Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792098

RESUMEN

The olive oil industry recently introduced a novel multi-phase decanter with the "Leopard DMF" series, which gives a by-product called pâté, made up of pulp and olive wastewater with a high content of phenolic substances and without pits. This study aims to create a new culture medium, the Olive Juice Broth (OJB), from DMF pâté, and apply it to select bacteria strains able to survive and degrade the bitter substances normally present in the olive fruit. Thirty-five different bacterial strains of Lactiplantibacillus plantarum from the CREA-IT.PE Collection of Microorganisms were tested. Seven strains characterized by ≥50% growth in OJB (B31, B137, B28, B39, B124, B130, and B51) showed a degradation of the total phenolic content of OJB ≥ 30%. From this set, L. plantarum B51 strain was selected as a starter for table olive production vs. spontaneous fermentation. The selected inoculant effectively reduced the debittering time compared to spontaneous fermentation. Hydroxytyrosol, derived from oleuropein and verbascoside degradation, and tyrosol, derived from ligstroside degradation, were produced faster than during spontaneous fermentation. The OJB medium is confirmed to be useful in selecting bacterial strains resistant to the complex phenolic environment of the olive fruit.


Asunto(s)
Medios de Cultivo , Fermentación , Olea , Fenoles , Olea/microbiología , Olea/metabolismo , Olea/química , Fenoles/metabolismo , Fenoles/química , Medios de Cultivo/química , Lactobacillales/metabolismo , Aceite de Oliva/química , Aceite de Oliva/metabolismo , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/química , Alcohol Feniletílico/análogos & derivados , Glucósidos Iridoides/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Lactobacillus plantarum/metabolismo , Polifenoles
2.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652203

RESUMEN

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Olea , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Filogenia , Olea/genética , Olea/metabolismo , Alcohol Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Glucósidos Iridoides/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Fosfato de Piridoxal/metabolismo , Iridoides/metabolismo , Genes de Plantas
3.
BMC Plant Biol ; 23(1): 463, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794352

RESUMEN

BACKGROUND: Rehmannia glutinosa is a rich source of terpenoids with a high medicinal reputation. The present study compared dedifferentiated cells (DDCs) and cambial meristematic cells (CMCs) cell cultures of R. glutinosa for terpenoid (catalpol) and indole alkaloid (IA) biosynthesis. In this regard, we used widely targeted metabolomics and transcriptome sequencing approaches together with the comparison of cell morphology, cell death (%), and catalpol production at different time points. RESULTS: We were able to identify CMCs based on their morphology and hypersensitivity to zeocin. CMCs showed higher dry weight content and better catalpol production compared to DDCs. The metabolome analysis revealed higher concentrations of IA, terpenoids, and catalpol in CMCs compared to DDCs. The transcriptome sequencing analysis showed that a total of 27,201 genes enriched in 139 pathways were differentially expressed. The higher catalpol concentration in CMCs is related to the expression changes in genes involved in acetyl-CoA and geranyl-PP biosynthesis, which are precursors for monoterpenoid biosynthesis. Moreover, the expressions of the four primary genes involved in monoterpenoid biosynthesis (NMD, CYP76A26, UGT6, and CYP76F14), along with a squalene monooxygenase, exhibit a strong association with the distinct catalpol biosynthesis. Contrarily, expression changes in AADC, STR, and RBG genes were consistent with the IA biosynthesis. Finally, we discussed the phytohormone signaling and transcription factors in relation to observed changes in metabolome. CONCLUSIONS: Overall, our study provides novel data for improving the catalpol and IA biosynthesis in R. glutinosa.


