Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1417437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114287

RESUMEN

Introduction: Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods: We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results: There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion: Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.


Asunto(s)
Dieta Occidental , Células Secretoras de Insulina , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Embarazo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dieta Occidental/efectos adversos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Masculino , Lactancia
2.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912736

RESUMEN

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Asunto(s)
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocondrias , Animales , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ratones , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Proc Natl Acad Sci U S A ; 119(32): e2202695119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921440

RESUMEN

Characterizing relationships between Zn2+, insulin, and insulin vesicles is of vital importance to the study of pancreatic beta cells. However, the precise content of Zn2+ and the specific location of insulin inside insulin vesicles are not clear, which hinders a thorough understanding of the insulin secretion process and diseases caused by blood sugar dysregulation. Here, we demonstrated the colocalization of Zn2+ and insulin in both single extracellular insulin vesicles and pancreatic beta cells by using an X-ray scanning coherent diffraction imaging (ptychography) technique. We also analyzed the elemental Zn2+ and Ca2+ contents of insulin vesicles using electron microscopy and energy dispersive spectroscopy (EDS) mapping. We found that the presence of Zn2+ is an important characteristic that can be used to distinguish insulin vesicles from other types of vesicles in pancreatic beta cells and that the content of Zn2+ is proportional to the size of insulin vesicles. By using dual-energy contrast X-ray microscopy and scanning transmission X-ray microscopy (STXM) image stacks, we observed that insulin accumulates in the off-center position of extracellular insulin vesicles. Furthermore, the spatial distribution of insulin vesicles and their colocalization with other organelles inside pancreatic beta cells were demonstrated using three-dimensional (3D) imaging by combining X-ray ptychography and an equally sloped tomography (EST) algorithm. This study describes a powerful method to univocally describe the location and quantitative analysis of intracellular insulin, which will be of great significance to the study of diabetes and other blood sugar diseases.


Asunto(s)
Células Secretoras de Insulina , Insulina , Vesículas Secretoras , Zinc , Animales , Glucemia , Línea Celular , Insulina/análisis , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Ratas , Vesículas Secretoras/química , Vesículas Secretoras/metabolismo , Espectrometría por Rayos X , Difracción de Rayos X , Zinc/análisis
4.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086144

RESUMEN

During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce ß-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for ß cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic ß cells, LD lifecycle, and the effect of LD catabolism on ß-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human ß-cell models, to understand the molecular effect of LD formation and degradation on ß-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of ß-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in ß cells. However, it remains unclear whether LDs positively or negatively affect human ß-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in ß-cell failure.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/ultraestructura , Gotas Lipídicas/fisiología , Animales , Muerte Celular , Senescencia Celular , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Humanos , Secreción de Insulina/fisiología , Perilipina-2/fisiología , Perilipina-5/fisiología , Ratas
5.
Diabetes ; 71(3): 424-439, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34588186

RESUMEN

The effects of imeglimin, a novel antidiabetes agent, on ß-cell function remain unclear. Here, we unveiled the impact of imeglimin on ß-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted ß-cell proliferation, and improved ß-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules, including Chop (Ddit3), Gadd34 (Ppp1r15a), Atf3, and Sdf2l1, and decreased eIF2α phosphorylation after treatment with thapsigargin and restored global protein synthesis in ß-cells under ER stress. Imeglimin failed to protect against ER stress-induced ß-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic ß-cells and increased ß-cell mass in Akita mice. Imeglimin also protected against ß-cell apoptosis in both human islets and human pluripotent stem cell-derived ß-like cells. Taken together, imeglimin modulates the ER homeostasis pathway, which results in the prevention of ß-cell apoptosis both in vitro and in vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Hipoglucemiantes , Células Secretoras de Insulina/fisiología , Triazinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Células Madre Pluripotentes , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/fisiología , Factor de Transcripción CHOP/deficiencia , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/fisiología , Triazinas/uso terapéutico
6.
Diabetes ; 71(3): 440-452, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857543

