Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.976
1.
Orphanet J Rare Dis ; 19(1): 209, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773661

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant connective tissue disease with wide clinical heterogeneity, and mainly caused by pathogenic variants in fibrillin-1 (FBN1). METHODS: A Chinese 4-generation MFS pedigree with 16 family members was recruited and exome sequencing (ES) was performed in the proband. Transcript analysis (patient RNA and minigene assays) and in silico structural analysis were used to determine the pathogenicity of the variant. In addition, germline mosaicism in family member (Ι:1) was assessed using quantitative fluorescent polymerase chain reaction (QF-PCR) and short tandem repeat PCR (STR) analyses. RESULTS: Two cis-compound benign intronic variants of FBN1 (c.3464-4 A > G and c.3464-5G > A) were identified in the proband by ES. As a compound variant, c.3464-5_3464-4delGAinsAG was found to be pathogenic and co-segregated with MFS. RNA studies indicated that aberrant transcripts were found only in patients and mutant-type clones. The variant c.3464-5_3464-4delGAinsAG caused erroneous integration of a 3 bp sequence into intron 28 and resulted in the insertion of one amino acid in the protein sequence (p.Ile1154_Asp1155insAla). Structural analyses suggested that p.Ile1154_Asp1155insAla affected the protein's secondary structure by interfering with one disulfide bond between Cys1140 and Cys1153 and causing the extension of an anti-parallel ß sheet in the calcium-binding epidermal growth factor-like (cbEGF)13 domain. In addition, the asymptomatic family member Ι:1 was deduced to be a gonadal mosaic as assessed by inconsistent results of sequencing and STR analysis. CONCLUSIONS: To our knowledge, FBN1 c.3464-5_3464-4delGAinsAG is the first identified pathogenic intronic indel variant affecting non-canonical splice sites in this gene. Our study reinforces the importance of assessing the pathogenic role of intronic variants at the mRNA level, with structural analysis, and the occurrence of mosaicism.


Fibrillin-1 , Introns , Marfan Syndrome , Mosaicism , Pedigree , Humans , Fibrillin-1/genetics , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Female , Male , Adult , Introns/genetics , INDEL Mutation/genetics , Middle Aged , Adipokines
2.
Sci Adv ; 10(19): eadn1547, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718117

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.


Exons , Introns , RNA Precursors , RNA Splice Sites , RNA Splicing , RNA Precursors/genetics , RNA Precursors/metabolism , Animals , Introns/genetics , Exons/genetics , Genes, Plant , Models, Genetic , Spliceosomes/metabolism , Spliceosomes/genetics , Plants/genetics , Humans , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
3.
Genes Dev ; 38(7-8): 322-335, 2024 May 21.
Article En | MEDLINE | ID: mdl-38724209

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Introns , RNA Splicing , Saccharomyces cerevisiae , Spliceosomes , Spliceosomes/metabolism , Spliceosomes/genetics , Introns/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Humans , RNA Splicing/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA/metabolism , RNA/genetics
4.
Nat Commun ; 15(1): 3839, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714659

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


CRISPR-Cas Systems , Exons , Introns , RNA Splicing , RNA, Guide, CRISPR-Cas Systems , Survival of Motor Neuron 2 Protein , Humans , RNA Splicing/genetics , Survival of Motor Neuron 2 Protein/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Introns/genetics , Exons/genetics , HEK293 Cells , Oligonucleotides, Antisense/genetics , Muscular Atrophy, Spinal/genetics , Regulatory Sequences, Nucleic Acid/genetics , RNA Precursors/genetics , RNA Precursors/metabolism
5.
Nat Commun ; 15(1): 3786, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710690

Expression quantitative trait loci (eQTL) studies typically consider exon expression of genes and discard intronic RNA sequencing reads despite their information on RNA metabolism. Here, we quantify genetic effects on exon and intron levels of genes and their ratio in lymphoblastoid cell lines, revealing thousands of cis-QTLs of each type. While genetic effects are often shared between cis-QTL types, 7814 (47%) are not detected as top cis-QTLs at exon levels. We show that exon levels preferentially capture genetic effects on transcriptional regulation, while exon-intron-ratios better detect those on co- and post-transcriptional processes. Considering all cis-QTL types substantially increases (by 71%) the number of colocalizing variants identified by genome-wide association studies (GWAS). It further allows dissecting the potential gene regulatory processes underlying GWAS associations, suggesting comparable contributions by transcriptional (50%) and co- and post-transcriptional regulation (46%) to complex traits. Overall, integrating intronic RNA sequencing reads in eQTL studies expands our understanding of genetic effects on gene regulatory processes.


Exons , Gene Expression Regulation , Genome-Wide Association Study , Introns , Quantitative Trait Loci , Humans , Introns/genetics , Exons/genetics , Transcription, Genetic , Cell Line , Sequence Analysis, RNA/methods , Polymorphism, Single Nucleotide
6.
Nat Commun ; 15(1): 3773, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710738

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.


CRISPR-Cas Systems , Corneal Dystrophies, Hereditary , Cytochrome P450 Family 4 , Gene Editing , Genetic Therapy , Induced Pluripotent Stem Cells , Retinal Diseases , Humans , Gene Editing/methods , Animals , HEK293 Cells , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/therapy , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/metabolism , Mice , Induced Pluripotent Stem Cells/metabolism , Genetic Therapy/methods , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Disease Models, Animal , Mutation , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Genetic Vectors/genetics , Introns/genetics , Exons/genetics
7.
Elife ; 122024 Apr 05.
Article En | MEDLINE | ID: mdl-38577979

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


RNA Precursors , Transcription, Genetic , Animals , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA , Introns/genetics , Mammals/genetics
8.
Chaos ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38579148

Two well-known facets in protein synthesis in eukaryotic cells are transcription of DNA to pre-RNA in the nucleus and the translation of messenger-RNA (mRNA) to proteins in the cytoplasm. A critical intermediate step is the removal of segments (introns) containing ∼97% of the nucleic-acid sites in pre-RNA and sequential alignment of the retained segments (exons) to form mRNA through a process referred to as splicing. Alternative forms of splicing enrich the proteome while abnormal splicing can enhance the likelihood of a cell developing cancer or other diseases. Mechanisms for splicing and origins of splicing errors are only partially deciphered. Our goal is to determine if rules on splicing can be inferred from data analytics on nucleic-acid sequences. Toward that end, we represent a nucleic-acid site as a point in a plane defined in terms of the anterior and posterior sub-sequences of the site. The "point-set" representation expands analytical approaches, including the use of statistical tools, to characterize genome sequences. It is found that point-sets for exons and introns are visually different, and that the differences can be quantified using a family of generalized moments. We design a machine-learning algorithm that can recognize individual exons or introns with 91% accuracy. Point-set distributions and generalized moments are found to differ between organisms.


RNA Splicing , RNA , Introns/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exons/genetics
9.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622750

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
10.
Nat Commun ; 15(1): 2837, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565566

The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.


Neural Stem Cells , Animals , Introns/genetics , Cell Differentiation/genetics , Neurons , Neurogenesis/genetics , Mammals
11.
Microb Biotechnol ; 17(5): e14472, 2024 May.
Article En | MEDLINE | ID: mdl-38683679

The availability of an alternative and efficient genetic editing technology is critical for fundamental research and strain improvement engineering of Streptomyces species, which are prolific producers of complex secondary metabolites with significant pharmaceutical activities. The mobile group II introns are retrotransposons that employ activities of catalytic intron RNAs and intron-encoded reverse transcriptase to precisely insert into DNA target sites through a mechanism known as retrohoming. We here developed a group II intron-based gene editing tool to achieve precise chromosomal gene insertion in Streptomyces. Moreover, by repressing the potential competition of RecA-dependent homologous recombination, we enhanced site-specific insertion efficiency of this tool to 2.38%. Subsequently, we demonstrated the application of this tool by screening and characterizing the secondary metabolite biosynthetic gene cluster (BGC) responsible for synthesizing the red pigment in Streptomyces roseosporus. Accompanied with identifying and inactivating this BGC, we observed that the impair of this cluster promoted cell growth and daptomycin production. Additionally, we applied this tool to activate silent jadomycin BGC in Streptomyces venezuelae. Overall, this work demonstrates the potential of this method as an alternative tool for genetic engineering and cryptic natural product mining in Streptomyces species.


Introns , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Introns/genetics , Gene Editing/methods , Mutagenesis, Insertional/methods , Secondary Metabolism/genetics , Biosynthetic Pathways/genetics , Homologous Recombination
12.
Muscle Nerve ; 69(6): 708-718, 2024 Jun.
Article En | MEDLINE | ID: mdl-38558464

INTRODUCTION/AIMS: GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS: Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS: A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION: The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.


Exons , Introns , Multienzyme Complexes , Thrombocytopenia , Humans , Male , Female , Multienzyme Complexes/genetics , Exons/genetics , Introns/genetics , Adult , Thrombocytopenia/genetics , Distal Myopathies/genetics , Young Adult , Adolescent , Child , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pedigree , Middle Aged
13.
Gene ; 915: 148429, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38575098

Bioinformatics is a contemporary interdisciplinary area focused on analyzing the growing number of genome sequences. Gene variants are differences in DNA sequences among individuals within a population. Splice site recognition is a crucial step in the process of gene expression, where the coding sequences of genes are joined together to form mature messenger RNA (mRNA). These genetic variants that disrupt genes are believed to be the primary reason for neuro-developmental disorders like ASD (Autism Spectrum Disorder) is a neuro-developmental disorder that is diagnosed in individuals, families, and society and occurs as the developmental delay in one among the hundred genes that are associated with these disorders. Missense variants, premature stop codons, or deletions alter both the quality and quantity of encoded proteins. Predicting genes within exons and introns presents main challenges, such as dealing with sequencing errors, short reads, incomplete genes, overlapping, and more. Although many traditional techniques have been utilized in creating an exon prediction system, the primary challenge lies in accurately identifying the length and spliced strand location classification of exons in conjunction with introns. From now on, the suggested approach utilizes a Deep Learning algorithm to analyze intricate and extensive genomic datasets. M-LSTM is utilized to categorize three binary combinations (EI as 1, IE as 2, and none as 3) using spliced DNA strands. The M-LSTM system is able to sequence extensive datasets, ensuring that long information can be stored without any impact on the current input or output. This enables it to recognize and address long-term connections and problems with rapidly increasing gradients. The proposed model is compared internally with Naïve Bayes and Random Forest to assess its efficacy. Additionally, the proposed model's performance is forecasted by utilizing probabilistic parameters like recall, F1-score, precision, and accuracy to assess the effectiveness of the proposed system.


Exons , Introns , RNA Splice Sites , Exons/genetics , Humans , Introns/genetics , Computational Biology/methods , RNA Splicing , Autism Spectrum Disorder/genetics , Algorithms , Deep Learning
14.
Biosystems ; 239: 105215, 2024 May.
Article En | MEDLINE | ID: mdl-38641199

A massive statistical analysis based on the autocorrelation function of the circular code X observed in genes is performed on the (eukaryotic) introns. Surprisingly, a circular code periodicity 0 modulo 3 is identified in 5 groups of introns: birds, ascomycetes, basidiomycetes, green algae and land plants. This circular code periodicity, which is a property of retrieving the reading frame in (protein coding) genes, may suggest that these introns have a coding property. In a well-known way, a periodicity 1 modulo 2 is observed in 6 groups of introns: amphibians, fishes, mammals, other animals, reptiles and apicomplexans. A mixed periodicity modulo 2 and 3 is found in the introns of insects. Astonishing, a subperiodicity 3 modulo 6 is a common statistical property in these 3 classes of introns. When the particular trinucleotides N1N2N1 of the circular code X are not considered, the circular code periodicity 0 modulo 3, hidden by the periodicity 1 modulo 2, is now retrieved in 5 groups of introns: amphibians, fishes, other animals, reptiles and insects. Thus, 10 groups of introns, taxonomically different, out of 12 have a coding property related to the reading frame retrieval. The trinucleotides N1N2N1 are analysed in the 216 maximal C3 self-complementary trinucleotide circular codes. A hexanucleotide code (words of 6 letters) is proposed to explain the periodicity 3 modulo 6. It could be a trace of more general circular codes at the origin of the circular code X.


Genetic Code , Introns , Introns/genetics , Animals , Genetic Code/genetics , Evolution, Molecular
15.
Semin Cell Dev Biol ; 163: 2-13, 2024.
Article En | MEDLINE | ID: mdl-38664119

Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an 'arms race' between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.


DNA Transposable Elements , DNA Transposable Elements/genetics , Introns/genetics , Repetitive Sequences, Nucleic Acid/genetics
16.
Oncogene ; 43(20): 1565-1578, 2024 May.
Article En | MEDLINE | ID: mdl-38561505

Accumulating studies suggest that splicing factors play important roles in many diseases including human cancers. Our study revealed that WBP11, a core splicing factor, is highly expressed in ovarian cancer (OC) tissues and associated with a poor prognosis. WBP11 inhibition significantly impaired the proliferation and mobility of ovarian cancer cells in vitro and in vivo. Furthermore, FOXM1 transcriptionally activated WBP11 expression by directly binding to its promoter in OC cells. Importantly, RNA-seq and alternative splicing event analysis revealed that WBP11 silencing decreased the expression of MCM7 by regulating intron 4 retention. MCM7 inhibition attenuated the increase in malignant behaviors of WBP11-overexpressing OC cells. Overall, WBP11 was identified as an oncogenic splicing factor that contributes to malignant progression by repressing intron 4 retention of MCM7 in OC cells. Thus, WBP11 is an oncogenic splicing factor with potential therapeutic and prognostic implications in OC.


Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Introns , Minichromosome Maintenance Complex Component 7 , Ovarian Neoplasms , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Female , Introns/genetics , Minichromosome Maintenance Complex Component 7/genetics , Minichromosome Maintenance Complex Component 7/metabolism , Animals , Cell Line, Tumor , Mice , Cell Proliferation/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Prognosis , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Mice, Nude , Alternative Splicing/genetics
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167186, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642778

TGF-ß is considered an important cytokine in the development of interstitial fibrosis in chronic kidney disease. The TGF-ß co-receptor endoglin (ENG) tends to be upregulated in kidney fibrosis. ENG has two membrane bound isoforms generated via alternative splicing. Long-ENG was shown to enhance the extent of renal fibrosis in an unilateral ureteral obstruction mouse model, while short-ENG inhibited renal fibrosis. Here we aimed to achieve terminal intron retention of endoglin using antisense-oligo nucleotides (ASOs), thereby shifting the ratio towards short-ENG to inhibit the TGF-ß1-mediated pro-fibrotic response. We isolated mRNA from kidney biopsies of patients with chronic allograft disease (CAD) (n = 12) and measured total ENG and short-ENG mRNA levels. ENG mRNA was upregulated 2.3 fold (p < 0.05) in kidneys of CAD patients compared to controls, while the percentage short-ENG of the total ENG mRNA was significantly lower (1.8 fold; p < 0.05). Transfection of ASOs that target splicing regulatory sites of ENG into TK173 fibroblasts led to higher levels of short-ENG (2 fold; p < 0.05). In addition, we stimulated these cells with TGF-ß1 and measured a decrease in upregulation of ACTA2, COL1A1 and FN1 mRNA levels, and protein expression of αSMA, collagen type I, and fibronectin. These results show a potential for ENG ASOs as a therapy to reduce interstitial fibrosis in CKD.


Endoglin , Fibrosis , Introns , Kidney , Oligonucleotides, Antisense , Transforming Growth Factor beta1 , Humans , Endoglin/metabolism , Endoglin/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Introns/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Kidney/metabolism , Kidney/pathology , Male , Fibronectins/metabolism , Fibronectins/genetics , Female , Actins/metabolism , Actins/genetics , Middle Aged , Animals , Collagen Type I/genetics , Collagen Type I/metabolism , Alternative Splicing , Fibroblasts/metabolism , Fibroblasts/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice , Cell Line
18.
BMC Genomics ; 25(1): 410, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664648

BACKGROUND: Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS: Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS: Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.


Base Composition , Genomics , Genomics/methods , Animals , Introns/genetics , Genome , Exons/genetics , Genetic Loci , Genome Size , Plants/genetics , DNA, Intergenic/genetics
19.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542518

Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Gene Expression Regulation, Plant , Introns/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Plant Proteins/genetics , RNA Splicing
20.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542215

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Camellia sinensis , Humans , Introns/genetics , Camellia sinensis/genetics , Genetic Markers , Genome, Plant , Plant Breeding , Tea
...