes/immunology , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/pathogenicity , Interleukin-17/metabolism , Gonorrhea/immunology , Gonorrhea/microbiology , Gonorrhea/pathology , Inflammation/pathology , Inflammation/microbiology , Pelvic Inflammatory Disease/microbiology , Pelvic Inflammatory Disease/pathology , Pelvic Inflammatory Disease/immunology , Cytokines/metabolism , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics , Adult , Epithelium/pathology , Epithelium/microbiology
4.
Front Cell Infect Microbiol ; 14: 1387126, 2024.
Article En | MEDLINE | ID: mdl-38736752

Introduction: We examined the gut microbiota of travellers returning from tropical areas with and without traveller's diarrhoea (TD) and its association with faecal lipocalin-2 (LCN2) levels. Methods: Participants were recruited at the Hospital Clinic of Barcelona, Spain, and a single stool sample was collected from each individual to perform the diagnostic of the etiological agent causing gastrointestinal symptoms as well as to measure levels of faecal LCN2 as a biomarker of gut inflammation. We also characterised the composition of the gut microbiota by sequencing the region V3-V4 from the 16S rRNA gene, and assessed its relation with the clinical presentation of TD and LCN2 levels using a combination of conventional statistical tests and unsupervised machine learning approaches. Results: Among 61 participants, 45 had TD, with 40% having identifiable etiological agents. Surprisingly, LCN2 levels were similar across groups, suggesting gut inflammation occurs without clinical TD symptoms. Differential abundance (DA) testing highlighted a microbial profile tied to high LCN2 levels, marked by increased Proteobacteria and Escherichia-Shigella, and decreased Firmicutes, notably Oscillospiraceae. UMAP analysis confirmed this profile's association, revealing distinct clusters based on LCN2 levels. The study underscores the discriminatory power of UMAP in capturing meaningful microbial patterns related to clinical variables. No relevant differences in the gut microbiota composition were found between travellers with or without TD. Discussion: The findings suggest a correlation between gut microbiome and LCN2 levels during travel, emphasising the need for further research to discern the nature of this relationship.


Diarrhea , Feces , Gastrointestinal Microbiome , Lipocalin-2 , RNA, Ribosomal, 16S , Humans , Lipocalin-2/metabolism , Feces/microbiology , Feces/chemistry , Male , Adult , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Diarrhea/microbiology , Spain , Travel , Biomarkers , Inflammation/microbiology , Young Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
5.
Nature ; 628(8009): 854-862, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570678

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Intestinal Mucosa , Mucous Membrane , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Antigens, CD/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Single-Cell Gene Expression Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , Transcriptome
6.
Microbiome ; 12(1): 31, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38383483

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Gastrointestinal Microbiome , HIV Infections , Humans , Female , Male , HIV Infections/drug therapy , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Aging , Bacteria/genetics , Inflammation/microbiology , Anti-Inflammatory Agents
7.
Virulence ; 15(1): 2303853, 2024 Dec.
Article En | MEDLINE | ID: mdl-38197252

Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.


Alzheimer Disease , Helicobacter pylori , Humans , Neuroinflammatory Diseases , Brain-Gut Axis , Secretome , Inflammation/microbiology , STAT3 Transcription Factor/metabolism
8.
Mol Nutr Food Res ; 68(2): e2300510, 2024 Jan.
Article En | MEDLINE | ID: mdl-38059838

SCOPE: Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS: Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION: Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.


Liver Diseases , Verrucomicrobia , Humans , Verrucomicrobia/physiology , Liver Diseases/etiology , Inflammation/microbiology , Ethanol/adverse effects , Akkermansia
9.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Article En | MEDLINE | ID: mdl-38103641

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Bacterial Proteins , G-Quadruplexes , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Protein Biosynthesis , RNA, Bacterial , RNA, Messenger , Humans , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Inflammation/microbiology , Ligands , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , RNA Stability , RNA, Bacterial/genetics , RNA, Messenger/genetics , THP-1 Cells , Transcription, Genetic/drug effects
10.
Dis Model Mech ; 17(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38131137

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.


Dysentery, Bacillary , Animals , Humans , Dysentery, Bacillary/genetics , Shigella flexneri/genetics , Shigella flexneri/metabolism , Zebrafish/genetics , Zebrafish/microbiology , Inflammation/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Microbiome ; 11(1): 273, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38087373

BACKGROUND: Oral infection with cysts is the main transmission route of Toxoplasma gondii (T. gondii), which leads to lethal intestinal inflammation. It has been widely recognized that T. gondii infection alters the composition and metabolism of the gut microbiota, thereby affecting the progression of toxoplasmosis. However, the potential mechanisms remain unclear. In our previous study, there was a decrease in the severity of toxoplasmosis after T. gondii α-amylase (α-AMY) was knocked out. Here, we established mouse models of ME49 and Δα-amy cyst infection and then took advantage of 16S rRNA gene sequencing and metabolomics analysis to identify specific gut microbiota-related metabolites that mitigate T. gondii-induced intestinal inflammation and analyzed the underlying mechanism. RESULTS: There were significant differences in the intestinal inflammation between ME49 cyst- and Δα-amy cyst-infected mice, and transferring feces from mice infected with Δα-amy cysts into antibiotic-treated mice mitigated colitis caused by T. gondii infection. 16S rRNA gene sequencing showed that the relative abundances of gut bacteria, such as Lactobacillus and Bacteroides, Bifidobacterium, [Prevotella], Paraprevotella and Macellibacteroides, were enriched in mice challenged with Δα-amy cysts. Spearman correlation analysis between gut microbiota and metabolites indicated that some fatty acids, including azelaic acid, suberic acid, alpha-linolenic acid (ALA), and citramalic acid, were highly positively correlated with the identified bacterial genera. Both oral administration of ALA and fecal microbiota transplantation (FMT) decreased the expression of pro-inflammatory cytokines and restrained the MyD88/NF-κB pathway, which mitigated colitis and ultimately improved host survival. Furthermore, transferring feces from mice treated with ALA reshaped the colonization of beneficial bacteria, such as Enterobacteriaceae, Proteobacteria, Shigella, Lactobacillus, and Enterococcus. CONCLUSIONS: The present findings demonstrate that the host gut microbiota is closely associated with the severity of T. gondii infection. We provide the first evidence that ALA can alleviate T. gondii-induced colitis by improving the dysregulation of the host gut microbiota and suppressing the production of pro-inflammatory cytokines via the MyD88/NF-κB pathway. Our study provides new insight into the medical application of ALA for the treatment of lethal intestinal inflammation caused by Toxoplasma infection. Video Abstract.


Colitis , Communicable Diseases , Gastrointestinal Microbiome , Toxoplasma , Toxoplasmosis , Mice , Animals , alpha-Linolenic Acid , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Myeloid Differentiation Factor 88 , NF-kappa B , Toxoplasmosis/microbiology , Cytokines , Bacteria , Inflammation/microbiology , Mice, Inbred C57BL
12.
Cell ; 186(24): 5201-5202, 2023 11 22.
Article En | MEDLINE | ID: mdl-37995654

Itch exacerbates infection and inflammation-associated skin pathology. In this issue of Cell, Deng et al. identify a V8 protease released by Staphylococcus aureus triggering itch via neuronal protease-activated receptor 1. In so doing, they uncover profound consequences of microbial neurosensory modulation and the ensuing scratch-induced tissue damage that potentiates infection.


Pruritus , Staphylococcal Infections , Staphylococcus aureus , Humans , Inflammation/microbiology , Peptide Hydrolases , Pruritus/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology
13.
Nature ; 623(7989): 1009-1016, 2023 Nov.
Article En | MEDLINE | ID: mdl-37968387

Iron is indispensable for almost all forms of life but toxic at elevated levels1-4. To survive within their hosts, bacterial pathogens have evolved iron uptake, storage and detoxification strategies to maintain iron homeostasis1,5,6. Recent studies showed that three Gram-negative environmental anaerobes produce iron-containing ferrosome granules7,8. However, it remains unclear whether ferrosomes are generated exclusively by Gram-negative bacteria. The Gram-positive bacterium Clostridioides difficile is the leading cause of nosocomial and antibiotic-associated infections in the USA9. Here we report that C. difficile undergoes an intracellular iron biomineralization process and stores iron in membrane-bound ferrosome organelles containing non-crystalline iron phosphate biominerals. We found that a membrane protein (FezA) and a P1B6-ATPase transporter (FezB), repressed by both iron and the ferric uptake regulator Fur, are required for ferrosome formation and play an important role in iron homeostasis during transition from iron deficiency to excess. Additionally, ferrosomes are often localized adjacent to cellular membranes as shown by cryo-electron tomography. Furthermore, using two mouse models of C. difficile infection, we demonstrated that the ferrosome system is activated in the inflamed gut to combat calprotectin-mediated iron sequestration and is important for bacterial colonization and survival during C. difficile infection.


Clostridioides difficile , Clostridium Infections , Ferric Compounds , Host Microbial Interactions , Iron , Organelles , Animals , Mice , Clostridioides difficile/growth & development , Clostridioides difficile/immunology , Clostridioides difficile/metabolism , Clostridium Infections/immunology , Clostridium Infections/metabolism , Clostridium Infections/microbiology , Iron/metabolism , Organelles/metabolism , Homeostasis , Ferric Compounds/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy , Electron Microscope Tomography , Disease Models, Animal , Leukocyte L1 Antigen Complex/metabolism , Microbial Viability , Inflammation/metabolism , Inflammation/microbiology , Intestines/metabolism , Intestines/microbiology
14.
Sci Rep ; 13(1): 16393, 2023 09 29.
Article En | MEDLINE | ID: mdl-37773515

In Lyme borreliosis, the skin constitutes a major interface for the host, the bacteria and the tick. Skin immunity is provided by specialized immune cells but also by the resident cells: the keratinocytes and the fibroblasts. Discoveries on the role of the microbiome in the modulation of skin inflammation and immunity have reinforced the potential importance of the skin in vector-borne diseases. In this study, we analyzed in vitro the interaction of human primary keratinocytes and fibroblasts with Borrelia burgdorferi sensu stricto N40 in presence or absence of bacterial commensal supernatants. We aimed to highlight the role of resident skin cells and skin microbiome on the inflammation induced by B. burgdorferi s.s.. The secretomes of Staphylococcus epidermidis, Corynebacterium striatum and Cutibacterium acnes showed an overall increase in the expression of IL-8, CXCL1, MCP-1 and SOD-2 by fibroblasts, and of IL-8, CXCL1, MCP-1 and hBD-2 in the undifferentiated keratinocytes. Commensal bacteria showed a repressive effect on the expression of IL-8, CXCL1 and MCP-1 by differentiated keratinocytes. Besides the inflammatory effect observed in the presence of Borrelia on all cell types, the cutaneous microbiome appears to promote a rapid innate response of resident skin cells during the onset of Borrelia infection.


Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Humans , Interleukin-8/metabolism , Secretome , Lyme Disease/microbiology , Inflammation/microbiology , Immunity, Innate , Ixodes/microbiology
15.
Pharmacol Res ; 194: 106856, 2023 08.
Article En | MEDLINE | ID: mdl-37460001

Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.


Gastrointestinal Microbiome , Microbiota , Noncommunicable Diseases , Humans , Enterobacteriaceae , Inflammation/microbiology
16.
Elife ; 122023 05 09.
Article En | MEDLINE | ID: mdl-37158692

Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).


HIV Infections , Meningitis, Cryptococcal , Tuberculosis, Meningeal , Adult , Humans , Tuberculosis, Meningeal/drug therapy , Tryptophan/metabolism , Kynurenine , HIV Infections/drug therapy , Inflammation/microbiology
17.
Gut Microbes ; 15(1): 2206504, 2023.
Article En | MEDLINE | ID: mdl-37127846

The microbiota-gut-brain axis is an important pathway of communication and may dynamically contribute to Alzheimer's disease (AD) pathogenesis. Pathological commensal gut microbiota alterations, termed as dysbiosis, can influence intestinal permeability and break the blood-brain barrier which may trigger AD pathogenesis via redox signaling, neuronal, immune, and metabolic pathways. Dysbiosis increases the oxidative stress. Oxidants affect the innate immune system through recognizing microbial-derived pathogens by Toll-like receptors and initiating the inflammatory process. Most of the gut microbiome research work highlights the relationship between the gut microbiota and AD, but the contributory connection between precise bacteria and brain dysfunction in AD pathology cannot be fully demonstrated. Here, we summarize the current information of the fundamental connections between oxidative stress, inflammation, and gut dysbiosis in AD. This review emphasizes on the involvement of gut microbiota in the regulation of oxidative stress, inflammation, immune responses including central and peripheral cross-talk. It provides insights for novel preventative and therapeutic approaches in AD.


Alzheimer Disease , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology , Inflammation/microbiology , Oxidative Stress , Brain/metabolism
18.
Neurosci Lett ; 806: 137221, 2023 05 29.
Article En | MEDLINE | ID: mdl-37031943

Enteric glia are a unique population of peripheral neuroglia associated with the enteric nervous system (ENS) throughout the digestive tract. The emerging data from the latest glial biology studies unveiled enteric glia as a heterogenic population with plastic and adaptative abilities that display phenotypic and functional changes upon distinct extrinsic cues. This aspect is essential in the dynamic signaling that enteric glia engage with neurons and other neighboring cells within the intestinal wall, such as epithelial, endocrine, and immune cells to maintain local homeostasis. Likewise, enteric glia sense signals from luminal microbes, although the extent of this active communication is still unclear. In this minireview, we discuss the recent findings that support glia-microbes crosstalk in the intestine in health and disease, pointing out the critical aspects that require further investigation.


