Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
Poult Sci ; 103(10): 104068, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096825

RESUMEN

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.


Asunto(s)
Sistemas CRISPR-Cas , Pollos , Edición Génica , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Animales , Edición Génica/métodos , Edición Génica/veterinaria , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Patos
3.
Talanta ; 279: 126591, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059066

RESUMEN

Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.


Asunto(s)
Técnicas Biosensibles , Aves , Virus de la Influenza A , Gripe Aviar , Nanoestructuras , Nanoestructuras/química , Animales , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Aves/virología , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico , Gripe Aviar/virología , Inmunoensayo/métodos , Espectrometría Raman/métodos
4.
Anal Biochem ; 693: 115583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838931

RESUMEN

Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a µPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The µPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the µPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.


Asunto(s)
Biomarcadores , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Papel , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/genética , Animales , Gripe Aviar/diagnóstico , Gripe Aviar/virología , ADN Catalítico/química , ADN Catalítico/metabolismo , Aves/virología , Límite de Detección , Gripe Humana/diagnóstico , Gripe Humana/virología , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
5.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930866

RESUMEN

The H5N1 avian influenza virus seriously affects the health of poultry and humans. Once infected, the mortality rate is very high. Therefore, accurate and timely detection of the H5N1 avian influenza virus is beneficial for controlling its spread. This article establishes a dual gene detection method based on dual RPA for simultaneously detecting the HA and M2 genes of H5N1 avian influenza virus, for the detection of H5N1 avian influenza virus. Design specific primers for the conserved regions of the HA and M2 genes. The sensitivity of the dual RT-RPA detection method for HA and M2 genes is 1 × 10-7 ng/µL. The optimal primer ratio is 1:1, the optimal reaction temperature is 40 °C, and the optimal reaction time is 20 min. Dual RT-RPA was used to detect 72 samples, and compared with RT-qPCR detection, the Kappa value was 1 (p value < 0.05), and the clinical sample detection sensitivity and specificity were both 100%. The dual RT-RPA method is used for the first time to simultaneously detect two genes of the H5N1 avian influenza virus. As an accurate and convenient diagnostic tool, it can be used to diagnose the H5N1 avian influenza virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Subtipo H5N1 del Virus de la Influenza A/genética , Animales , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Humanos , Sensibilidad y Especificidad , Gripe Humana/virología , Gripe Humana/diagnóstico , Proteínas de la Matriz Viral/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Aves/virología , Proteínas Viroporinas
6.
Viruses ; 16(5)2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793634

RESUMEN

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


Asunto(s)
Sistemas CRISPR-Cas , Gripe Aviar , Sensibilidad y Especificidad , Animales , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/clasificación , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Pollos/virología , Aves/virología
7.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755641

RESUMEN

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Asunto(s)
Pollos , Virus de la Influenza A , Gripe Aviar , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Transcripción Reversa , Animales , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Recombinasas/metabolismo , Sensibilidad y Especificidad , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico
8.
J Virol Methods ; 327: 114942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670532

RESUMEN

H5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience. The singleplex rRT-PCRs for the Matrix, H5 and H7 gene used for the national surveillance program in Korea have been developed in 2017; however, these methods were not designed for multiplexing, and does not reflect the sequences of currently circulating strains completely. In this study, the multiplex H5/7/9 rRT-PCR assay was developed with sets of primers and probe updated or newly designed to simultaneously detect the H5, H7 and H9 genes. Multiplex H5/7/9 rRT-PCR showed 100% specificity without cross-reactivity with other subtypes of AIVs and avian disease-causing viruses or bacteria, and the limit of detection was 1-10 EID50/0.1 ml (50% egg infectious dose). Artificial mixed infections with the three different subtypes could be detected accurately with high analytical sensitivity even under highly biased relative molecular ratios by balancing the reactivities of each subtype by modifying the concentration of the primers and probes. The multiplex H5/7/9 rRT-PCR assay developed in this study could be a useful tool for large-scale surveillance programs for viral detection as well as subtyping due to its high specificity, sensitivity and robustness in discriminating viruses in mixed infections, and this approach would greatly decrease the time, cost, effort and chance of cross-contamination compared to the conventional method of testing three subtypes by different singleplex rRT-PCR methods in parallel or in series.


Asunto(s)
Pollos , Virus de la Influenza A , Gripe Aviar , Reacción en Cadena de la Polimerasa Multiplex , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Animales , Reacción en Cadena de la Polimerasa Multiplex/métodos , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Pollos/virología , República de Corea , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Cartilla de ADN/genética , Aves de Corral/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Aves/virología
9.
Avian Pathol ; 53(4): 285-290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38372250

RESUMEN

The quantitative real-time reverse polymerase chain reaction (RRT-PCR) is the preferred test method for the diagnosis of avian influenza (AI), but can be performed only in specialized laboratories. Different antigen detection methods for the diagnosis of AI were previously reported to be specific and sensitive in field outbreaks. These tests can be performed in basic countryside labs. Brain smears of domestic birds (n = 105) collected during AI field outbreaks were examined with immunocytochemistry (IC). The results were statistically analysed by comparing IC to brain histology (BH), and immunohistochemistry (IHC), to gross pathological examination (GP) (n = 105), and RRT-PCR (n = 91). AI was diagnosed with RRT-PCR in 66 cases. IC and IHC were positive in 59/66 (90%) and 60/66 (91%) cases, respectively. Lesions suspicious for AI were detected with GP and HP in 66/66 (100%) and 61/66 (92%) cases, respectively. An almost perfect agreement was found between RRT-PCR, IC, IHC, and HP. Substantial agreement was found between IC and GP, between IHC and GP, between HP and GP, and between RRT-PCR and GP. The chromogen-based IC test presented in this study produces durable staining, which can be evaluated using a simple brightfield microscope. The test is rapid (can be completed in 2 h), sensitive (90%), specific (100%), and cost-effective, which makes the method suitable for routine diagnostic tests in AI epidemics.RESEARCH HIGHLIGHTSAvian influenza virus (AIV) antigen detection was examined in field outbreaks.Bird brain smears were tested using immunocytochemistry (IC).IC results strongly correlated with real-time RT-PCR results.The IC method was rapid, specific, sensitive, and cost-effective in AIV field outbreaks.


Asunto(s)
Brotes de Enfermedades , Inmunohistoquímica , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/diagnóstico , Gripe Aviar/virología , Gripe Aviar/epidemiología , Inmunohistoquímica/veterinaria , Brotes de Enfermedades/veterinaria , Virus de la Influenza A/aislamiento & purificación , Sensibilidad y Especificidad , Pollos/virología , Aves/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Encéfalo/virología , Encéfalo/patología , Antígenos Virales/análisis , Animales Domésticos/virología
10.
Avian Pathol ; 53(2): 93-100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37885409

RESUMEN

Highly pathogenic avian influenza viruses (HPAIV) are a major threat to the global poultry industry and public health due to their zoonotic potential. Since 2016, Europe and France have faced major epizootics caused by clade 2.3.4.4b H5 HPAIV. To reduce sample-to-result times, point-of-care testing is urgently needed to help prevent further outbreaks and the propagation of the virus. This study presents the design of a novel real-time colourimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of clade 2.3.4.4b H5 HPAIV. A clinical validation of this RT-LAMP assay was performed on 198 pools of clinical swabs sampled in 52 poultry flocks during the H5 HPAI 2020-2022 epizootics in France. This RT-LAMP assay allowed the specific detection of HPAIV H5Nx clade 2.3.4.4b within 30 min with a sensitivity of 86.11%. This rapid, easy-to-perform, inexpensive, molecular detection assay could be included in the HPAIV surveillance toolbox.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Animales , Transcripción Reversa , Gripe Aviar/diagnóstico , Colorimetría/veterinaria , Sensibilidad y Especificidad , Virus de la Influenza A/genética , Aves de Corral
11.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138987

RESUMEN

Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/diagnóstico , Subtipo H5N1 del Virus de la Influenza A/genética , Aves de Corral , Agricultura , Mamíferos
12.
Virol J ; 20(1): 261, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957729

RESUMEN

BACKGROUND: Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of pathogens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under laboratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves on these limitations. METHODS: The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and primers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M and NP genes as templates. The specificity of this method was determined using H1-H16 subtype AIVs and other avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchitis virus (IBV). RESULTS: The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/µL and 12 copies/µL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consistency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate method has great potential for AIV detection in the field. CONCLUSION: An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/diagnóstico , Sistemas CRISPR-Cas , Aves , Aves de Corral , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Enfermedad de Newcastle/genética , ARN
13.
J Microbiol ; 61(10): 929-936, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38010587

RESUMEN

Since the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating. We then evaluated its efficacy using a large number of clinical samples. The assay, named the Uni Kor-H9 assay, showed high sensitivity for Y280 lineage viruses, as well as for the Y439 lineage originating in Korean poultry and wild birds. In addition, the assay showed no cross-reactivity with other subtypes of AIV or other avian pathogens. Furthermore, the Uni Kor-H9 assay was more sensitive, and had higher detection rates, than reference H9 rRT-PCR methods when tested against a panel of domestically isolated H9 AIVs. In conclusion, the novel Uni Kor-H9 assay enables more rapid and efficient diagnosis than the "traditional" method of virus isolation followed by subtyping RT-PCR. Application of the new H9 rRT-PCR assay to AI active surveillance programs will help to control and manage Korean H9 AIVs more efficiently.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Aves , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/diagnóstico , Gripe Aviar/epidemiología , Reacción en Cadena de la Polimerasa , Aves de Corral , República de Corea , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Microbiol Spectr ; 11(6): e0218623, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37811963

RESUMEN

IMPORTANCE: Avian influenza virus (AIV) subtype H5 is a highly contagious zoonotic disease and a serious threat to the farming industry and public health. Traditional detection methods, including virus isolation and real-time PCR, require tertiary biological laboratories and are time-consuming and complex to perform, making it difficult to rapidly diagnose H5 subtype avian influenza viruses. In this study, we successfully developed two methods, namely, RF-RT-RAA and RT-RAA-LFD, for rapid detection of H5-AIV. The assays are characterized by their high specificity, sensitivity, and user-friendliness. Moreover, the results of the reaction can be visually assessed, which are suitable for both laboratory testing and grassroots farm screening for H5-AIV.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Transcripción Reversa , Gripe Aviar/diagnóstico , Recombinasas/metabolismo , Sensibilidad y Especificidad , Virus de la Influenza A/genética , Hidrolasas , Tecnología
15.
Int J Infect Dis ; 136: 22-28, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652093

RESUMEN

OBJECTIVES: Interpreting real-time reverse transcription-polymerase chain reaction (rRT-PCR) results for human avian influenza A virus (AIV) detection in contaminated settings like live bird markets (LBMs) without serology or viral culture poses a challenge. METHODS: During February-March 2012 and November 2012-February 2013, we screened workers at nine LBMs in Dhaka, Bangladesh, to confirm molecular detections of AIV RNA in respiratory specimens with serology. We tested nasopharyngeal (NP) and throat swabs from workers with influenza-like illness (ILI) and NP, throat, and arm swabs from asymptomatic workers for influenza virus by rRT-PCR and sera for seroconversion and antibodies against HPAI A(H5N1) and A(H9N2) viruses. RESULTS: Among 1273 ILI cases, 34 (2.6%) had A(H5), 56 (4%) had A(H9), and six (0.4%) had both A(H5) and A(H9) detected by rRT-PCR. Of 192 asymptomatic workers, A(H5) was detected in eight (4%) NP and 38 (20%) arm swabs. Of 28 ILI cases with A(H5) or A(H9) detected, none had evidence of seroconversion, but one (3.5%) and 12 (43%) were seropositive for A(H5) and A(H9), respectively. CONCLUSION: Detection of AIV RNA in respiratory specimens from symptomatic and asymptomatic LBM workers without evidence of seroconversion or virus isolation suggests environmental contamination, emphasizing caution in interpreting rRT-PCR results in high viral load settings.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/diagnóstico , Subtipo H5N1 del Virus de la Influenza A/genética , Bangladesh/epidemiología , Pollos , ARN
16.
Talanta ; 265: 124892, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451119

RESUMEN

Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.


Asunto(s)
Técnicas Biosensibles , Virus de la Influenza A , Gripe Aviar , Nanopartículas , Nanoestructuras , Animales , Humanos , Gripe Aviar/diagnóstico , Técnicas Biosensibles/métodos
17.
Biosens Bioelectron ; 237: 115423, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311406

RESUMEN

The rapid and sensitive detection of pathogenic viruses is important for controlling pandemics. Herein, a rapid, ultrasensitive, optical biosensing scheme was developed to detect avian influenza virus H9N2 using a genetically engineered filamentous M13 phage probe. The M13 phage was genetically engineered to bear an H9N2-binding peptide (H9N2BP) at the tip and a gold nanoparticle (AuNP)-binding peptide (AuBP) on the sidewall to form an engineered phage nanofiber, M13@H9N2BP@AuBP. Simulated modelling showed that M13@H9N2BP@AuBP enabled a 40-fold enhancement of the electric field enhancement in surface plasmon resonance (SPR) compared to conventional AuNPs. Experimentally, this signal enhancement scheme was employed for detecting H9N2 particles with a sensitivity down to 6.3 copies/mL (1.04 × 10-5 fM). The phage-based SPR scheme can detect H9N2 viruses in real allantoic samples within 10 min, even at very low concentrations beyond the detection limit of quantitative polymerase chain reaction (qPCR). Moreover, after capturing the H9N2 viruses on the sensor chip, the H9N2-binding phage nanofibers can be quantitatively converted into plaques that are visible to the naked eye for further quantification, thereby allowing us to enumerate the H9N2 virus particles through a second mode to cross-validate the SPR results. This novel phage-based biosensing strategy can be employed to detect other pathogens because the H9N2-binding peptides can be easily switched with other pathogen-binding peptides using phage display technology.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Nanopartículas del Metal , Nanofibras , Animales , Oro , Gripe Aviar/diagnóstico , Péptidos
18.
J Vet Diagn Invest ; 35(5): 500-506, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37334770

RESUMEN

Highly pathogenic avian influenza (HPAI) is an acute viral disease associated with high mortality and great economic losses. Immunohistochemistry (IHC) is a common diagnostic and research tool for the demonstration of avian influenza A virus (AIAV) antigens within affected tissues, supporting etiologic diagnosis and assessing viral distribution in both naturally and experimentally infected birds. RNAscope in situ hybridization (ISH) has been used successfully for the identification of a variety of viral nucleic acids within histologic samples. We validated RNAscope ISH for the detection of AIAV in formalin-fixed, paraffin-embedded (FFPE) tissues. RNAscope ISH targeting the AIAV matrix gene and anti-IAV nucleoprotein IHC were performed on 61 FFPE tissue sections obtained from 3 AIAV-negative, 16 H5 HPAIAV, and 1 low pathogenicity AIAV naturally infected birds, including 7 species sampled between 2009 and 2022. All AIAV-negative birds were confirmed negative by both techniques. All AIAVs were detected successfully by both techniques in all selected tissues and species. Subsequently, H-score comparison was assessed through computer-assisted quantitative analysis on a tissue microarray comprised of 132 tissue cores from 9 HPAIAV-infected domestic ducks. Pearson correlation of r = 0.95 (0.94-0.97), Lin concordance coefficient of ρc = 0.91 (0.88-0.93), and Bland-Altman analysis indicated high correlation and moderate concordance between the 2 techniques. H-score values were significantly higher with RNAscope ISH compared to IHC for brain, lung, and pancreatic tissues (p ≤ 0.05). Overall, our results indicate that RNAscope ISH is a suitable and sensitive tool for in situ detection of AIAV in FFPE tissues.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Hibridación in Situ/veterinaria , Pulmón , Gripe Aviar/diagnóstico
19.
Viruses ; 15(6)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376643

RESUMEN

During the early stages of the UK 2021-2022 H5N1 high-pathogenicity avian influenza virus (HPAIV) epizootic in commercial poultry, 12 infected premises (IPs) were confirmed by four real-time reverse-transcription-polymerase chain reaction (RRT)-PCRs, which identified the viral subtype and pathotype. An assessment was undertaken to evaluate whether a large sample throughput would challenge laboratory capacity during an exceptionally large epizootic; hence, assay performance across our test portfolio was investigated. Statistical analysis of RRT-PCR swab testing supported it to be focused on a three-test approach, featuring the matrix (M)-gene, H5 HPAIV-specific (H5-HP) and N1 RRT-PCRs, which was successfully assessed at 29 subsequent commercial IPs. The absence of nucleotide mismatches in the primer/probe binding regions for the M-gene and limited mismatches for the H5-HP RRT-PCR underlined their high sensitivity. Although less sensitive, the N1 RRT-PCR remained effective at flock level. The analyses also guided successful surveillance testing of apparently healthy commercial ducks from at-risk premises, with pools of five oropharyngeal swabs tested by the H5-HP RRT-PCR to exclude evidence of infection. Serological testing at anseriform H5N1 HPAIV outbreaks, together with quantitative comparisons of oropharyngeal and cloacal shedding, provided epidemiological information concerning the chronology of initial H5N1 HPAIV incursion and onward spread within an IP.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/diagnóstico , Gripe Aviar/epidemiología , Virulencia , Brotes de Enfermedades/veterinaria , Reino Unido/epidemiología
20.
Sci Rep ; 13(1): 8410, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225865

RESUMEN

Surveillance of influenza A viruses (IAVs) among migratory waterfowl is a first step in understanding the ecology, biology, and pathogenicity of IAVs. As part of the nationwide surveillance effort for IAVs in fowl in South Korea, we collected environmental fecal samples in different migratory bird stopover sites in South Korea during the winter seasons within November 2014 through January 2018. We collected a total of 6758 fecal samples, 75 of which were positive for IAV (1.11% positivity). Prevalence of IAVs varied per site and per year. Based on sequencing, the most prevalent hemagglutinin (HA) subtypes were H1, H6, and H5, and the most prevalent neuraminidase (NA) subtypes were N1, N3, and N2. Phylogenetic analyses showed that the genes we isolated clustered with reported isolates collected from other locations along the East Asian-Australasian Flyway. All the H5 and H7 isolates collected in this study were of low pathogenicity. None of the N1 and N2 genes carried amino acid markers of resistance against NA inhibitors. The winter 2016-2017 subset were primarily borne by migratory geese (Anser spp.). These results suggest that majority of the IAVs circulating among migratory wild fowl in South Korea in 2014-2018 were of low pathogenicity.


Asunto(s)
Anseriformes , Virus de la Influenza A , Gripe Aviar , Animales , Antivirales , Gansos/virología , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Filogenia , República de Corea/epidemiología , Gripe Aviar/diagnóstico , Gripe Aviar/epidemiología , Gripe Aviar/genética , Gripe Aviar/virología , Heces/virología , Anseriformes/virología , Monitoreo Biológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA