Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.031
1.
Sci Rep ; 14(1): 10436, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714669

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Influenza, Human , Humans , Nepal/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Infant , Retrospective Studies , Young Adult , Cross-Sectional Studies , Aged , Influenza B virus/genetics , Influenza B virus/isolation & purification , Seasons , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification
2.
Influenza Other Respir Viruses ; 18(5): e13295, 2024 May.
Article En | MEDLINE | ID: mdl-38744684

BACKGROUND: The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2-13 (and 14-15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. METHODS: End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. METHODS: Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: -6% to 54%). VE for those aged 18-64, who largely received cell-based vaccines, was 47% (95% CI: 37%-56%). Overall VE for 2-17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%-76%). CONCLUSION: The paper provides evidence of moderate influenza VE in 2022/23.


Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines , Influenza, Human , Primary Health Care , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Middle Aged , Adolescent , Adult , Primary Health Care/statistics & numerical data , United Kingdom/epidemiology , Aged , Young Adult , Child , Female , Male , Child, Preschool , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccination/statistics & numerical data
3.
Acta Biochim Pol ; 71: 12289, 2024.
Article En | MEDLINE | ID: mdl-38721309

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Poland/epidemiology , Adult , Middle Aged , Adolescent , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/blood , Influenza, Human/virology , Child , Aged , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Infant , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Male , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Infant, Newborn , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Epidemics , Prevalence
4.
Open Vet J ; 14(3): 913-918, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682131

Background: Salmonella is a major food-borne bacterial pathogen that causes food poisoning related to the consumption of eggs, milk, and meat. Food safety in relation to Salmonella is particularly important for eggs because their shells as well as their contents can be a source of contamination. Chicken can also be infected with influenza virus, but it remains unclear how co-infection of Salmonella and influenza virus affect each other. Aim: The potential influence of co-infection of Salmonella and influenza virus was examined. Methods: Salmonella Abony and influenza virus were injected into chicken embryonated eggs. After incubation, proliferation of Salmonella and influenza virus was measured using a direct culture assay for bacteria and an enzyme-linked immunosorbent assay for influenza virus, respectively. Results: Our findings indicate that the number of colony-forming units (CFUs) of Salmonella did not vary between chicken embryonated eggs co-infected with influenza A virus and Salmonella-only infected eggs. Furthermore, we found the proliferation of influenza A or B virus was not significantly influenced by co-infection of the eggs with Salmonella. Conclusion: These results suggest that combined infection of Salmonella with influenza virus does not affect each other, at least in terms of their proliferation.


Coinfection , Influenza in Birds , Salmonella , Animals , Chick Embryo , Influenza in Birds/virology , Coinfection/veterinary , Coinfection/microbiology , Coinfection/virology , Salmonella/isolation & purification , Salmonella/physiology , Chickens , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/virology , Influenza A virus/physiology , Influenza B virus/physiology , Influenza B virus/isolation & purification
5.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38584132

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
6.
Nat Commun ; 15(1): 3387, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684663

Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.


CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Influenza B virus , Influenza, Human , CD8-Positive T-Lymphocytes/immunology , Humans , Epitopes, T-Lymphocyte/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Influenza, Human/virology , Adult , Middle Aged , Aged , Cross Reactions/immunology , Young Adult , Female , Male , Immunologic Memory/immunology , Adolescent , HLA-B Antigens/immunology , Child , Child, Preschool
8.
Hum Vaccin Immunother ; 20(1): 2327736, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38513689

The objective of the study was to assess the safety and immunogenicity of mRNA-1273 COVID-19 booster vaccination when co-administered with an egg-based standard dose seasonal quadrivalent influenza vaccine (QIV). This was a phase 3, randomized, open-label study. Eligible adults aged ≥ 18 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and QIV 2 weeks apart (Seq group) or concomitantly (Coad group). Primary objectives were non-inferiority of haemagglutinin inhibition (HI) and anti-Spike protein antibody responses in the Coad compared to Seq group. 497/498 participants were randomized and vaccinated in the Seq/Coad groups, respectively. The adjusted geometric mean titer/concentration ratios (95% confidence intervals) (Seq/Coad) for HI antibodies were 1.02 (0.89-1.18) for A/H1N1, 0.93 (0.82-1.05) for A/H3N2, 1.00 (0.89-1.14] for B/Victoria, and 1.04 (0.93-1.17) for B/Yamagata; and 0.98 (0.84-1.13) for anti-Spike antibodies, thus meeting the protocol-specified non-inferiority criteria. The most frequently reported adverse events in both groups were pain at the injection site and myalgia. The 2 groups were similar in terms of the overall frequency, intensity, and duration of adverse events. In conclusion, co-administration of mRNA-1273 booster vaccine with QIV in adults was immunologically non-inferior to sequential administration. Safety and reactogenicity profiles were similar in both groups (clinicaltrials.gov NCT05047770).


What is the context? Updated booster shots against COVID-19 disease are likely to offer more protection as the virus is changing over time.It is important for doctors, other healthcare providers and patients to know whether COVID-19 booster vaccines can be given at the same time as other vaccines recommended for adults.What is new? The results of our study showed that an mRNA-based COVID-19 booster vaccine could be given at the same time as the seasonal influenza vaccine.When given together, both vaccines led to immune responses and had side effects that were similar to those observed when they were given at separate times.What is the impact? The potential benefits of administering more than 1 vaccine during a healthcare visit include improved coverage and a reduced number of doctor visits needed to receive all vaccines.Co-administration of COVID-19 booster vaccines and influenza vaccines could be an attractive option for patients and healthcare professionals.


COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Influenza, Human/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Influenza B virus , Influenza A Virus, H3N2 Subtype , COVID-19 Vaccines/adverse effects , Seasons , Antibodies, Viral , Vaccines, Inactivated , Hemagglutination Inhibition Tests , COVID-19/prevention & control , Immunogenicity, Vaccine
9.
Med Sci Monit ; 30: e942125, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38446736

BACKGROUND According to the WHO, up to 650 000 people die each year from seasonal flu-related respiratory illnesses. The most effective method of fighting the virus is seasonal vaccination. However, if an infection does occur, antiviral medications should be used as soon as possible. No studies of drug resistance in influenza viruses circulating in Poland have been systematically conducted. Therefore, the aim of the present study was to investigate the drug resistance and genetic diversity of influenza virus strains circulating in Poland by determining the presence of mutations in the neuraminidase gene. MATERIAL AND METHODS A total of 258 clinical specimens were collected during the 2016-2017, 2017-2018, and 2018-2019 epidemic seasons. The samples containing influenza A and B were analyzed by RT-PCR and Sanger sequencing. RESULTS Differences were found between the influenza virus strains detected in different epidemic seasons, demonstrating the occurrence of mutations. Influenza A virus was found to be more genetically variable than influenza B virus (P<0.001, Kruskal-Wallis test). However, there was no significant difference in the resistance prevalence between the influenza A subtypes A/H1N1/pdm09 (4.8%) and A/H3N2/ (6.1%). In contrast, more mutations of drug-resistance genes were found in the influenza B virus (P<0.001, chi-square test). In addition, resistance mutations appeared en masse in vaccine strains circulating in unvaccinated populations. CONCLUSIONS It seems important to determine whether the influenza virus strains tested for drug resistance as part of global influenza surveillance are equally representative of viruses circulating in populations with high and low vaccination rates, for all countries. Our results suggest that countries with low levels of influenza immunization may constitute reservoirs of drug-resistant influenza viruses.


Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Poland/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Vaccination , Mutation/genetics
10.
Clin Lab ; 70(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38469788

BACKGROUND: There is little data about the performance of multiplex rapid antigen tests (RATs) on the detection of SARS-CoV-2, influenza A (Flu A), and influenza B (Flu B). This study is to evaluate the performance of Panbio COVID-19/Flu A&B rapid panel (Abbott Diagnostics, Korea) and analyze the factors influencing its sensitivity. METHODS: Nasopharyngeal swabs were collected and stored at the Korea University Anam hospital. In total, 400 residual samples from nasopharyngeal swabs were examined. The diagnostic accuracy of RAT was compared to that of RT-qPCR using the Allplex SARS-CoV-2/FluA/FluB/RSV Assay (Seegene, Seoul, South Korea). RESULTS: Panbio COVID-19/Flu A&B rapid panel showed the sensitivities of 88.0%, 92.0%, and 100% for SARS-CoV-2, Flu A, and Flu B, respectively, and specificities of 100% for all. The agreements with previously licensed single-plex RATs were shown to be high. In the analysis of variables affecting sensitivity, inappropriate sampling time after symptom onset (STASO) and high cycle threshold (Ct value) were shown to negatively affect the sensi-tivity. CONCLUSIONS: In conclusion, the multiplex RAT is useful for diagnosing SARS-CoV-2 and Flu A/B, but more clinical studies are needed.


COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/diagnosis , SARS-CoV-2 , Influenza B virus/genetics , COVID-19/diagnosis , Nasopharynx , Sensitivity and Specificity
11.
Med Sci Monit ; 30: e942845, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38451880

BACKGROUND This retrospective study evaluated the effects of specific COVID-19 preventive measures, including the use of medical masks, nucleic acid testing, and patient isolation, on respiratory infections, disease severity, and seasonal patterns among children in Hohhot, located in northern China. Understanding these alterations is pivotal in developing effective strategies to handle pediatric respiratory infections within the context of continuous public health initiatives. MATERIAL AND METHODS At the First Hospital of Hohhot, throat swabs were collected from 605 children with community-acquired respiratory between January 2022 and March 2023 for pathogen infection spectrum detection using microarray testing. RESULTS Among the patients, 56.03% were male, and their average age was 3.45 years. SARS-CoV-2 infections were highest between October 2022 and January 2023. Influenza A peaked in March 2023, and other pathogens such as respiratory syncytial virus and influenza B virus disappeared after December 2022. The proportion of mixed infections was 41.94% among SARS-CoV-2 patients, while other pathogens had mixed infection rates exceeding 57.14%. Before December 2022, the mean WBC count for Streptococcus pneumoniae and Haemophilus influenzae was 8.83×109/L, CRP was 18.36 mg/L, and PCT was 1.11 ng/ml. After December 2022, these values decreased significantly. Coughing, difficulty breathing, running nose, and lower respiratory tract infection diagnoses decreased in December 2022, except for SARS-CoV-2 infections. CONCLUSIONS SARS-CoV-2 peaked around November 2022, influenza A peaked in March 2023, and other pathogens like respiratory syncytial virus and influenza B virus were greatly reduced after December 2022. Inflammatory markers and respiratory symptoms decreased after December 2022, except for SARS-CoV-2.


COVID-19 , Influenza, Human , Respiratory Tract Infections , Humans , Child , Male , Child, Preschool , Female , COVID-19/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Retrospective Studies , SARS-CoV-2 , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , China/epidemiology , Respiratory Syncytial Viruses , Influenza B virus , Patient Acuity
18.
Euro Surveill ; 29(8)2024 Feb.
Article En | MEDLINE | ID: mdl-38390651

Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95% CI: 41 to 63) and 30% (95% CI: -3 to 54) against influenza A(H3N2). For EU-H, these were 44% (95% CI: 30 to 55) and 14% (95% CI: -32 to 43), respectively.


Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza B virus , Influenza A Virus, H3N2 Subtype , Vaccination , Case-Control Studies , Seasons , Hospitals , Primary Health Care
19.
Microbiol Spectr ; 12(3): e0307423, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38349165

Influenza virus is known to cause respiratory tract infections of varying severity in individuals of all ages. The EasyNAT Rapid Flu assay is a newly developed in vitro diagnostic test that employs cross-priming isothermal amplification (CPA) to detect and differentiate influenza A and B viruses in human nasopharyngeal (NP) swabs. The aim of this study is to determine the performance characteristics of the EasyNAT Rapid Flu assay for rapid detection of influenza virus. The limit of detection (LOD) and cross-reactivity of the EasyNAT Rapid Flu assay were assessed. The clinical performance of the assay was evaluated using NP swab samples that were tested with real-time reverse-transcription polymerase chain reaction (RT-PCR) and Xpert Xpress Flu/RSV assay. The LOD for the detection of influenza A and B using the EasyNAT Rapid Flu assay was found to be 500 copies/mL. Furthermore, the assay exhibited no cross-reactivity with other common respiratory viruses tested. For the 114 NP swab samples tested for influenza A using both the EasyNAT Rapid Flu assay and real-time RT-PCR, the two assays demonstrated a high level of agreement (κ = 0.963, P < 0.001), with a positive percentage agreement (PPA) of 97.7% and a negative percentage agreement (NPA) of 98.6%. Similarly, for the 43 NP swab samples tested for influenza A and B using both the EasyNAT Rapid Flu assay and Xpert Xpress Flu/RSV assay, the two assays showed a high level of agreement (κ = 0.933, P < 0.001), with the overall rate of agreement (ORA) of 97.7% for influenza A and 100% for influenza B. The EasyNAT Rapid Flu assay demonstrates excellent performance in the detection of influenza A, highlighted by its strong agreement with RT-PCR-based assays.IMPORTANCEThe newly developed EasyNAT Rapid Flu assay is an innovative cross-priming isothermal amplification-based method designed for detecting influenza A and B viruses at point-of-care settings. This study aims to thoroughly assess the analytical and clinical performance of the assay, offering valuable insights into its potential advantages and limitations. The findings of this research hold significant implications for clinical practice.


Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Humans , Influenza, Human/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Point-of-Care Systems , Cross-Priming , Sensitivity and Specificity , Nasopharynx , Molecular Diagnostic Techniques/methods , Respiratory Syncytial Virus Infections/diagnosis
20.
J Med Econ ; 27(1): 430-441, 2024.
Article En | MEDLINE | ID: mdl-38328858

AIMS: Influenza-like illnesses (ILI) affect millions each year in the United States (US). Determining definitively the cause of symptoms is important for patient management. Xpert Xpress CoV-2/Flu/RSV plus (Xpert Xpress) is a rapid, point-of-care (POC), multiplex real-time polymerase chain reaction (RT-PCR) test intended for the simultaneous qualitative detection and differentiation of SARS-CoV-2, influenza A/B, and respiratory syncytial virus (RSV). The objective of our analysis was to develop a cost-consequence model (CCM) demonstrating the clinico-economic impacts of implementing PCR testing with Xpert Xpress compared to current testing strategies. METHODS: A decision tree model, with a 1-year time horizon, was used to compare testing with Xpert Xpress alone to antigen POC testing and send-out PCR strategies in the US outpatient setting from a payer perspective. A hypothetical cohort of 1,000,000 members was modeled, a portion of whom develop symptomatic ILIs and present to an outpatient care facility. Our main outcome measure is cost per correct treatment course. RESULTS: The total cost per correct treatment course was $1,131 for the Xpert Xpress strategy compared with a range of $3,560 to $5,449 in comparators. POC antigen testing strategies cost more, on average, than PCR strategies. LIMITATIONS: Simplifying model assumptions were used to allow for modeling ease. In clinical practice, treatment options, costs, and diagnostic test sensitivity and specificity may differ from what is included in the model. Additionally, the most recent incidence and prevalence data was used within the model, which is not reflective of historical averages due to the SARS-CoV-2 pandemic. CONCLUSION: The Xpert Xpress CoV-2/Flu/RSV plus test allows for rapid and accurate diagnostic results, leading to reductions in testing costs and downstream healthcare resource utilization compared to other testing strategies. Compared to POC antigen testing strategies, PCR strategies were more efficient due to improved diagnostic accuracy and reduced use of confirmatory testing.


COVID-19 , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus, Human , Humans , Influenza, Human/diagnosis , Influenza B virus/genetics , Molecular Diagnostic Techniques/methods , COVID-19/diagnosis , SARS-CoV-2 , Influenza A virus/genetics , Nasopharynx , Respiratory Syncytial Virus, Human/genetics , Sensitivity and Specificity , COVID-19 Testing
...