Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2378, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888716

RESUMEN

Structural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominant Barren inflorescence3 (Bif3) mutant harbors a tandem duplicated copy of the ZmWUS1 gene, ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression of ZmWUS1-B is due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements of Bif3 inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establish ZmWUS1 as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program.


Asunto(s)
Proteínas de Homeodominio/genética , Inflorescencia/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Citocininas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Inflorescencia/citología , Meristema/crecimiento & desarrollo , Mutagénesis , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , RNA-Seq , Transducción de Señal/genética , Células Madre , Factores de Transcripción/genética , Zea mays/genética
2.
Mol Plant ; 12(11): 1474-1484, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31260813

RESUMEN

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Inflorescencia/citología , Floema/citología , Azufre/metabolismo , Arabidopsis/inmunología , Inflorescencia/metabolismo , Modelos Biológicos , Floema/metabolismo , Transporte de Proteínas
3.
Sci Rep ; 8(1): 13405, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194320

RESUMEN

Thymol, as a dietary monoterpene, is a phenol derivative of cymene, which is the major component of the essential oil of Trachyspermum ammi (L.). It shows multiple biological activities: antifungal, antibacterial, antivirus and anti-inflammatory. T. ammi, commonly known as ajowan, belongs to Apiaceae and is an important medicinal seed spice. To identify the putative genes involved in thymol and other monoterpene biosynthesis, we provided transcriptomes of four inflorescence tissues of two ajowan ecotypes, containing different thymol yield. This study has detected the genes encoding enzymes for the go-between stages of the terpenoid biosynthesis pathways. A large number of unigenes, differentially expressed between four inflorescence tissues of two ajowan ecotypes, was revealed by a transcriptome analysis. Furthermore, differentially expressed unigenes encoding dehydrogenases, transcription factors, and cytochrome P450s, which might be associated with terpenoid diversity in T. ammi, were identified. The sequencing data obtained in this study formed a valuable repository of genetic information for an understanding of the formation of the main constituents of ajowan essential oil and functional analysis of thymol-specific genes. Comparative transcriptome analysis led to the development of new resources for a functional breeding of ajowan.


Asunto(s)
Apiaceae , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Medicinales , Timol/metabolismo , Transcriptoma/fisiología , Apiaceae/genética , Apiaceae/metabolismo , Vías Biosintéticas/fisiología , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Inflorescencia/citología , Inflorescencia/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 177(2): 671-683, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29678858

RESUMEN

During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related Receptor-Like Kinase1), that is expressed specifically in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1 expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, up-regulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that down-regulation of AtVRLK1 promoted secondary cell wall thickening and up-regulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Pared Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/genética , Flores/citología , Regulación de la Expresión Génica de las Plantas , Inflorescencia/citología , Inflorescencia/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética
5.
Plant Cell ; 30(1): 48-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263085

RESUMEN

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Asunto(s)
Brasinoesteroides/farmacología , Diferenciación Celular/efectos de los fármacos , Inflorescencia/citología , Meristema/citología , Setaria (Planta)/citología , Alelos , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sitios Genéticos , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Meristema/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/genética , Setaria (Planta)/ultraestructura , Transducción de Señal/efectos de los fármacos
6.
Planta ; 247(1): 215-228, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28942496

RESUMEN

MAIN CONCLUSION: Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Tumores de Planta/microbiología , Rhodococcus/fisiología , Transducción de Señal , Arabidopsis/citología , Arabidopsis/microbiología , Cámbium/citología , Cámbium/crecimiento & desarrollo , Cámbium/microbiología , Transdiferenciación Celular , Genes Reporteros , Inflorescencia/citología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/microbiología , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Tallos de la Planta/citología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/microbiología , Xilema/citología , Xilema/crecimiento & desarrollo , Xilema/microbiología
7.
Sci Rep ; 7(1): 13712, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057928

RESUMEN

As a basic unit of rice inflorescence, spikelet has profound influence on grain size, weight and yield. The molecular mechanism underlying spikelet development has not been fully elucidated. Here, we identified four allelic rice mutants, s2-89, xd151, xd281 and xd425, which exhibited reduced width of spikelet, especially in the apical region. Map-based cloning revealed that all these mutants had missense mutation in the TRIANGULAR HULL1 (TH1) gene, encoding an ALOG family protein. TH1 has been shown to regulate the lateral development of spikelet, but its mode of action remains unclear. Microscopic analysis revealed that the reduction in spikelet width was caused by decreased cell size rather than cell division. The TH1 protein was shown to localize in the nucleus and possess transcriptional repression activity. TH1 could form a homodimer and point mutation in the s2-89, xd281 and xd425 mutant inhibited homodimerization. The transcriptional repression activity of TH1 was partially relieved by the His129Tyr substitution in the s2-89 mutant. Fusion of an exogenous EAR transcription suppression domain to the mutant protein TH1s2-89 could largely complemented the narrow spikelet phenotype. These results indicate that TH1 functions as a transcription repressor and regulates cell expansion during the lateral development of spikelet.


Asunto(s)
Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Recuento de Células , Núcleo Celular/metabolismo , Tamaño de la Célula , Metanosulfonato de Etilo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/citología , Inflorescencia/genética , Mutágenos , Mutación , Oryza/citología , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Multimerización de Proteína , Factores de Transcripción/genética
8.
Methods Mol Biol ; 1637: 17-25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755332

RESUMEN

Micropropagation has great potential for the multiplication of female and male date palms of commercially grown cultivars by using inflorescences. This approach is simple, convenient, and much faster than the conventional method of using shoot-tip explants. We describe here a stepwise micropropagation procedure using inflorescence explants of Iraqi date palm cultivar Maktoom. Cultured explants were derived from 0.5-cm-long spike segments excised from 8 to 10-cm-long spathes. About 70% formed adventitious buds on Murashige and Skoog (MS) medium supplemented with 2 mg/L naphthalene acetic acid (NAA), 4 mg/L benzylaminopurine (BAP), and 40 g/L sucrose and maintained in the dark for 16 weeks before transferring to normal light conditions. The best multiplication rate was achieved with 3 mg/L 2ip and 2 mg/L; for shoot elongation, the best medium is MS containing 0.5 mg/L BAP, 0.5 mg/L 2ip, and 1 mg/L GA3. Well-developed shoots were cultured for rooting in half MS medium amended with 1 mg/L NAA and 45 g/L sucrose. Plantlets with well-developed roots were successfully hardened in the greenhouse. Inflorescence explants proved to be a promising alternative explant source for micropropagation of date palm cultivars.


Asunto(s)
Inflorescencia/citología , Ácidos Naftalenoacéticos/farmacología , Organogénesis de las Plantas/efectos de los fármacos , Phoeniceae/crecimiento & desarrollo , Compuestos de Bencilo/química , Medios de Cultivo/química , Medios de Cultivo/farmacología , Técnicas In Vitro , Phoeniceae/citología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Purinas/química , Regeneración , Sacarosa/química , Técnicas de Cultivo de Tejidos/métodos
9.
Methods Mol Biol ; 1637: 27-35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755333

RESUMEN

Inflorescences represent an alternative explant source for superior date palm trees, especially those that do not produce offshoots. They provide large numbers of explants free of fungal and bacterial contamination for successful tissue culture initiation. Furthermore, they are characterized by the capacity of plant regeneration within a short time as compared to other explant types. This chapter focuses on the procedures employed for plant regeneration by direct organogenesis using immature female inflorescence explants, including initiation of adventitious buds, differentiation, multiplication, shoot elongation, rooting, and acclimatization. Adding 5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) into the initiation medium and gradually reducing it to 1 and then to 0.5 mg/L in the subsequent 2 subcultures, respectively, are determining factors in direct adventitious bud formation from the inflorescence. Bud differentiation is obtained on MS medium containing 0.25 mg/L kinetin (Kin), 0.25 mg/L benzyladenine (BA), 0.25 mg/L abscisic acid (ABA), 0.1 mg/L naphthaleneacetic acid (NAA), and 0.2 g/L activated charcoal (AC). Regenerated shoots exhibit sufficient root formation on MS medium supplemented with 2 mg/L indole butyric acid (IBA) and 1 mg/L NAA and subsequent survival in the greenhouse.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Inflorescencia/citología , Phoeniceae/crecimiento & desarrollo , Ácido Abscísico/farmacología , Diferenciación Celular , Medios de Cultivo/química , Ácidos Naftalenoacéticos/farmacología , Organogénesis de las Plantas , Phoeniceae/citología , Brotes de la Planta/crecimiento & desarrollo , Regeneración , Técnicas de Cultivo de Tejidos
10.
Methods Mol Biol ; 1637: 47-59, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755335

RESUMEN

This protocol describes in vitro plant regeneration from mature female inflorescence explants of date palm (Phoenix dactylifera L.) by reversion of floral state (reproductive phase) to the vegetative state. The mature female inflorescence (fully developed) is cultured on MS induction medium containing 10 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 3 mg/L 2-isopentenyladenine (2iP), and 2 mg/L paclobutrazol (PBZ) or 2 mg/L abscisic acid (ABA). The basal part of the petals has meristematic cells, which can be induced to initiate callus or direct shoot formation depending on the plant growth regulator amendments. Callus forms on the induction medium supplemented with PBZ after 12 weeks, whereas it differentiates into somatic embryos on a medium containing 0.1 mg/L naphthaleneacetic acid (NAA). Direct shoots are regenerated on the induction medium amended with ABA after 24 weeks. Procedures for plant regeneration from mature female inflorescence explants are described, and histological changes which occur during the reversion process are presented.


Asunto(s)
Phoeniceae/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Técnicas de Cultivo de Tejidos/métodos , Ácido Abscísico/farmacología , Medios de Cultivo/química , Inflorescencia/citología , Inflorescencia/crecimiento & desarrollo , Organogénesis de las Plantas , Phoeniceae/citología , Brotes de la Planta/crecimiento & desarrollo , Regeneración
11.
Methods Mol Biol ; 1637: 89-97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755338

RESUMEN

Due to the limitations associated with shoot tip explants in the micropropagation of date palm, inflorescence explants are an ideal alternative. This chapter focuses on the protocol for the induction of callus from inflorescence tissue, establishment for proliferation of somatic embryos, germination, elongation, rooting, and acclimatization. Female inflorescences, 30-40 cm in length, cv. Shaishee, were used for culture initiation. After disinfection, the outer inflorescence cover (spathe) is cut open, and the spikelet explants, 1 cm long, are cultured on modified Murashige and Skoog (MS) medium containing 100 mg/L 2,4-D, 3 mg/L kinetin, and 3 mg/L 2ip and incubated at 25 ± 2 °C in the dark. Callus obtained after 6-8 months of culturing is transferred to the culture medium to induce somatic embryogenesis and plant regeneration. Well-developed regenerated shoots are cultured on MS medium containing 0.2 mg/L NAA for root induction and plantlets acclimatized in the greenhouse before transfer to the field.


Asunto(s)
Inflorescencia/citología , Phoeniceae/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Aclimatación , Medios de Cultivo/química , Organogénesis de las Plantas , Phoeniceae/citología , Brotes de la Planta/crecimiento & desarrollo , Regeneración , Técnicas de Cultivo de Tejidos
12.
Methods Mol Biol ; 1637: 129-144, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755342

RESUMEN

Rapid production of somatic embryogenesis and date palm regeneration is achieved by culturing immature female inflorescence explants. Inflorescence explants are soft, creamy in color, average 6-7 cm in length, and cultured on Murashige and Skoog (MS) medium containing 1 mg/L thidiazuron (TDZ). Callus induction occurs after 4-5 weeks of culture on the callus induction medium. Subsequently, callus develops embryogenic calli on MS medium supplemented with 0.1 mg/L naphthalene acetic acid (NAA). Histological samples were collected successively at the culturing time and during morphogenetic changes throughout the developmental stages of somatic embryos. Initiation of callus and different successive developmental stages for somatic embryos including two-celled, four-celled, globular, bipolar, and fully developed cotyledonary somatic embryos were observed. Mature somatic embryos develop within 10-12 weeks after culture establishment.


Asunto(s)
Inflorescencia/citología , Phoeniceae/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Medios de Cultivo/química , Ácidos Naftalenoacéticos/química , Phoeniceae/citología , Brotes de la Planta/crecimiento & desarrollo , Regeneración
13.
Methods Mol Biol ; 1637: 145-162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755343

RESUMEN

Somatic embryogenesis is an ideal technique for the micropropagation of date palm using different explant tissue; however, histological studies describing the ontogenesis of plant regeneration are limited. This chapter provides a simple protocol for the histological analysis of the successive developmental stages of direct somatic embryogenesis induced from in vitro leaf explants. Direct somatic embryos are obtained from Murashige and Skoog (MS) medium containing 2 mg/L 6-benzylaminopurine. In order to observe the different developmental stages, histological analysis is carried out on samples at 15-day intervals for 60 days. Samples are fixed in formalin acetic alcohol and embedded in paraffin wax. Stain serial transverse and longitudinal sections, 8 µm thick, are stained with safranin-Fast Green. After 15 days on the induction medium, somatic embryos exhibit multicellular origin directly from the procambium cells, whereas the mesophyll and the epidermal cells are not involved in this process. After 2 months, several developmental stages (pre-globular, globular, early bipolar, bipolar, and cotyledonary-shaped) are observed. These embryos germinate after transferring to MS medium without plant growth regulators and rooting on 2 mg/L NAA-containing medium resulting in complete plantlets.


Asunto(s)
Inflorescencia/citología , Phoeniceae/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Medios de Cultivo/química , Germinación , Técnicas In Vitro , Phoeniceae/citología , Hojas de la Planta/crecimiento & desarrollo , Regeneración , Semillas/crecimiento & desarrollo
14.
New Phytol ; 216(2): 536-548, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27864962

RESUMEN

In order to explore the functional conservation of JAGGED, a key gene involved in the sculpting of lateral organs in several model species, we identified its ortholog AqJAG in the lower eudicot species Aquilegia coerulea. We analyzed the expression patterns of AqJAG in various tissues and developmental stages, and used RNAi-based methods to generate knockdown phenotypes of AqJAG. AqJAG was strongly expressed in shoot apices, floral meristems, lateral root primordia and all lateral organ primordia. Silencing of AqJAG revealed a wide range of defects in the developing stems, leaves and flowers; strongest phenotypes include severe reduction of leaflet laminae due to a decrease in cell size and number, change of adaxial cell identity, outgrowth of laminar-like tissue on the inflorescence stem, and early arrest of floral meristems and floral organ primordia. Our results indicate that AqJAG plays a critical role in controlling primordia initiation and distal growth of floral organs, and laminar development of leaflets. Most strikingly, we demonstrated that AqJAG disproportionally controls the behavior of cells with adaxial identity in vegetative tissues, providing evidence of how cell proliferation is controlled in an identity-specific manner.


Asunto(s)
Aquilegia/citología , Aquilegia/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Homología de Secuencia de Aminoácido , Aquilegia/ultraestructura , Recuento de Células , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Inflorescencia/citología , Inflorescencia/ultraestructura , Meristema/metabolismo , Modelos Biológicos , Fenotipo , Hojas de la Planta/ultraestructura , Virus de Plantas/fisiología , Plantas Modificadas Genéticamente
15.
Plant Physiol ; 171(2): 960-73, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208312

RESUMEN

ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Regulación de la Expresión Génica de las Plantas , ARN Helicasas/metabolismo , Interferencia de ARN , Ceras/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liasas de Carbono-Carbono , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , ARN Helicasas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño
16.
Plant Physiol ; 170(3): 1624-39, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26802039

RESUMEN

Plant trichomes are defensive specialized epidermal cells. In all accepted models, the epidermis is the layer involved in trichome formation, a process controlled by gibberellins (GAs) in Arabidopsis rosette leaves. Indeed, GA activates a genetic cascade in the epidermis for trichome initiation. Here we report that TEMPRANILLO (TEM) genes negatively control trichome initiation not only from the epidermis but also from the leaf layer underneath the epidermis, the mesophyll. Plants over-expressing or reducing TEM specifically in the mesophyll, display lower or higher trichome numbers, respectively. We surprisingly found that fluorescently labeled GA3 accumulates exclusively in the mesophyll of leaves, but not in the epidermis, and that TEM reduces its accumulation and the expression of several newly identified GA transporters. This strongly suggests that TEM plays an essential role, not only in GA biosynthesis, but also in regulating GA distribution in the mesophyll, which in turn directs epidermal trichome formation. Moreover, we show that TEM also acts as a link between GA and cytokinin signaling in the epidermis by negatively regulating downstream genes of both trichome formation pathways. Overall, these results call for a re-evaluation of the present theories of trichome formation as they reveal mesophyll essential during epidermal trichome initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Epidermis de la Planta/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Tricomas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Hojas de la Planta/citología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Tricomas/genética , Tricomas/ultraestructura
17.
Plant Signal Behav ; 10(7): e1033126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107719

RESUMEN

Formation of secondary walls is a complex process that requires the coordinated and developmentally regulated expression of secondary wall biosynthetic genes. In Arabidopsis thaliana, a transcriptional network orchestrates the biosynthesis and deposition of the main SCW components in xylem and fiber cells. It was recently reported that interacting TALE homeodomain proteins BEL-LIKE HOMEODOMAIN6 (BLH6) and KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) negatively regulate secondary cell wall formation in the interfascicular fibers of Arabidopsis inflorescence stems. Members of the Arabidopsis OVATE FAMILY PROTEIN (OFP) family of transcriptional regulators have been shown to physically interact in yeast with various KNAT and BLH proteins, forming a proposed TALE-OFP protein interaction network. This study presents molecular and genetic data indicating that OFP1 and OFP4, previously reported to interact with TALE homeodomain proteins, enhance the repression activity of BLH6, supporting a role for these OFPs as components of a putative multi-protein transcription regulatory complex containing BLH6 and KNAT7.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/citología , Inflorescencia/citología , Mutación , Fenotipo , Transcripción Genética
18.
Plant Cell ; 27(5): 1428-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25957386

RESUMEN

Rice inflorescence meristem (IM) activity is essential for panicle development and grain production. How chromatin and epigenetic mechanisms regulate IM activity remains unclear. Genome-wide analysis revealed that in addition to genes involved in the vegetative to reproductive transition, many metabolic and protein synthetic genes were activated in IM compared with shoot apical meristem and that a change in the H3K27me3/H3K4me3 ratio was an important factor for the differential expression of many genes. Thousands of genes gained or lost H3K27me3 in IM, and downregulation of the H3K27 methyltransferase gene SET DOMAIN GROUP 711 (SDG711) or mutation of the H3K4 demethylase gene JMJ703 eliminated the increase of H3K27me3 in many genes. SDG711-mediated H3K27me3 repressed several important genes involved in IM activity and many genes that are silent in the IM but activated during floral organogenesis or other developmental stages. SDG711 overexpression augmented IM activity and increased panicle size; suppression of SDG711 by RNA interference had the opposite effect. Double knockdown/knockout of SDG711 and JMJ703 further reduced panicle size. These results suggest that SDG711 and JMJ703 have agonistic functions in reprogramming the H3K27me3/H3K4me3 ratio and modulating gene expression in the IM.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Histonas/genética , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Bases , Regulación hacia Abajo , Expresión Génica , Histonas/metabolismo , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/metabolismo , Meristema/citología , Meristema/genética , Meristema/metabolismo , Metilación , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Oryza/citología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN
19.
BMC Genomics ; 15: 974, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25400171

RESUMEN

BACKGROUND: Jatropha curcas, whose seed content is approximately 30-40% oil, is an ideal feedstock for producing biodiesel and bio-jet fuels. However, Jatropha plants have a low number of female flowers, which results in low seed yield that cannot meet the needs of the biofuel industry. Thus, increasing the number of female flowers is critical for the improvement of Jatropha seed yield. Our previous findings showed that cytokinin treatment can increase the flower number and female to male ratio and also induce bisexual flowers in Jatropha. The mechanisms underlying the influence of cytokinin on Jatropha flower development and sex determination, however, have not been clarified. RESULTS: This study examined the transcriptional levels of genes involved in the response to cytokinin in Jatropha inflorescence meristems at different time points after cytokinin treatment by 454 sequencing, which gave rise to a total of 294.6 Mb of transcript sequences. Up-regulated and down-regulated annotated and novel genes were identified, and the expression levels of the genes of interest were confirmed by qRT-PCR. The identified transcripts include those encoding genes involved in the biosynthesis, metabolism, and signaling of cytokinin and other plant hormones, flower development and cell division, which may be related to phenotypic changes of Jatropha in response to cytokinin treatment. Our analysis indicated that Jatropha orthologs of the floral organ identity genes known as ABCE model genes, JcAP1,2, JcPI, JcAG, and JcSEP1,2,3, were all significantly repressed, with an exception of one B-function gene JcAP3 that was shown to be up-regulated by BA treatment, indicating different mechanisms to be involved in the floral organ development of unisexual flowers of Jatropha and bisexual flowers of Arabidopsis. Several cell division-related genes, including JcCycA3;2, JcCycD3;1, JcCycD3;2 and JcTSO1, were up-regulated, which may contribute to the increased flower number after cytokinin treatment. CONCLUSIONS: This study presents the first report of global expression patterns of cytokinin-regulated transcripts in Jatropha inflorescence meristems. This report laid the foundation for further mechanistic studies on Jatropha and other non-model plants responding to cytokinin. Moreover, the identification of functional candidate genes will be useful for generating superior varieties of high-yielding transgenic Jatropha.


Asunto(s)
Biocombustibles , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inflorescencia/genética , Jatropha/genética , Meristema/genética , Transcriptoma/genética , Adenina/farmacología , División Celular/efectos de los fármacos , Análisis por Conglomerados , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Inflorescencia/citología , Inflorescencia/efectos de los fármacos , Inflorescencia/crecimiento & desarrollo , Jatropha/efectos de los fármacos , Jatropha/crecimiento & desarrollo , Meristema/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos
20.
Plant Cell ; 26(7): 2978-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25035406

RESUMEN

The element boron (B) is an essential plant micronutrient, and B deficiency results in significant crop losses worldwide. The maize (Zea mays) tassel-less1 (tls1) mutant has defects in vegetative and inflorescence development, comparable to the effects of B deficiency. Positional cloning revealed that tls1 encodes a protein in the aquaporin family co-orthologous to known B channel proteins in other species. Transport assays show that the TLS1 protein facilitates the movement of B and water into Xenopus laevis oocytes. B content is reduced in tls1 mutants, and application of B rescues the mutant phenotype, indicating that the TLS1 protein facilitates the movement of B in planta. B is required to cross-link the pectic polysaccharide rhamnogalacturonan II (RG-II) in the cell wall, and the percentage of RG-II dimers is reduced in tls1 inflorescences, indicating that the defects may result from altered cell wall properties. Plants heterozygous for both tls1 and rotten ear (rte), the proposed B efflux transporter, exhibit a dosage-dependent defect in inflorescence development under B-limited conditions, indicating that both TLS1 and RTE function in the same biological processes. Together, our data provide evidence that TLS1 is a B transport facilitator in maize, highlighting the importance of B homeostasis in meristem function.


Asunto(s)
Acuaporinas/metabolismo , Boratos/metabolismo , Boro/metabolismo , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Animales , Acuaporinas/genética , Transporte Biológico , Pared Celular/metabolismo , Homeostasis , Inflorescencia/citología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Meristema/citología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Oocitos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Reproducción , Xenopus laevis , Zea mays/citología , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA