Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 150
1.
J Med Chem ; 67(10): 8060-8076, 2024 May 23.
Article En | MEDLINE | ID: mdl-38722184

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a promising therapeutic target in inflammation-related diseases. However, the inhibition of IRAK4 kinase activity may lead to moderate anti-inflammatory efficacy owing to the dual role of IRAK4 as an active kinase and a scaffolding protein. Herein, we report the design, synthesis, and biological evaluation of an efficient and selective IRAK4 proteolysis-targeting chimeric molecule that eliminates IRAK4 scaffolding functions. The most potent compound, LC-MI-3, effectively degraded cellular IRAK4, with a half-maximal degradation concentration of 47.3 nM. LC-MI-3 effectively inhibited the activation of downstream nuclear factor-κB signaling and exerted more potent pharmacological effects than traditional kinase inhibitors. Furthermore, LC-MI-3 exerted significant therapeutic effects in lipopolysaccharide- and Escherichia coli-induced acute and chronic inflammatory skin models compared with kinase inhibitors in vivo. Therefore, LC-MI-3 is a candidate IRAK4 degrader in alternative targeting strategies and advanced drug development.


Interleukin-1 Receptor-Associated Kinases , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Animals , Humans , Mice , Inflammation/drug therapy , Inflammation/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Biological Availability , Drug Discovery , Proteolysis/drug effects , Structure-Activity Relationship , Male , Mice, Inbred C57BL
2.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Article En | MEDLINE | ID: mdl-38695469

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Brain , Interleukin-1 Receptor-Associated Kinases , Protein Kinase Inhibitors , Animals , Dogs , Male , Mice , Rats , Brain/metabolism , Brain/drug effects , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/therapeutic use , Structure-Activity Relationship
3.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675622

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Inflammatory Bowel Diseases , Interleukin-1 Receptor-Associated Kinases , Peritonitis , Animals , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Peritonitis/drug therapy , Peritonitis/chemically induced , RAW 264.7 Cells , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , Signal Transduction/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Humans , Male , Phosphorylation/drug effects , Cytokines/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
4.
Eur J Med Chem ; 258: 115606, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37402343

The interleukin-1 receptor associated kinase 4 (IRAK-4) is a member of serine-threonine kinase family, which plays an important role in the regulation of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs) related signaling pathways. At present, the IRAK-4 mediated inflammation and related signaling pathways contribute to inflammation, which are also responsible for other autoimmune diseases and drug resistance in cancers. Therefore, targeting IRAK-4 to develop single-target, multi-target inhibitors and proteolysis-targeting chimera (PROTAC) degraders is an important direction for the treatment of inflammation and related diseases. Moreover, insight into the mechanism of action and structural optimization of the reported IRAK-4 inhibitors will provide the new direction to enrich the clinical therapies for inflammation and related diseases. In this comprehensive review, we introduced the recent advance of IRAK-4 inhibitors and degraders with regards to structural optimization, mechanism of action and clinical application that would be helpful for the development of more potent chemical entities against IRAK-4.


Interleukin-1 Receptor-Associated Kinases , Signal Transduction , Toll-Like Receptors , Humans , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin-1/metabolism
5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article En | MEDLINE | ID: mdl-36499283

Autoimmune hypophysitis (AH) is an autoimmune disease of the pituitary for which the pathogenesis is incompletely known. AH is often treated with corticosteroids; however, steroids may lead to considerable side effects. Using a mouse model of AH (experimental autoimmune hypophysitis, EAH), we show that interleukin-1 receptor-associated kinase 1 (IRAK1) is upregulated in the pituitaries of mice that developed EAH. We identified rosoxacin as a specific inhibitor for IRAK1 and found it could treat EAH. Rosoxacin treatment at an early stage (day 0-13) slightly reduced disease severity, whereas treatment at a later stage (day 14-27) significantly suppressed EAH. Further investigation indicated rosoxacin reduced production of autoantigen-specific antibodies. Rosoxacin downregulated production of cytokines and chemokines that may dampen T cell differentiation or recruitment to the pituitary. Finally, rosoxacin downregulated class II major histocompatibility complex expression on antigen-presenting cells that may lead to impaired activation of autoantigen-specific T cells. These data suggest that IRAK1 may play a pathogenic role in AH and that rosoxacin may be an effective drug for AH and other inflammatory diseases involving IRAK1 dysregulation.