Asunto(s)
Rehmannia , Rehmannia/genética , Rehmannia/metabolismo , Meristema/metabolismo , Glucósidos Iridoides/metabolismo , Alcaloides Indólicos/metabolismo
4.
Appl Biochem Biotechnol ; 195(9): 5394-5408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35960488

RESUMEN

The study examined the protective effects of swertiamarin on rats with experimentally induced myocardial infarction. Three to six week-old male albino Wistar rats were used in this study and experimental myocardial infarction (MI) was induced using isoproterenol. Our results showed that swertiamarin restored the alteration in heart weight, body weight, and heart weight/tibia length ratio of MI-induced rats to basal levels significantly (p < 0.05). Swertiamarin significantly (p < 0.05) restored the levels of cardiac pathophysiological marker creatine kinase (CKMB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine transaminase (ALT), and cardiac troponin I (cTn-1) to near normalcy in MI-induced rats. Levels of oxidative stress markers malondialdehyde (MDA), protein carbonyls (PC), and levels of Vitamin C and Vitamin E were significantly (p < 0.05) reverted to near basal levels in MI-induced rats by swertiamarin. Levels of the antioxidant glutathione (GSH) and antioxidant enzymes which include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), and plasma total antioxidant capacity (TAC) were (p < 0.05) brought to near normalcy in MI-induced rats by swertiamarin. Levels of sodium (Na), potassium (k), and calcium (Ca) ATPases were significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Status of pro-inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and histological aberrations were also significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Together, our results concluded that swertiamarin exerts significant cardioprotective functions in experimental MI in rats.


Asunto(s)
Antioxidantes , Infarto del Miocardio , Ratas , Animales , Antioxidantes/metabolismo , Miocardio/metabolismo , Peroxidación de Lípido , Infarto del Miocardio/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/metabolismo , Ratas Wistar , Estrés Oxidativo , Glutatión/metabolismo , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
5.
Sci Rep ; 12(1): 13783, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962184

RESUMEN

Aucubin (AU) is one of the widespread compounds belonging to the group of iridoid glycosides, which possesses numerous beneficial properties. Nonylphenol (NP), is a synthetic environmental toxicant that has the potential to cause male infertility through excessive production of reactive oxygen species. In the current study, the remedial potential of Aucubin was assessed against NP-generated testicular damage in male rats. Animals were distributed into four groups and treated for 56 days in this study. Control-group (0.1% DMSO + food), NP group (100 µg/kg), NP + AU group (100 µg/kg + 5 mg/kg) and AU group (5 mg/kg). NP exposure significantly (p < 0.05) reduced the activity of antioxidant enzymes i.e., glutathione reductase, catalase (CAT), superoxide dismutase, glutathione peroxidase (GPx), and total protein content (TPC), whereas the level of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) was enhanced substantially (p < 0.05). Treatment with AU substantially (p < 0.05) recovered activities of antioxidant enzymes, TPC, ROS, and TBARS levels. Moreover, decrease in the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), plasma testosterone, sperm count, motility, sperm membrane integrity, and the number of spermatocytes of different stages along with the level of steroidogenic enzymes i.e., 17ß-hydroxysteroid dehydrogenase (17ß-HSD), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and B-cell lymphoma 2 (Bcl-2) by NP administration were recovered to control values by AU treatment. However, AU mitigated the sperm abnormalities (head/midpiece/tail), the number of dead sperms, and proapoptotic proteins i.e., Bcl-2 associated X protein (Bax), caspase-9, and caspase-3 that were increased by NP. Besides, AU treatment recovered the NP-induced potential histopathological alterations in the testicular tissues such as the height of epithelium, seminiferous tubules diameter as well as the height of tunica propria. Overall, NP-induced toxicity was effectively recuperated by the AU administration. These results indicate that AU might be considered as a potential protective agent against testicular damage. The observed protection may be due to its antioxidant, anti-apoptotic, anti-inflammatory and androgenic potential.


Asunto(s)
Antioxidantes , Iridoides , Animales , Antioxidantes/metabolismo , Glicósidos/metabolismo , Glicósidos/farmacología , Glucósidos Iridoides/metabolismo , Iridoides/farmacología , Masculino , Estrés Oxidativo , Fenoles , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Testículo/metabolismo , Testosterona , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
6.
J Biol Chem ; 298(9): 102237, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35809640

RESUMEN

Terpene indole alkaloids (TIAs) are plant-derived specialized metabolites with widespread use in medicine. Species-specific pathways derive various TIAs from common intermediates, strictosidine or strictosidinic acid, produced by coupling tryptamine with secologanin or secologanic acid. The penultimate reaction in this pathway is catalyzed by either secologanin synthase (SLS) or secologanic acid synthase (SLAS) according to whether plants produce secologanin from loganin or secologanic acid from loganic acid. Previous work has identified SLSs and SLASs from different species, but the determinants of selectivity remain unclear. Here, combining molecular modeling, ancestral sequence reconstruction, and biochemical methodologies, we identified key residues that toggle SLS and SLAS selectivity in two CYP72A (cytochrome P450) subfamily enzymes from Camptotheca acuminata. We found that the positions of foremost importance are in substrate recognition sequence 1 (SRS1), where mutations to either of two adjacent histidine residues switched selectivity; His131Phe selects for and increases secologanin production whereas His132Asp selects for secologanic acid production. Furthermore, a change in SRS3 in the predicted substrate entry channel (Arg/Lys270Thr) and another in SRS4 at the start of the I-helix (Ser324Glu) decreased enzyme activity toward either substrate. We propose that the Camptotheca SLASs have maintained the broadened activities found in a common asterid ancestor, even as the Camptotheca lineage lost its ability to produce loganin while the campanulid and lamiid lineages specialized to produce secologanin by acquiring mutations in SRS1. The identification here of the residues essential for the broad substrate scope of SLASs presents opportunities for more tailored heterologous production of TIAs.


Asunto(s)
Camptotheca , Sistema Enzimático del Citocromo P-450 , Glucósidos Iridoides , Iridoides , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Camptotheca/enzimología , Camptotheca/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Histidina/química , Histidina/genética , Glucósidos Iridoides/metabolismo , Iridoides/metabolismo , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Triptaminas/metabolismo
7.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35581509

RESUMEN

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Asunto(s)
Picrorhiza , Plantas Medicinales , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cinamatos/metabolismo , Glicósidos , Glucósidos Iridoides/metabolismo , Iridoides/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Picrorhiza/genética , Picrorhiza/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
8.
Neuroimmunomodulation ; 29(4): 414-424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35545014

RESUMEN

INTRODUCTION: Isoflurane-associated perioperative neurocognitive disorders (PNDs) is a common complication that occurs commonly in elderly patients characterized by deterioration of hippocampus-dependent cognitive function. Mounting evidence has shown that hippocampal impairment and inflammatory processes are implicated in the pathogenesis of PNDs. Catalpol has been suggested to play a role in the modulation of neuroprotection and neurotransmission. Therefore, we surmised that catalpol may play a similar role during isoflurane-induced PNDs. METHODS: In our current study, aged mice were exposed to isoflurane to develop a mouse model of PNDs and preconditioned with catalpol for 2 weeks before modeling. Three weeks after isoflurane exposure, behavioral, histological, biochemical, electrophysiological, and immunofluorescent assays were performed. RESULTS: Our results showed that catalpol preadministration significantly alleviated cognitive impairment in the Morris water maze, novel object recognition, and Y-maze behavioral tests. Neuropathological analyses showed that catalpol preadministration reduced the loss of neurons and synapses; in line with this, it is revealed that hippocampal synaptic plasticity was restored. Mechanistically, catalpol preadministration suppressed the activation of microglia and decreased the expression of NLRP3 inflammasome. CONCLUSION: Our results indicate that catalpol preadministration could effectively alleviate cognitive impairment and neuropathological damage in isoflurane-exposed aged mice with its neuroprotective effects via modulation of the NLRP3 inflammatory pathway. Furthermore, the NLRP3 inflammatory pathway was revealed to be involved in these effects.


Asunto(s)
Isoflurano , Ratones , Animales , Isoflurano/toxicidad , Isoflurano/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipocampo/metabolismo , Glucósidos Iridoides/uso terapéutico , Glucósidos Iridoides/metabolismo , Glucósidos Iridoides/farmacología , Aprendizaje por Laberinto
9.
Cell Tissue Bank ; 23(4): 887-897, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35384569

RESUMEN

Osteochondral grafts are suitable materials for repair of articular cartilage defect and plastic and reconstructive surgery. In our study, osteochondral allografts from rabbits were preserved in vitro for 28 days, and chondrocyte death, degradation of collagen and proteoglycan, morphological alterations, and inflammatory reaction were observed in the grafts. Supplementing of Aucubin with 10 or 20 µM in the preservation solution inhibited chondrocyte death, matrix degradation, pathological alterations and inflammation in allografts preserved in vitro, compared with that preserved in standard preservation solution. In addition, after transplantation of 20 µM Aucubin-treated allografts, the osteochondral repair and regeneration of rabbits with knee joint defect were accelerated. In conclusion, Aucubin was beneficial for maintaining chondrocyte viability and normal morphology, and inhibiting inflammatory occurrence in rabbit osteochondral grafts preserved in vitro, and facilitated osteochondral repair and regeneration of rabbits with knee defect. These findings might provide novel insights for preservation of grafts for clinical articular cartilage repair and plastic surgery.