Disease , Enteric Nervous System , Gastrointestinal Microbiome , Health , Neuroglia , Humans , Biodiversity , Enteric Nervous System/cytology , Enteric Nervous System/physiology , Enteric Nervous System/physiopathology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions , Inflammation/microbiology , Neuroglia/physiology , Probiotics , Animals
19.
mBio ; 14(2): e0276422, 2023 04 25.
Article En | MEDLINE | ID: mdl-37017530

The conserved ESX-1 type VII secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum. ESX-1 is known to interact with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. Using a murine M. marinum infection model, we identify neutrophils and Ly6C+MHCII+ monocytes as the main cellular reservoirs for the bacteria. We show that ESX-1 promotes intragranuloma accumulation of neutrophils and that neutrophils have a previously unrecognized required role in executing ESX-1-mediated pathology. To explore if ESX-1 also regulates the function of recruited neutrophils, we performed a single-cell RNA-sequencing analysis that indicated that ESX-1 drives newly recruited uninfected neutrophils into an inflammatory phenotype via an extrinsic mechanism. In contrast, monocytes restricted the accumulation of neutrophils and immunopathology, demonstrating a major host-protective function for monocytes specifically by suppressing ESX-1-dependent neutrophilic inflammation. Inducible nitric oxide synthase (iNOS) activity was required for the suppressive mechanism, and we identified Ly6C+MHCII+ monocytes as the main iNOS-expressing cell type in the infected tissue. These results suggest that ESX-1 mediates immunopathology by promoting neutrophil accumulation and phenotypic differentiation in the infected tissue, and they demonstrate an antagonistic interplay between monocytes and neutrophils by which monocytes suppress host-detrimental neutrophilic inflammation. IMPORTANCE The ESX-1 type VII secretion system is required for virulence of pathogenic mycobacteria, including Mycobacterium tuberculosis. ESX-1 interacts with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. We demonstrate that ESX-1 promotes immunopathology by driving intragranuloma accumulation of neutrophils, which upon arrival adopt an inflammatory phenotype in an ESX-1-dependent manner. In contrast, monocytes limited the accumulation of neutrophils and neutrophil-mediated pathology via an iNOS-dependent mechanism, suggesting a major host-protective function for monocytes specifically by restricting ESX-1-dependent neutrophilic inflammation. These findings provide insight into how ESX-1 promotes disease, and they reveal an antagonistic functional relationship between monocytes and neutrophils that might regulate immunopathology not only in mycobacterial infection but also in other infections as well as in inflammatory conditions and cancer.


Mycobacterium marinum , Mycobacterium tuberculosis , Type VII Secretion Systems , Animals , Mice , Neutrophils/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type VII Secretion Systems/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium marinum/genetics , Inflammation/microbiology , Cell Differentiation
20.
J Leukoc Biol ; 113(5): 461-470, 2023 05 02.
Article En | MEDLINE | ID: mdl-36857592

Inflammation centered on non-IgE-mediated mast cell activation characterizes chronic spontaneous urticaria resistant to nonsedating H1-antihistamines. We recently uncovered a strong positive association between inflammation and the fecal Escherichia. To further explore the actions of bacterial DNA derived from Escherichia on mast cells, intestinal permeability of patients with chronic spontaneous urticaria with or without nonsedating H1-antihistamine resistance and healthy controls were determined, and LAD2 cells with knockdown of Syk, Nedd4L, or Sgk1 or with incubation of inhibitors GS9973, GSK650394, and MG132 were posttreated with btDNA. We found that (i) serum intestinal permeability indices and bacterial DNA markedly increased in patients with chronic spontaneous urticaria with nonsedating H1-antihistamine resistance compared with those without (all P < 0.001), and bacterial DNA positively correlated with the degree of inflammation; (ii) IL-6 and TNF-α levels were time- and dose-dependently upregulated in bacterial DNA-stimulated LAD2 cells, which relied on unmethylated CpG in bacterial DNA and Toll-like receptor 9 protein in cells; (iii) Syk knockdown or inhibition of Syk Tyr525/526 phosphorylation blocked bacterial DNA-initiated cytokine production; (iv) Nedd4L interacted with Tyr525/526-phosphorylated Syk, and inhibition of Nedd4L Ser448 phosphorylation induced by bacterial DNA-activated Sgk1 was mandatory for bacterial DNA's proinflammatory property; and (v) Sgk1 suppression showed an inhibitory effect on bacterial DNA-induced inflammation by ensuring Nedd4L-mediated ubiquitination of Tyr525/526-phosphorylated Syk. Collectively, we identified previously unknown contributory roles of bacterial translocation and serum bacterial DNA on the inflammation phenotype in patients with chronic spontaneous urticaria with nonsedating H1-antihistamine resistance and further uncovered a vital negative regulatory role for the Sgk1/Nedd4L/Syk pathway in bacterial DNA-induced inflammation in LAD2 cells.


Chronic Urticaria , DNA, Bacterial , Mast Cells , Urticaria , Humans , DNA, Bacterial/pharmacology , Histamine Antagonists , Inflammation/microbiology , Mast Cells/metabolism , Syk Kinase , Urticaria/drug therapy , Urticaria/metabolism , Urticaria/microbiology
...