Autoimmune Hypophysitis , Interleukin-1 Receptor-Associated Kinases , Autoantigens , Autoimmune Hypophysitis/therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Animals , Mice
6.
Biomed Pharmacother ; 153: 113459, 2022 Sep.
Article En | MEDLINE | ID: mdl-36076574

Acute respiratory distress syndrome (ARDS) is a lethal clinical entity that has become an emergency event with the outbreak of COVID-19. However, to date, there are no well-proven pharmacotherapies except dexamethasone. This study is aimed to evaluate IRAK4 inhibitors as a potential treatment for ARDS-cytokine release syndrome (CRS). We applied two IRAK4 inhibitors, BAY-1834845 and PF-06650833 to an inhaled lipopolysaccharide (LPS)-induced ARDS mouse model with control of high dose dexamethasone (10 mg/kg). Unexpectedly, although both compounds had excellent IC50 on IRAK4 kinase activity, only BAY-1834845 but not PF-06650833 or high dose dexamethasone could significantly prevent lung injury according to a blinded pathology scoring. Further, only BAY-1834845 and BAY-1834845 combined with dexamethasone could effectively improve the injury score of pre-existed ARDS. Compared with PF-06650833 and high dose dexamethasone, BAY-1834845 remarkably decreased inflammatory cells infiltrating lung tissue and neutrophil count in BALF. BAY-1834845, DEX, and the combination of the two agents could decrease BALF total T cells, monocyte, and macrophages. In further cell type enrichment analysis based on lung tissue RNA-seq, both BAY-1834845 and dexamethasone decreased signatures of inflammatory cells and effector lymphocytes. Interestingly, unlike the dexamethasone group, BAY-1834845 largely preserved the signatures of naïve lymphocytes and stromal cells such as endothelial cells, chondrocytes, and smooth muscle cells. Differential gene enrichment suggested that BAY-1834845 downregulated genes more efficiently than dexamethasone, especially TNF, IL-17, interferon, and Toll-like receptor signaling.


COVID-19 Drug Treatment , Interleukin-1 Receptor-Associated Kinases , Protein Kinase Inhibitors , Respiratory Distress Syndrome , Animals , Mice , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Endothelial Cells , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Lactams/pharmacology , Lactams/therapeutic use , Lipopolysaccharides/pharmacology , Lung/pathology , Protein Kinase Inhibitors/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/prevention & control
7.
Bosn J Basic Med Sci ; 22(6): 872-881, 2022 Oct 23.
Article En | MEDLINE | ID: mdl-35699749

Interleukin-1 receptor-associated kinase 1/4 (IRAK1/4) is the main kinase of the Toll-like receptor (TLR)-mediated pathway, considered a new target for treating inflammatory diseases. Studies showed a significant correlation between TLRs and inflammatory responses in ulcerative colitis (UC). Therefore, in this study, after inducing experimental colitis in mice with 3% dextran sulfate sodium (DSS), different concentrations of IRAK1/4 inhibitors were administered intraperitoneally. Then, the disease activity index was assessed, including the degree of pathological damage, by HE staining. Subsequently, while western blotting detected the TLR4/NF-κB pathway and intestinal barrier protein expression (Zonula-1, Occludin, Claudin-1, JAM-A), real-time polymerase chain reaction (RT-PCR) detected the mRNA expression levels of IRAK1/4 and mucin1/2. Furthermore, the expression levels of Zonula-1 and occludin were detected by immunofluorescence, including the plasma FITC-dextran 4000 concentration, to evaluate intestinal barrier permeability. However, ELISA measured the expression of inflammatory factors to reflect intestinal inflammation in mice. Investigations showed that the IRAK 1/4 inhibitor significantly reduced clinical symptoms and pathological DSS-induced colitis damage in mice and then inhibited the cytoplasmic and nuclear translocation of NF-κB p65, including the phosphorylation of IκBα and reduction in downstream inflammatory factor production. Therefore, we established that the IRAK1/4 inhibitor effectively improves colitis induced by DSS, partly by inhibiting the TLR4/NF-κB pathway, reducing inflammation, and maintaining the integrity of the colonic barrier.


Colitis, Ulcerative , Colitis , Animals , Mice , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammation , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Occludin/metabolism , RNA, Messenger , Signal Transduction , Toll-Like Receptor 4/metabolism
8.
Pharmacol Res ; 175: 106043, 2022 01.
Article En | MEDLINE | ID: mdl-34954030

Inflammation associated endothelial dysfunction represents a pivotal contributor to atherosclerosis. Increasingly, evidence has demonstrated that interleukin 1 receptor (IL1-R) / toll-like receptor (TLR) signaling participates in the development of atherosclerosis. Recent large-scale clinical trials have supported the therapeutic potential of anti-inflammatory therapies targeting IL-1ß and IL-6 in reducing atherosclerosis. The present study examined the pharmacological effects of IL-1R-associated kinase 1 and 4 inhibitors (IRAK1/4i) in regulating inflammation of the endothelium and atherosclerosis. We demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 by an IRAK1/4i is more effective against LPS induced endothelial inflammation, compared with IRAK1 inhibitor or IRAK4 inhibitor monotherapy. IRAK1/4i showed little endothelial cell toxicity at concentrations from 1 µM up to 10 µM. Inhibition of IRAK1/4 reduced endothelial activation induced by LPS in vitro as evidenced by attenuated monocyte adhesion to the endothelium. Mechanistically, blockade of IRAK1/4 ameliorated the transcriptional activity of NF-κB. To assess the pharmacological effects of IRAK1/4i on atherosclerosis in vivo, ApoE-/- mice were orally administered IRAK1/4i (20 mg/kg/d) for 8 weeks. We show that IRAK1/4i reduced atherosclerotic lesion size in the aortic sinus and increased hepatic LDLR protein levels as well as lowered LDL-C level, without affecting other lipid parameters or glucose tolerance. Taken together, our findings demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 attenuates endothelial inflammation, lowers LDL-C levels and reduces atherosclerosis. Our study reinforces the evolving standing of anti-inflammatory approaches in cardiovascular therapeutics.


Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Aorta/drug effects , Aorta/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Collagen/metabolism , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Lipopolysaccharides , Liver/drug effects , Liver/metabolism , Mice, Knockout, ApoE , NF-kappa B/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, LDL/genetics , Receptors, LDL/metabolism , THP-1 Cells
9.
Life Sci ; 287: 120114, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34732329