RESUMEN

In the endoplasmic reticulum (ER), the translocation-associated protein complex (TRAP), also called signal sequence receptor (SSR), includes four integral membrane proteins TRAPα/SSR1, TRAPß/SSR2, and TRAPδ/SSR4 with the bulk of their extramembranous portions primarily in the ER lumen, whereas the extramembranous portion of TRAPγ/SSR3 is primarily cytosolic. Individually diminished expression of either TRAPα/SSR1, TRAPß/SSR2, or TRAPδ/SSR4 mRNA is known in each case to lower TRAPα/SSR1 protein levels, leading to impaired proinsulin biosynthesis, whereas forced expression of TRAPα/SSR1 at least partially suppresses the proinsulin biosynthetic defect. Here, we report that diminished TRAPγ/SSR3 expression in pancreatic ß-cells leaves TRAPα/SSR1 levels unaffected while nevertheless inhibiting cotranslational and posttranslational translocation of preproinsulin into the ER. Crucially, acute exposure to high glucose leads to a rapid upregulation of both TRAPγ/SSR3 and proinsulin protein without change in the respective mRNA levels, as observed in cultured rodent ß-cell lines and confirmed in human islets. Strikingly, pancreatic ß-cells with suppressed TRAPγ/SSR3 expression are blocked in glucose-dependent upregulation of proinsulin (or insulin) biosynthesis. Most remarkably, overexpression of TRAPγ/SSR3 in control ß-cells raises proinsulin levels, even without boosting extracellular glucose. The data suggest the possibility that TRAPγ/SSR3 may fulfill a rate-limiting function in preproinsulin translocation across the ER membrane for proinsulin biosynthesis.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/ultraestructura , Insulina/metabolismo , Glicoproteínas de Membrana/fisiología , Precursores de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Péptidos/fisiología , Animales , Proteínas de Unión al Calcio/genética , Línea Celular , Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Proinsulina/biosíntesis , Transporte de Proteínas/fisiología , Conejos , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética
7.
Sci Rep ; 11(1): 17796, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493754

RESUMEN

Pancreatic islet cells have plasticity, such as the abilities to dedifferentiate and transdifferentiate. Islet cell conversion to other characteristic cell is largely determined by transcription factors, but significance of expression patterns of these transcription factors in human islet cells remained unclear. Here, we present the NKX6.1-positive ratio of glucagon-positive cells (NKX6.1+/GCG+ ratio) and the ARX-negative ratio of glucagon-positive cells (ARX-/GCG+ ratio) in 34 patients who were not administered antidiabetic agents. Both of NKX6.1+/GCG+ ratio and ARX-/GCG+ ratio negatively associated with relative beta cell area. And these ratios did not have significant correlation with other parameters including age, body mass index, hemoglobin A1c, fasting plasma glucose level or relative alpha-cell area. Our data demonstrate that these expression ratios of transcription factors in glucagon-positive cells closely correlate with the reduction of beta-cell volume in human pancreas.


Asunto(s)
Transdiferenciación Celular , Regulación de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/biosíntesis , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/biosíntesis , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Glucemia/análisis , Péptido C/sangre , Tamaño de la Célula , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Femenino , Células Secretoras de Glucagón/ultraestructura , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hemoglobina Glucada/análisis , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/ultraestructura , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Pancreatectomía , Quiste Pancreático/genética , Quiste Pancreático/metabolismo , Quiste Pancreático/patología , Quiste Pancreático/cirugía , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Pancreaticoduodenectomía , Factores de Transcripción/genética
8.
Diabetologia ; 64(11): 2534-2549, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448879