Asunto(s)
Cartílago Articular , Animales , Conejos , Cartílago Articular/cirugía , Condrocitos/trasplante , Glucósidos Iridoides/metabolismo , Articulación de la Rodilla/cirugía
10.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35298643

RESUMEN

Countless reports describe the isolation and structural characterization of natural products, yet this information remains disconnected and underutilized. Using a cheminformatics approach, we leverage the reported observations of iridoid glucosides with the known phylogeny of a large iridoid producing plant family (Lamiaceae) to generate a set of biosynthetic pathways that best explain the extant iridoid chemical diversity. We developed a pathway reconstruction algorithm that connects iridoid reports via reactions and prunes this solution space by considering phylogenetic relationships between genera. We formulate a model that emulates the evolution of iridoid glucosides to create a synthetic data set, used to select the parameters that would best reconstruct the pathways, and apply them to the iridoid data set to generate pathway hypotheses. These computationally generated pathways were then used as the basis by which to select and screen biosynthetic enzyme candidates. Our model was successfully applied to discover a cytochrome P450 enzyme from Callicarpa americana that catalyzes the oxidation of bartsioside to aucubin, predicted by our model despite neither molecule having been observed in the genus. We also demonstrate aucubin synthase activity in orthologues of Vitex agnus-castus, and the outgroup Paulownia tomentosa, further strengthening the hypothesis, enabled by our model, that the reaction was present in the ancestral biosynthetic pathway. This is the first systematic hypothesis on the epi-iridoid glucosides biosynthesis in 25 years and sets the stage for streamlined work on the iridoid pathway. This work highlights how curation and computational analysis of widely available structural data can facilitate hypothesis-based gene discovery.


Asunto(s)
Glucósidos Iridoides , Lamiaceae , Quimioinformática , Glucósidos Iridoides/química , Glucósidos Iridoides/metabolismo , Iridoides/metabolismo , Lamiaceae/genética , Lamiaceae/metabolismo , Filogenia
11.
PLoS One ; 16(9): e0257690, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34591865

RESUMEN

Aucuba japonica Thunb. is an evergreen understory shrub that grows naturally at a mine site. The mine soil contains high concentrations of heavy metals, and A. japonica appears to maintain detoxification mechanisms against heavy metals in the study site's understory. This study aimed to investigate the heavy metal tolerance mechanisms in A. japonica, considering the possible roles of arbuscular mycorrhizal and root-endophytic fungi. We conducted fieldwork in summer (canopy-foliation season) and winter (canopy-defoliation season) to measure the heavy metal concentrations in leaves, branches, and roots and analyze possible detoxicants in the roots. The infection rates of arbuscular mycorrhizal and root-endophytic fungi were evaluated via microscopic observation, and heavy metal (Zn) localization in A. japonica roots was observed using confocal laser scanning microscopy. Field analysis showed that A. japonica accumulated excessive Zn and produced aucubin and citric acid in the roots in both summer and winter. Zn localization observations clarified that Zn was distributed in thickened epidermal and cortical cell walls, suggesting that the cell walls functioned as Zn deposition sites, reducing Zn toxicity. It was further clarified that Zn was contained within cortical cells, indicating that Zn might be detoxified by aucubin and citric acid. Arbuscular mycorrhizal and root-endophytic fungi within cortical cells adsorbed Zn on fungal cell walls, indicating that these fungi would reduce Zn content within root cells and might alleviate Zn toxicity. Our results indicated that A. japonica would maintain Zn tolerance in both summer and winter via Zn immobilization in the cell walls and production of aucubin and citric acid, and that arbuscular mycorrhizal and root-endophytic fungi might play important roles in the Zn tolerance of A. japonica.