Recent studies show a connection between glycolysis and inflammatory response in rheumatoid arthritis (RA) macrophages (MΦs) and fibroblasts (FLS). Yet, it is unclear which pathways could be targeted to rebalance RA MΦs and FLS metabolic reprogramming. To identify novel targets that could normalize RA metabolic reprogramming, TLR7-mediated immunometabolism was characterized in RA MΦs, FLS and experimental arthritis. We uncovered that GLUT1, HIF1α, cMYC, LDHA and lactate were responsible for the TLR7-potentiated metabolic rewiring in RA MΦs and FLS, which was negated by IRAK4i. While in RA FLS, HK2 was uniquely expanded by TLR7 and negated by IRAK4i. Conversely, TLR7-driven hypermetabolism, non-oxidative PPP (CARKL) and oxidative phosphorylation (PPARγ) were narrowly dysregulated in TLR7-activated RA MΦs and FLS and was reversed by IRAK4i. Consistently, IRAK4i therapy disrupted arthritis mediated by miR-Let7b/TLR7 along with impairing a broad-range of glycolytic intermediates, GLUT1, HIF1α, cMYC, HK2, PFKFB3, PKM2, PDK1 and RAPTOR. Notably, inhibition of the mutually upregulated glycolytic metabolites, HIF1α and cMYC, was capable of mitigating TLR7-induced inflammatory imprint in RA MΦs and FLS. In keeping with IRAK4i, treatment with HIF1i and cMYCi intercepted TLR7-enhanced IRF5 and IRF7 in RA MΦs, distinct from RA FLS. Interestingly, in RA MΦs and FLS, IRAK4i counteracted TLR7-induced CARKL reduction in line with HIF1i. Whereas, cMYCi in concordance with IRAK4i, overturned oxidative phosphorylation via PPARγ in TLR7-activated RA MΦs and FLS. The blockade of IRAK4 and its interconnected intermediates can rebalance the metabolic malfunction by obstructing glycolytic and inflammatory phenotypes in RA MΦs and FLS.


Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Inflammation Mediators/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Macrophages/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Arthritis, Rheumatoid/drug therapy , Cells, Cultured , Fibroblasts/drug effects , Humans , Imiquimod/pharmacology , Imiquimod/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Macrophages/drug effects , Mice , Mice, Inbred DBA
10.
Arthritis Rheumatol ; 73(12): 2206-2218, 2021 12.
Article En | MEDLINE | ID: mdl-34423919

OBJECTIVE: To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS: Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS: In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION: These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.


Arthritis, Experimental/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Isoquinolines/therapeutic use , Lactams/therapeutic use , Macrophages/drug effects , Rheumatic Diseases/drug therapy , Synoviocytes/drug effects , Animals , Arthritis, Experimental/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/immunology , Isoquinolines/pharmacology , Lactams/pharmacology , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Mice , Rats , Rheumatic Diseases/immunology , Synoviocytes/immunology
11.
Cancer Sci ; 112(11): 4711-4721, 2021 Nov.
Article En | MEDLINE | ID: mdl-34328666

Anaplastic thyroid cancer (ATC) is an extremely aggressive tumor associated with poor prognosis due to a lack of efficient therapies. In Japan, lenvatinib is the only drug approved for patients with ATC; however, its efficacy is limited. Therefore, novel therapeutic strategies are urgently required for patients with ATC. The present study aimed to identify compounds that enhance the antiproliferative effects of lenvatinib in ATC cells using a compound library. IRAK1/4 Inhibitor I was identified as a candidate compound. Combined treatment with lenvatinib and IRAK1/4 Inhibitor I showed synergistic antiproliferative effects via the induction of cell cycle arrest at G2/M phase in the ATC cell lines 8305C, HTC/C3, ACT-1, and 8505C. Furthermore, IRAK1/4 Inhibitor I enhanced the inhibition of ERK phosphorylation by lenvatinib in 8305C, HTC/C3, and 8505C cells. In an HTC/C3 xenograft mouse model, tumor volume was lower in the combined IRAK1/4 Inhibitor I and lenvatinib group compared with that in the vehicle control, IRAK1/4 Inhibitor I, and lenvatinib groups. IRAK1/4 Inhibitor I was identified as a promising compound that enhances the antiproliferative and antitumor effects of lenvatinib in ATC.


Antineoplastic Agents/therapeutic use , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Cell Line, Tumor , Drug Synergism , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Knockout Techniques , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , M Phase Cell Cycle Checkpoints/drug effects , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays
12.
J Biochem Mol Toxicol ; 35(9): e22838, 2021 Sep.
Article En | MEDLINE | ID: mdl-34273909

Colorectal cancer (CRC) is the third most common type of cancer. Here, we studied the inhibitory effect of IRAK1 and IRAK4 as a preventive strategy using a colitis-induced tumorigenesis mouse model. CRC clinical data were obtained from the Gene Expression Omnibus (GEO). An experimental inflammation-dependent CRC model was induced by treatment with azoxymethane (AOM) and then dextran sodium sulfate (DSS) in C57BL/6 mice. Mice were administered an IRAK1/4 inhibitor by intraperitoneal injection at 3 mg/kg twice each week for 9 weeks. The IRAK1/4 inhibitor attenuated histological changes and prevented tumor growth. Tumor-associated proteins, including p65 and Ki-67, were downregulated by the IRAK1/4 inhibitor in AOM/DSS-treated mice. Additionally, IRAK1/4 inhibitor administration effectively decreased the expression of inflammatory cytokines. Furthermore, we observed that IRAK1/4 inhibitor treatment attenuated colitis-induced tumorigenesis by inhibiting epithelial-mesenchymal transition. These observations indicate that inhibition of IRAK1 and IRAK4 may suppress experimental colitis-induced tumorigenesis by inhibiting inflammatory responses and epithelial-mesenchymal transition.


Carcinogenesis/drug effects , Colitis-Associated Neoplasms/drug therapy , Colitis/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Carcinogenesis/chemically induced , Carcinogenesis/metabolism , Colitis/chemically induced , Colitis/enzymology , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/enzymology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/enzymology , Interleukin-1 Receptor-Associated Kinases/metabolism , Male , Mice , Neoplasm Proteins/metabolism , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/enzymology
13.
J Med Chem ; 64(15): 10878-10889, 2021 08 12.
Article En | MEDLINE | ID: mdl-34279092

MyD88 gene mutation has been identified as one of the most prevalent driver mutations in the activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL). The published literature suggests that interleukin-1 receptor-associated kinase 1 (IRAK1) is an essential gene for ABC DLBCL harboring MyD88 mutation. Importantly, the scaffolding function of IRAK1, rather than its kinase activity, is required for tumor cell survival. Herein, we present our design, synthesis, and biological evaluation of a novel series of potent and selective IRAK1 degraders. One of the most potent compounds, Degrader-3 (JNJ-1013), effectively degraded cellular IRAK1 protein with a DC50 of 3 nM in HBL-1 cells. Furthermore, JNJ-1013 potently inhibited IRAK1 downstream signaling pathways and demonstrated strong anti-proliferative effects in ABC DLBCL cells with MyD88 mutation. This work suggests that IRAK1 degraders have the potential for treating cancers that are dependent on the IRAK1 scaffolding function.


Antineoplastic Agents/pharmacology , Drug Discovery , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
15.
SLAS Discov ; 26(8): 1040-1054, 2021 09.
Article En | MEDLINE | ID: mdl-34130529

One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.


Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Luminescent Measurements/methods , Protein Kinase Inhibitors/pharmacology , Biomarkers , Enzyme Activation/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
16.
Front Immunol ; 12: 638446, 2021.
Article En | MEDLINE | ID: mdl-33936053

Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.


COVID-19/immunology , Cytokine Release Syndrome/metabolism , Interferon Regulatory Factors/antagonists & inhibitors , Interferon Regulatory Factors/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , COVID-19/metabolism , COVID-19/physiopathology , Chemokines/metabolism , Cytokines/metabolism , Humans , Signal Transduction/genetics , Signal Transduction/immunology , Virus Diseases/metabolism , COVID-19 Drug Treatment
17.
Pharm Biol ; 59(1): 74-86, 2021 Dec.
Article En | MEDLINE | ID: mdl-33439064

CONTEXT: Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE: This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS: The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS: Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS: This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.


Anti-Inflammatory Agents/pharmacology , Drug Delivery Systems/methods , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Plant Extracts/therapeutic use , Syk Kinase/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Ethanol/pharmacology , Ethanol/therapeutic use , Gastritis/drug therapy , Gastritis/metabolism , HEK293 Cells , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Peritonitis/drug therapy , Peritonitis/metabolism , Plant Components, Aerial , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells , Syk Kinase/metabolism , src-Family Kinases/metabolism
18.
Cancer Res ; 81(5): 1413-1425, 2021 03 01.
Article En | MEDLINE | ID: mdl-33402387

Novel strategies to treat late-stage nasopharyngeal carcinoma that often develop resistance to chemotherapy remains an unmet clinical demand. In this study, we identify the multi-kinase inhibitor pacritinib as capable of resensitizing the response to paclitaxel in an acquired resistance model. Transcriptome analysis of paclitaxel-sensitive and -resistant cell lines, as well as chemorefractory clinical samples, identified S100A9 as the top candidate gene suppressed by pacritinib and whose overexpression was significantly associated with paclitaxel resistance and poor clinical outcome. Moreover, both paclitaxel-resistant nasopharyngeal carcinoma cells and relapsed/metastatic clinical samples exhibited increased IRAK1 phosphorylation and demonstrated that pacritinib could abolish the IRAK1 phosphorylation to suppress S100A9 expression. Functional studies in both in vitro and in vivo models showed that genetic or pharmacologic blockade of IRAK1 overcame the resistance to paclitaxel, and combined treatment of pacritinib with paclitaxel exhibited superior antitumor effect. Together, these findings demonstrate an important role for the IRAK1-S100A9 axis in mediating resistance to paclitaxel. Furthermore, targeting of IRAK1 by pacritinib may provide a novel therapeutic strategy to overcome chemoresistance in nasopharyngeal carcinoma. SIGNIFICANCE: Deregulation of the IRAK1-S100A9 axis correlates with poor prognosis, contributes to chemoresistance in nasopharyngeal carcinoma, and can be targeted by pacritinib to overcome chemoresistance in nasopharyngeal carcinoma.


Calgranulin B/metabolism , Drug Resistance, Neoplasm/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Paclitaxel/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bridged-Ring Compounds/pharmacology , Calgranulin B/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/physiology , Drug Screening Assays, Antitumor , Female , Humans , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice, Inbred BALB C , Molecular Targeted Therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Prognosis , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
19.
Bioorg Med Chem Lett ; 31: 127686, 2021 01 01.
Article En | MEDLINE | ID: mdl-33242574

IRAK4 is a key mediator of innate immunity. There is a high interest in identifying novel IRAK4 inhibitors for the treatment of inflammatory autoimmune diseases. We describe here a highly potent and selective IRAK4 inhibitor (HS271) that exhibited superior enzymatic and cellular activities, as well as excellent pharmacokinetic properties. HS271 displayed robust in vivo anti-inflammatory efficacy as evaluated in rat models of LPS induced TNFα production and collagen-induced arthritis.


Amines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Drug Discovery , Indazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Amines/chemical synthesis , Amines/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Dose-Response Relationship, Drug , Haplorhini , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipopolysaccharides/antagonists & inhibitors , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/biosynthesis
20.
Bioorg Med Chem ; 28(23): 115815, 2020 12 01.
Article En | MEDLINE | ID: mdl-33091850

In this article, we report our efforts towards improving in vitro human clearance in a series of 5-azaquinazolines through a series of C4 truncations and C2 expansions. Extensive DMPK studies enabled us to tackle high Aldehyde Oxidase (AO) metabolism and unexpected discrepancies in human hepatocyte and liver microsomal intrinsic clearance. Our efforts culminated with the discovery of 5-azaquinazoline 35, which also displayed exquisite selectivity for IRAK4, and showed synergistic in vitro activity against MyD88/CD79 double mutant ABC-DLBCL in combination with the covalent BTK inhibitor acalabrutinib.


Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/metabolism , Quinazolines/chemistry , Aldehyde Oxidase/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Dogs , Drug Stability , Half-Life , Hepatocytes/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinazolines/metabolism , Quinazolines/pharmacology , Rats , Structure-Activity Relationship
...