RESUMEN

AIMS/HYPOTHESIS: We studied the effects of heterozygous human INS gene mutations on insulin secretion, endoplasmic reticulum (ER) stress and other mechanisms in both MIN6 and human induced pluripotent stem cells (hiPSC)-derived beta-like cells, as well as the effects of prolonged overexpression of mutant human INS in MIN6 cells. METHODS: We modelled the structure of mutant C109Y and G32V proinsulin computationally to examine the in silico effects. We then overexpressed either wild-type (WT), mutant (C109Y or G32V), or both WT and mutant human preproinsulin in MIN6 cells, both transiently and stably over several weeks. We measured the levels of human and rodent insulin secreted, and examined the transcript and protein levels of several ER stress and apoptotic markers. We also reprogrammed human donor fibroblasts heterozygous for the C109Y mutation into hiPSCs and differentiated these into pancreatic beta-like cells, which were subjected to single-cell RNA-sequencing and transcript and protein analyses for ER stress and apoptotic markers. RESULTS: The computational modelling studies, and short-term and long-term expression studies in beta cells, revealed the presence of ER stress, organelle changes and insulin processing defects, resulting in a decreased amount of insulin secreted but not the ability to secrete insulin. By 9 weeks of expression of mutant human INS, dominant-negative effects of mutant INS were evident and beta cell insulin secretory capacity declined. INS+/C109Y patient-derived beta-like cells and single-cell RNA-sequencing analyses then revealed compensatory upregulation in genes involved in insulin secretion, processing and inflammatory response. CONCLUSIONS/INTERPRETATION: The results provide deeper insights into the mechanisms of beta cell failure during INS mutation-mediated diabetes disease progression. Decreasing spliced X-box binding protein 1 (sXBP1) or inflammatory response could be avenues to restore the function of the remaining WT INS allele.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/genética , Mutación , Enfermedades Pancreáticas/metabolismo , Transporte Biológico , Células Cultivadas , Diabetes Mellitus/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Regulación de la Expresión Génica/fisiología , Vectores Genéticos , Glucosa/farmacología , Humanos , Lactante , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Cariotipificación , Microscopía Electrónica de Transmisión , Enfermedades Pancreáticas/patología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proinsulina/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
9.
J Clin Endocrinol Metab ; 106(11): e4318-e4326, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34228132

RESUMEN

OBJECTIVE: The proinsulin to C-peptide (PI:C) ratio is reputedly a biomarker of ß-cell endoplasmic reticulum (ER) stress. OBJECTIVE: This study examined the natural history of the PI:C ratio and its correlation with residual ß-cell function in childhood new-onset type 1 diabetes (T1D). Over the first year of T1D, the temporal trend in fasting and nutrient-stimulated PI data is limited. METHODS: PI was a secondary pre-planned analysis of our 1-year, randomized, double-blind, placebo-controlled gamma aminobutyric acid (GABA) trial in new-onset T1D. Of the 99 participants in the primary study, aged 4 to 18 years, 30 were placebo. This study only involved the 30 placebo patients; all were enrolled within 5 weeks of T1D diagnosis. A liquid mixed meal tolerance test was administered at baseline and 5 and 12 months for determination of C-peptide, PI, glucose, and hemoglobin A1C. RESULTS: Both the fasting (P = 0.0003) and stimulated (P = 0.00008) PI:C ratios increased from baseline to 12 months, indicating escalating ß-cell ER stress. The baseline fasting PI correlated with the fasting change in C-peptide at 12 months (P = 0.004) with a higher PI correlating with greater decline in C-peptide. Patients with an insulin-adjusted A1C >9% (hence, not in remission) had higher fasting PI:C ratios. Younger age at diagnosis correlated with a higher PI:C ratio (P = 0.04). CONCLUSION: Children with new-onset T1D undergo progressive ß-cell ER stress and aberrant proinsulin processing, as evidenced by increasing PI:C ratios. Moreover, the PI:C ratio reflects more aggressive ß-cell onslaught with younger age, as well as diminished glycemic control.


Asunto(s)
Péptido C/sangre , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Estrés del Retículo Endoplásmico/fisiología , Células Secretoras de Insulina/ultraestructura , Proinsulina/sangre , Adolescente , Biomarcadores/sangre , Niño , Preescolar , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Método Doble Ciego , Ayuno , Femenino , Prueba de Tolerancia a la Glucosa/métodos , Control Glucémico/estadística & datos numéricos , Humanos , Insulina/uso terapéutico , Células Secretoras de Insulina/fisiología , Masculino , Comidas , Placebos
10.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008750

RESUMEN

Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of ß-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced ß-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the ß cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the ß cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional ß cells in type 2 diabetes with a natural, although accelerated, aging process.