Asunto(s)
Glucósidos Iridoides/metabolismo , Magnoliopsida/crecimiento & desarrollo , Metales Pesados/química , Zinc/química , Adsorción , Biodegradación Ambiental , Pared Celular/química , Ácido Cítrico/química , Japón , Magnoliopsida/metabolismo , Micelio/química , Fotosíntesis
12.
Biomed Res Int ; 2021: 5565748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095301

RESUMEN

Gentiopicroside (GPS), a main active secoiridoid glucoside derived from the roots of perennial herbs in the Gentianaceae family, has antispasmodic and relaxant effects. However, the vasorelaxant effects of GPS on aortic rings and the molecular mechanisms involved in these effects are not yet clear. Therefore, we investigated whether GPS inhibits phenylephrine- (PE-) or KCl-induced contractions in isolated rat thoracic aortic rings. The present study found that GPS produced a dose-dependent relaxation in aortic rings precontracted with PE or KCl and significantly reduced CaCl2-, narciclasine- (Rho-kinase activator-), and phorbol-12,13-diacetate- (PKC activator-) induced vasocontractions. Pretreatment with NG-Nitroarginine methyl ester hydrochloride (L-NAME, NOS inhibitor), methylene blue (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV channel inhibitor), and glibenclamide (KATP channel inhibitor) had no influence on the vasorelaxant effect of GPS, while BaCl2 (Kir channel inhibitor), tetraethylammonium chloride (KCa channel inhibitor), ruthenium red (RYR inhibitor), and heparin (IP3R inhibitor) significantly reduced GPS-induced vasorelaxation. Moreover, GPS pretreatment remarkably inhibited the influx of Ca2+ in vascular smooth muscle cells stimulated using KCl or PE-containing CaCl2 solution. Western blot analysis confirmed that GPS treatment inhibited PE-induced increases in the protein levels of p-Akt, p-myosin light chain (MLC), and p-myosin-binding subunit of myosin phosphatase 1 (MYPT1) in the aortic rings. Additionally, the vasorelaxation activity of GPS was attenuated upon pretreatment with LY294002 (PI3K/Akt inhibitor), Y27632 (Rho-kinase inhibitor), and verapamil (L-type Ca2+ channel inhibitor). These findings demonstrate that GPS exhibits endothelium-independent vasorelaxant effects through inhibition of voltage-dependent, receptor-operated, and inositol triphosphate receptor (IP3R)/ryanodine receptor- (RYR-) mediated Ca2+ channels as well as the PI3K/Akt/Rho-kinase signaling pathway.


Asunto(s)
Aorta Torácica/metabolismo , Glucósidos Iridoides/farmacología , Vasodilatación/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , China , Endotelio Vascular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Glucósidos Iridoides/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Fenilefrina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Cloruro de Potasio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/fisiología , Vasodilatación/fisiología , Vasodilatadores/farmacología , Quinasas Asociadas a rho/metabolismo
13.
Neurochem Res ; 46(8): 2131-2142, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34008118

RESUMEN

This study was designed to evaluate the underlying protective mechanisms of oleuropein involved in alleviating brain damage in a rat model of ischemic stroke. Male Wistar rats were divided into four groups; Control, stroke (MCAO), MCAO + clopidogrel (Clop) and MCAO + oleuropein (Ole). Results showed that the MCAO group evidenced significant brain edema (+ 9%) as well as increases of plasma cardiac markers such as lactate deshydrogenase (LDH), creatine kinase (CK-MB), fibrinogen and Trop-T by 11 %, 43%, 168 and 590%, respectively, as compared to the control group. Moreover, infarcted rats exhibited remarkable elevated levels of angiotensin converting enzyme (ACE), both in plasma and brain tissue, with astrocyte swelling and necrotic neurons in the infarct zone, hyponatremia, and increased rate of thiobarbituric acid-reactive substances (TBARS) by 89% associated with decreases in the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat) by 51%, 44 and 42%, respectively, compared to normal control rats. However, MCAO rats treated with oleuropein underwent mitigation of cerebral edema, correction of hyponatremia, remarkable decrease of plasma fibrinogen and cardiac dysfunctional enzymes, inhibition of ACE activity and improvement of oxidative stress status in brain tissue. Furthermore, in silico analysis showed considerable inhibitions of ACE, protein disulfide isomerase (PDI) and TGF-ß1, an indicative of potent anti-embolic properties. Overall, oleuropein offers a neuroprotective effect against ischemic stroke through its antioxidative and antithrombotic activities.


Asunto(s)
Depuradores de Radicales Libres/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Glucósidos Iridoides/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/patología , Edema Encefálico/patología , Edema Encefálico/prevención & control , Clopidogrel/uso terapéutico , Depuradores de Radicales Libres/metabolismo , Humanos , Hiponatremia/prevención & control , Infarto de la Arteria Cerebral Media/patología , Glucósidos Iridoides/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Proteína Disulfuro Isomerasas/metabolismo , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
14.
Mol Genet Genomics ; 296(4): 863-876, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33899140

RESUMEN

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.


Asunto(s)
Glicósidos Iridoides/metabolismo , Picrorhiza , Plantas Medicinales , Vías Biosintéticas/genética , Cinamatos/metabolismo , Cinamatos/farmacología , Citoprotección/efectos de los fármacos , Citoprotección/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/fisiología , Genes de Plantas , Ensayos Analíticos de Alto Rendimiento , Glucósidos Iridoides/metabolismo , Glucósidos Iridoides/farmacología , Glicósidos Iridoides/farmacología , Hígado/efectos de los fármacos , Hígado/fisiología , Picrorhiza/química , Picrorhiza/genética , Picrorhiza/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Medicinales/química , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Homología de Secuencia , Transcriptoma/fisiología
15.
Life Sci ; 267: 118881, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310037

RESUMEN

AIMS: To explore the mechanisms of diabetes mellitus (DM)-induced testicular injury caused by modulation of testicular glycolysis and gut microbiota (GM), and evaluation of the efficacy of catalpol in reversing testicular morbidity. MAIN METHODS: A model of DM-induced testicular injury was established using a high-fat diet in KK-Ay mice. Microbial communities in the feces of mice in normal, model and catalpol (Cat) groups were analyzed by 16S gene sequencing. Correlations between the GM and lactate metabolism levels, lactate dehydrogenase activity, and indicators of testicular injury were analyzed. KEY FINDINGS: Cat significantly reduced general indicators of diabetes in mice with DM-induced reproductive injury, mitigated damage to the testicular tissue, and increased sperm count and motility. Additionally, the levels of products of glycolysis metabolism (e.g. lactate) increased following Cat treatment compared with the Model group. Disorders in the GM were also reversed in the Cat group. SIGNIFICANCE: Cat ameliorated DM-induced testicular injury in KK-Ay mice by increasing the energy available to germ cells through glycolysis, principally through modulation of the GM and a reduction in the quantities of associated pathogenic bacteria.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos Iridoides/farmacología , Enfermedades Testiculares/metabolismo , Animales , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Glucósidos Iridoides/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Espermatozoides/metabolismo , Enfermedades Testiculares/tratamiento farmacológico , Testículo/metabolismo
16.
Curr Drug Metab ; 22(3): 173-184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33243112

RESUMEN

BACKGROUND: Catalpol, an iridoid glycoside, is one of the richest bioactive components present in Rehmannia glutinosa. More and more metabolites of drugs have exhibited various pharmacological effects, thus providing guidance for clinical application. However, few researches have paid attention to the metabolism of catalpol. OBJECTIVE: This study aimed to establish a rapid and effective method to identify catalpol metabolites and evaluate the biotransformation pathways of catalpol in rats. METHODS: In this study, catalpol metabolites in rat urine, plasma and faeces were analyzed by UHPLC-Q-Exactive MS for the characterization of the metabolism of catalpol. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of catalpol were identified by comparing the diagnostic product ions (DPIs), chromatographic retention times, neutral loss fragments (NLFs) and accurate mass measurement with those of catalpol reference standard. RESULTS: A total of 29 catalpol metabolites were detected and identified in both negative and positive ion modes. Nine metabolic reactions, including deglycosylation, hydroxylation, dihydroxylation, hydrogenation, dehydrogenation, oxidation of methylene to ketone, glucuronidation, glycine conjugation and cysteine conjugation, were proposed. CONCLUSION: A rapid and effective method based on UHPLC-Q-Exactive MS was developed to mine the metabolism information of catalpol. Results of metabolites and biotransformation pathways of catalpol suggested that when orally administrated, catalpol was firstly metabolized into catalpol aglycone, after which phase I and phase II reactions occurred. However, hydrophilic chromatography-mass spectrometry is still needed to further find the polar metabolites of catalpol.


Asunto(s)
Glucósidos Iridoides/metabolismo , Administración Oral , Animales , Cromatografía Líquida de Alta Presión/métodos , Heces/química , Glucósidos Iridoides/administración & dosificación , Glucósidos Iridoides/farmacocinética , Masculino , Metabolómica/métodos , Modelos Animales , Ratas , Rehmannia/química , Espectrometría de Masas en Tándem/métodos , Orina/química
17.
J Chem Ecol ; 46(11-12): 1117-1130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33037529

RESUMEN

White fringetree is a host for the invasive emerald ash borer (EAB) but is of lower quality than the related and highly susceptible black ash. Field observations suggest that host trees grown in full sun are more resistant to EAB than those in shade, however the impact of light limitation on chemical defenses has not been assessed. We quantified constitutive and jasmonate-induced phloem defenses and growth patterns of white fringetree and black ash under differential light conditions and related them to EAB larval performance. White fringetree had significantly lower constitutive and induced activities of peroxidase, polyphenol oxidase, ß-glucosidase, chitinase and lignin content, but significantly higher gallic acid equivalent soluble phenolic, soluble sugar, and oleuropein concentrations compared to black ash. Multivariate analyses based on tissue chemical attributes displayed clear separation of species and induced defense responses. Further, EAB performed significantly worse on white fringetree than black ash, consistent with previous studies. Light limitation did not impact measured defenses or EAB larval performance, but it did decrease current year growth and increase photosynthetic efficiency. Overall our results suggest that phenolic profiles, metabolite abundance, and growth traits are important in mediating white fringetree resistance to EAB, and that short-term light limitation does not influence phloem chemistry or larval success.


Asunto(s)
Escarabajos/fisiología , Ciclopentanos/metabolismo , Fraxinus/química , Oleaceae/química , Oxilipinas/metabolismo , Extractos Vegetales/química , Animales , Conducta Animal , Catecol Oxidasa/metabolismo , Quitinasas/metabolismo , Fraxinus/metabolismo , Ácido Gálico/metabolismo , Glucósidos Iridoides/metabolismo , Larva , Luz , Lignina/metabolismo , Oleaceae/metabolismo , Fenoles/metabolismo , Floema/metabolismo , Fotosíntesis , Azúcares/metabolismo , beta-Glucosidasa/metabolismo
18.
Appl Biochem Biotechnol ; 192(4): 1298-1317, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32725372

RESUMEN

The rising demand for picrosides commercially and over-exploitation of Picrorhiza kurroa from natural habitat has to initiate alternative strategies for sustainable production of metabolites. In the present research, wild leaf explant of P. kurroa was used to produce friable callus under different culture condition, i.e., dark and light with two temperature variants (15 °C and 25 °C). Afterward, callus cell lines were screened based on growth biomass and metabolites content accumulation. The results revealed, maximum callus growth index along with antioxidant potential (IC50-40.88 µg/mL) and total phenol content (41.35 µg/mg) were observed under dark 25 °C. However, under light 15 °C, highest accumulation of picroside II (0.58 µg/mg), cinnamic acid (0.15 µg/mg), p-hydroxy acetophenone (0.30 µg/mg), total flavonoids (77.30 µg/mg), nitrogen (7.06%), carbohydrates (18.03%), and protein (44.12%) were detected. Major reported metabolite in callus was picroside I (1.63 µg/mg) under dark 15 °C. For the first time, picroside III content (range 0.15-0.56 µg/mg) was also detected and quantified in leaf-derived calli. Expression profiling of picroside biosynthetic pathway genes showed a positive correlation with the observed metabolites. Furthermore, an optimized protocol of metabolites enriched callus biomass could be used as potential strategy for sustainable production of picrosides at commercial scale.


Asunto(s)
Perfilación de la Expresión Génica , Glucósidos Iridoides/metabolismo , Picrorhiza/crecimiento & desarrollo , Picrorhiza/genética , Antioxidantes/metabolismo , Línea Celular , Concentración de Iones de Hidrógeno , Cinética , Fenoles/metabolismo , Picrorhiza/metabolismo , Temperatura
19.
J Microbiol Methods ; 176: 106010, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32712052

RESUMEN

In the present study we aimed firstly to assess the resistance of a set of yeasts, isolated from the black olive pomace, to various phenolic compounds; and to evaluate their growth capacities on an olive leaf extract rich of oleuropein. The results showed that only three yeasts were able to both resist to the different phenolic compounds tested and grow on the olive leaf extract at a concentration of 1%. The second step was devoted to studying the bioconversion of oleuropein of an olive leaf extract into hydroxytyrosol by the above selected three yeasts. The oleuropein degradation and hydroxytyrosol formation were monitored by HPLC-UV. Only one yeast isolate; identified using molecular tools; was chosen to optimize the bioconversion throughout the optimization of the most influencing parameters: temperature, substrate concentration, cell concentration, and pH of the extract using a method of experimental design. The results showed that the three yeasts; F6, F4, and F12 were capable of producing hydroxytyrosol from oleuropein with different concentrations 317 ± 14 mg/l, 210 ± 14 mg/l, and 149 ± 21 mg/l; respectively. The strong oleuropienolytic activity manifested by the F6 isolate was further optimized, and the results showed that the optimal conditions for producing the maximum of hydroxytyrosol are: a temperature of 31 °C, a cell concentration of 2%, a substrate concentration of 1%, and a non-adjusted pH of the extract. Based on the molecular approaches F6 was identified as Nakazawaea molendini-olei.


Asunto(s)
Glucósidos Iridoides/metabolismo , Olea , Extractos Vegetales/química , Hojas de la Planta , Saccharomycetales , Olea/química , Olea/microbiología , Hojas de la Planta/química , Hojas de la Planta/microbiología , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo
20.
Plant Physiol Biochem ; 154: 115-128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32554175

RESUMEN

Geranyl geranyl pyrophosphate synthase (GGPPS) is known to form an integral subunit of the heteromeric GPPS (geranyl pyrophosphate synthase) complex and catalyzes the biosynthesis of monoterpene in plants. Picrorhiza kurrooa Royle ex Benth., a medicinally important high altitude plant is known for picroside biomolecules, the monoterpenoids. However, the significance of heteromeric GPPS in P. kurrooa still remains obscure. Here, transient silencing of PkGGPPS was observed to reduce picroside-I (P-I) content by more than 60% as well as picroside-II (P-II) by more than 75%. Thus, PkGGPPS was found to be involved in the biosynthesis of P-I and P-II besides other terpenoids. To unravel the mechanism, small subunit of GPPS (PkGPPS.SSU) was identified from P. kurrooa. Protein-protein interaction studies in yeast as well as bimolecular fluorescence complementation (BiFC) in planta have indicated that large subunit of GPPS PkGPPS.LSUs (PkGGPPS1 and PkGGPPS2) and PkGPPS.SSU form a heteromeric GPPS. Presence of similar conserved domains such as light responsive motifs, low temperature responsive elements (LTRE), dehydration responsive elements (DREs), W Box and MeJA responsive elements in the promoters of PkGPPS.LSU and PkGPPS.SSU documented their involvement in picroside biosynthesis. Further, the tissue specific transcript expression analysis vis-à-vis epigenetic regulation (DNA methylation) of promoters as well as coding regions of PkGPPS.LSU and PkGPPS.SSU has strongly suggested their role in picroside biosynthesis. Taken together, the newly identified PkGPPS.SSU formed the heteromeric GPPS by interacting with PkGPPS.LSUs to synthesize P-I and P-II in P. kurrooa.


Asunto(s)
Cinamatos/metabolismo , Dimetilaliltranstransferasa/metabolismo , Glucósidos Iridoides/metabolismo , Picrorhiza/enzimología , Vías Biosintéticas , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Monoterpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...