Asunto(s)
Adaptación Biológica , Glucosa/toxicidad , Secreción de Insulina , Células Secretoras de Insulina/patología , Lípidos/farmacología , Adaptación Biológica/efectos de los fármacos , Animales , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Modelos Biológicos
11.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019671

RESUMEN

There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.


Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Células Secretoras de Insulina/ultraestructura , Trasplante de Islotes Pancreáticos/diagnóstico por imagen , Radiofármacos/química , Anticuerpos de Dominio Único/química , 5-Hidroxitriptófano/química , 5-Hidroxitriptófano/farmacocinética , Animales , Biomarcadores/análisis , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Imagen por Resonancia Magnética/métodos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Canales de Potasio/genética , Canales de Potasio/metabolismo , Radiofármacos/farmacocinética , Anticuerpos de Dominio Único/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tecnecio/química , Tecnecio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/métodos
12.
Commun Biol ; 3(1): 541, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999405

RESUMEN

Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of ß-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced ß-cell destruction predominantly affects large islets in the pancreatic core. Further, we show that hyperglycemic STZ-treated mice still harbor a large pool of remaining ß-cells but display pancreas-wide downregulation of glucose transporter type 2 (GLUT2). Islet gene expression studies confirmed this downregulation and revealed impaired ß-cell maturity. Reversing hyperglycemia by islet transplantation partially restored the expression of markers for islet function, but not BCM. Jointly our results indicate that STZ-induced hyperglycemia results from ß-cell dysfunction rather than ß-cell ablation and that hyperglycemia in itself sustains a negative feedback loop restraining islet function recovery.


Asunto(s)
Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Transportador de Glucosa de Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
13.
Open Biol ; 10(10): 200137, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33081637

RESUMEN

Insulin is produced and stored inside the pancreatic ß-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model ß-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 ß-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent ß-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model ß-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.


Asunto(s)
Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/genética , Insulina/metabolismo , Zinc/metabolismo , Animales , Fraccionamiento Químico , Gránulos Citoplasmáticos/metabolismo , Citometría de Flujo/métodos , Glucosa/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transportador 8 de Zinc
14.
Front Immunol ; 11: 1814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101266

RESUMEN

Beta cell failure and apoptosis following islet inflammation have been associated with autoimmune type 1 diabetes pathogenesis. As conveyors of biological active material, extracellular vesicles (EV) act as mediators in communication with immune effectors fostering the idea that EV from inflamed beta cells may contribute to autoimmunity. Evidence accumulates that beta exosomes promote diabetogenic responses, but relative contributions of larger vesicles as well as variations in the composition of the beta cell's vesiculome due to environmental changes have not been explored yet. Here, we made side-by-side comparisons of the phenotype and function of apoptotic bodies (AB), microvesicles (MV) and small EV (sEV) isolated from an equal amount of MIN6 beta cells exposed to inflammatory, hypoxic or genotoxic stressors. Under normal conditions, large vesicles represent 93% of the volume, but only 2% of the number of the vesicles. Our data reveal a consistently higher release of AB and sEV and to a lesser extent of MV, exclusively under inflammatory conditions commensurate with a 4-fold increase in the total volume of the vesiculome and enhanced export of immune-stimulatory material including the autoantigen insulin, microRNA, and cytokines. Whilst inflammation does not change the concentration of insulin inside the EV, specific Toll-like receptor-binding microRNA sequences preferentially partition into sEV. Exposure to inflammatory stress engenders drastic increases in the expression of monocyte chemoattractant protein 1 in all EV and of interleukin-27 solely in AB suggesting selective sorting toward EV subspecies. Functional in vitro assays in mouse dendritic cells and macrophages reveal further differences in the aptitude of EV to modulate expression of cytokines and maturation markers. These findings highlight the different quantitative and qualitative imprints of environmental changes in subpopulations of beta EV that may contribute to the spread of inflammation and sustained immune cell recruitment at the inception of the (auto-) immune response.


Asunto(s)
Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Apoptosis , Hipoxia de la Célula , Línea Celular Tumoral , Daño del ADN , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/ultraestructura , Femenino , Inflamación/inmunología , Inflamación/patología , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/ultraestructura , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos NOD , MicroARNs/metabolismo , Fenotipo , Células RAW 264.7 , Vías Secretoras , Transducción de Señal
15.
Pancreas ; 49(9): 1225-1231, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32898009

RESUMEN

OBJECTIVES: We aimed to determine whether responsive insulin-producing cells (IPCs) could be generated from adipose-derived stem cells (ADSCs) isolated from patients with type 1 diabetes mellitus (T1DM). METHODS: We isolated ADSCs from adipose tissue of 4 patients (one patient with T1DM and 3 nondiabetic patients), who underwent surgery and differentiated them into IPCs with using a 2-step xeno-antigen free, 3-dimensional culture method. Characteristics of isolated ADSCs, in vitro cell quality, programmed cell death ligand-1 (PDL-1) expression, and transplantation into streptozotocin induced diabetic nude mice were investigated. RESULTS: Adipose-derived stem cells from T1DM patients and commercially obtained ADSCs showed the same surface markers; CD31CD34CD45CD90CD105CD146. Moreover, the generated IPCs at day 21 demonstrated appropriate autonomous insulin secretion (stimulation index, 3.5; standard deviation, 0.8). Nonfasting blood glucose concentrations of IPC-transplanted mice were normal at 30 days. The normalized rate of IPC-transplanted mice was significantly higher than that of the sham-operated group (P < 0.05). Insulin-producing cells generated from T1DM adipose tissue expressed high levels of PDL-1. CONCLUSIONS: Insulin-producing cells obtained from adipose tissue of T1DM patients are capable of secreting insulin long-term and achieve normoglycemia after transplantation. Expression of PDL-1 suggests the potential for immune circumvention.


Asunto(s)
Tejido Adiposo/citología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/citología , Trasplante de Células Madre/métodos , Células Madre/citología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Ratones Desnudos , Microscopía Electrónica de Transmisión , Células Madre/metabolismo
17.
Biomolecules ; 10(4)2020 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325912

RESUMEN

Ghrelin, a 28-amino acid peptide, is a strong growth hormone secretagogue and a regulator of food intake. In addition, ghrelin is thought to play a role in insulin secretion and in glucose homeostasis. A lot of contradictory data have been reported in the literature regarding the co-localization of ghrelin with other hormones in the islet of Langerhans, its role in insulin secretion and attenuation of type 2 diabetes mellitus. In this study, we investigate the effect of chronic ghrelin treatment on glucose, body weight and insulin level in normal and streptozotocin-induced diabetic male Wistar rats. We have also examined the distribution pattern and co-localization of ghrelin with insulin in pancreatic islet cells using immunohistochemistry and immune-electron microscopy and the ability of ghrelin to stimulate insulin release from the CRL11065 beta cell line. Control, non-diabetic groups received intraperitoneal injection of normal saline, while treated groups received intraperitoneal injection of 5 µg/kg body weight of ghrelin (amino acid chain 24-51) on a daily basis for a duration of four weeks. Our results show that the administration of ghrelin increases the number of insulin-secreting beta cells and serum insulin level in both normal and diabetic rats. We also demonstrated that ghrelin co-localizes with insulin in pancreatic islet cells and that the pattern of ghrelin distribution is altered after the onset of diabetes. Moreover, ghrelin at a dose of 10-6M and 10-12M increased insulin release from the CRL11065 beta cell line. In summary, ghrelin co-localizes with insulin in the secretory granules of pancreatic beta cells and enhances insulin production.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Ghrelina/farmacología , Insulina/sangre , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Ayuno/sangre , Prueba de Tolerancia a la Glucosa , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Masculino , Ratas Wistar , Transducción de Señal/efectos de los fármacos
18.
Mol Med Rep ; 21(5): 2041-2050, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323766

RESUMEN

The aim of the study was to examine whether there was excessive endoplasmic reticulum stress (ERs) in the islets of high­fat diet (HFD)­induced obese mice, as well as the effects of ERs on ß­cell function. Male C57BL/6J mice were fed a HFD for 16 weeks. Pancreatic ß­cell function was evaluated using intraperitoneal glucose tolerance and insulin release tests, and via electron microscopy. The expression of activating transcription factor 6 (ATF6) and phosphorylated (p)­eukaryotic initiation factor 2α (eIF2α) were detected via immunofluorescence staining to determine whether exposure to a HFD induced ERs in pancreatic islets. In vitro, ERs was induced by palmitate (PA) in INS­1 cells, and the protein expression of ATF6, and mRNA expression of ATF6 and insulin were examined via western blot and quantitative PCR (qPCR) analyses, respectively. The nuclear localization of ATF6 was examined by immunofluorescence. Finally, small interfering (si)RNA was used to downregulate ATF6 expression in INS­1 cells to further determine whether ATF6 mediated the ERs­induced impairment of insulin gene transcription. After 16 weeks of induction, the obese mice showed impaired glucose tolerance, insulin resistance and hyperinsulinemia. Immunohistochemistry staining showed increased p­eIF2α and ATF6 expression in pancreatic islets in the obesity group compared with the normal group. Electron microscopy indicated that the microstructures and secretory functions of ß­cells were impaired. After 24 h of incubation, ATF mRNA and protein expression in the PA group was significantly higher compared with the control group. However, the insulin mRNA expression in the PA group was significantly decreased. Furthermore, qPCR showed that the insulin mRNA expression was significantly increased 24 h after PA treatment in cells transfected with ATF6­siRNA compared with the negative control group. The present suggested shows that ERs­induced activation of ATF6 may play an important role in the development of ß­cell dysfunction in obese mice.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Insulina/genética , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microscopía Electrónica , Obesidad/genética , Palmitatos/farmacología , Fosforilación , ARN Interferente Pequeño , Ratas
19.
J Biol Chem ; 295(11): 3601-3613, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31949049

RESUMEN

Insulin secretion by pancreatic islet ß-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic ß-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic ß-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of ß-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic ß-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with ß-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.


Asunto(s)
Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Secreción de Insulina , Canales Iónicos/metabolismo , Envejecimiento/patología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Tamaño de la Célula , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Citosol/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo/efectos de los fármacos , Eliminación de Gen , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Canales Iónicos/deficiencia , Canales Iónicos/genética , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Acetato de Tetradecanoilforbol/farmacología
20.
Cells ; 9(1)2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936632

RESUMEN

Nor1, the third member of the Nr4a subfamily of nuclear receptor, is garnering increased interest in view of its role in the regulation of glucose homeostasis. Our previous study highlighted a proapoptotic role of Nor1 in pancreatic beta cells and showed that Nor1 expression was increased in islets isolated from type 2 diabetic individuals, suggesting that Nor1 could mediate the deterioration of islet function in type 2 diabetes. However, the mechanism remains incompletely understood. We herein investigated the subcellular localization of Nor1 in INS832/13 cells and dispersed human beta cells. We also examined the consequences of Nor1 overexpression on mitochondrial function and morphology. Our results show that, surprisingly, Nor1 is mostly cytoplasmic in beta cells and undergoes mitochondrial translocation upon activation by proinflammatory cytokines. Mitochondrial localization of Nor1 reduced glucose oxidation, lowered ATP production rates, and inhibited glucose-stimulated insulin secretion. Western blot and microscopy images revealed that Nor1 could provoke mitochondrial fragmentation via mitophagy. Our study unveils a new mode of action for Nor1, which affects beta-cell viability and function by disrupting mitochondrial networks.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Línea Celular , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/ultraestructura , Mitocondrias/ultraestructura , Mitofagia , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA