Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 242
1.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Article En | MEDLINE | ID: mdl-38748430

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Cell Survival , Cross-Linking Reagents , Hydrogels , Iridoids , Tissue Engineering , Animals , Iridoids/pharmacology , Iridoids/metabolism , Swine , Tissue Engineering/methods , Cross-Linking Reagents/pharmacology , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Biocompatible Materials
2.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652203

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Gene Expression Regulation, Plant , Olea , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Phylogeny , Olea/genetics , Olea/metabolism , Phenylethyl Alcohol/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Iridoid Glucosides/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pyridoxal Phosphate/metabolism , Iridoids/metabolism , Genes, Plant
3.
Arthritis Res Ther ; 25(1): 240, 2023 12 11.
Article En | MEDLINE | ID: mdl-38082328

BACKGROUND: Osteoarthritis (OA) is a degenerative disease related to cholesterol metabolism disorders. However, current therapies for OA are insufficient and no convincing disease-modifying OA drugs exist. Therefore, we aimed to elucidate the mechanism by which borojoa iridoid glycoside (BIG) inhibits chondrocyte apoptosis in OA. METHODS: Borojoa pulp was heated to 70 °C, and the main active substance in borojoa, BIG, was extracted by fractionation at an ultraviolet 254-nm absorption peak. Chondrocytes were identified by immunohistochemistry and visualized by immunofluorescence confocal microscopy. The proliferation of chondrocytes cultured with BIG was determined by MTS assay. The apoptosis of chondrocytes cultured with BIG was tested by Annexin V-FITC/PI, and the cytokine, protein, and cholesterol levels in chondrocytes were detected by ELISA, RT‒qPCR, Western blot, and biochemistry analyses. Protein‒protein interactions were verified by a coimmunoprecipitation (Co-IP) assay. RESULTS: BIG promoted chondrocyte proliferation and reduced apoptosis in vitro. BIG induced an alteration of the total RNA profiles in chondrocytes, and bioinformatic analysis showed that BIG inhibited chondrocyte apoptosis by promoting c-MYC expression; KEGG analysis confirmed that BIG-inhibited apoptosis was enriched in the cell cycle pathway. Flow cell cycle experiments confirmed that BIG promoted chondrocyte proliferation by significantly increasing the S phase cell number. The c-MYC inhibitor 10058-F4 stimulated the increased expression of IL-1ß, IL-6, TNF-α, and AGEs and suppressed the cholesterol metabolism, which promoted chondrocyte apoptosis and autophagy. Co-IP analysis showed that BIG promoted the interaction of c-MYC and CH25H, Bcl-2, which suggests that BIG could inhibit chondrocyte apoptosis in part by enhancing c-MYC-mediated cholesterol metabolism. CONCLUSIONS: This study confirmed that BIG promotes chondrocyte proliferation and inhibits apoptosis and autophagy, and BIG improving OA is associated with cholesterol metabolism. The results identify a potential mechanism by which BIG enhances c-MYC-mediated CH25H regulation of cholesterol metabolism in vitro and suggest that BIG might be a promising new drug against OA.


MicroRNAs , Osteoarthritis , Humans , Chondrocytes/metabolism , Glycosides , Iridoids/metabolism , Iridoids/therapeutic use , Osteoarthritis/metabolism , Apoptosis , Cholesterol/metabolism , Cholesterol/therapeutic use , MicroRNAs/genetics , Interleukin-1beta/metabolism
4.
Acta Histochem ; 125(4): 152044, 2023 May.
Article En | MEDLINE | ID: mdl-37196380

BACKGROUND: Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS: A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 µM) pretreated with GE (0.1 µM, 1 µM, and 10 µM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor ß1 (TGF-ß1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS: GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-ß1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION: These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-ß1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.


Myocytes, Cardiac , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Myocytes, Cardiac/metabolism , Iridoids/pharmacology , Iridoids/metabolism , Fibrosis , Myocardium/pathology
5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article En | MEDLINE | ID: mdl-37108390

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.


Interleukin-6 , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Epithelial Cells/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-6/metabolism , Iridoids/pharmacology , Iridoids/therapeutic use , Iridoids/metabolism , Lung/metabolism , NF-kappa B/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Protein Kinase C-delta/metabolism
6.
PeerJ ; 11: e14968, 2023.
Article En | MEDLINE | ID: mdl-36915654

Gentiana rhodantha is a medicinally important perennial herb used as traditional Chinese and ethnic medicines. Secoiridoids are one of the major bioactive compounds in G. rhodantha. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from four organs (root, leaf, stem and flower), followed by the de novo sequence assembly. We verified 8-HGO (8-hydroxygeraniol oxidoreductase), which may encode key enzymes of the secoiridoid biosynthesis by qRT-PCR. The mangiferin, swertiamarin and loganic acid contents in root, stem, leaf, and flower were determined by HPLC. The results showed that there were 47,871 unigenes with an average length of 1,107.38 bp. Among them, 1,422 unigenes were involved in 25 standard secondary metabolism-related pathways in the KEGG database. Furthermore, we found that 1,005 unigenes can be divided into 66 transcription factor (TF) families, with no family members exhibiting significant organ-specificity. There were 54 unigenes in G. rhodantha that encoded 17 key enzymes of the secoiridoid biosynthetic pathway. The qRT-PCR of the 8-HGO and HPLC results showed that the relative expression and the mangiferin, swertiamarin, and loganic acid contents of the aerial parts were higher than in the root. Six types of SSR were identified by SSR analysis of unigenes: mono-nucleoside repeat SSR, di-nucleoside repeat SSR, tri-nucleoside repeat SSR, tetra-nucleoside repeat SSR, penta-nucleoside repeat SSR, and hexa-nucleoside repeat SSR. This report not only enriches the Gentiana transcriptome database but helps further study the function and regulation of active component biosynthesis of G. rhodantha.


Gentiana , Humans , Gentiana/genetics , Molecular Sequence Annotation , Gene Expression Profiling , Iridoids/metabolism
7.
Clin Biomech (Bristol, Avon) ; 103: 105907, 2023 03.
Article En | MEDLINE | ID: mdl-36812821

BACKGROUND: The suture-tendon interface often constitutes the point of failure in tendon suture repair. In the present study, we investigated the mechanical benefit of coating the suture with a cross-linking agent to strengthen the nearby tissue after suture placement in human tendons and we assessed the biological implications regarding tendon cell survival in-vitro. METHODS: Freshly harvested human biceps long head tendons were randomly allocated to control (n = 17) or intervention (n = 19) group. According to the assigned group, either an untreated or a genipin-coated suture was inserted into the tendon. 24 h after suturing, mechanical testing composed of cyclic and ramp-to-failure loading was performed. Additionally, 11 freshly harvested tendons were used for short-term in vitro cell viability assessment in response to genipin-loaded suture placement. These specimens were analyzed in a paired-sample setting as stained histological sections using combined fluorescent/light microscopy. FINDINGS: Tendons stitched with a genipin-coated suture sustained higher forces to failure. Cyclic and ultimate displacement of the tendon-suture construct remained unaltered by the local tissue crosslinking. Tissue crosslinking resulted in significant cytotoxicity in the direct vicinity of the suture (<3 mm). At larger distances from the suture, however, no difference in cell viability between the test and the control group was discernable. INTERPRETATION: The repair strength of a tendon-suture construct can be augmented by loading the suture with genipin. At this mechanically relevant dosage, crosslinking-induced cell death is confined to a radius of <3 mm from the suture in the short-term in-vitro setting. These promising results warrant further examination in-vivo.


Sutures , Tendons , Humans , Biomechanical Phenomena , Cell Survival , Iridoids/metabolism , Iridoids/pharmacology , Suture Techniques , Tendons/surgery , Tensile Strength
8.
Curr Top Med Chem ; 23(5): 371-388, 2023.
Article En | MEDLINE | ID: mdl-36567288

Iridoids are secondary plant metabolites that are multitarget compounds active against various diseases. Iridoids are structurally classified into iridoid glycosides and non-glycosidic iridoids according to the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides can be further subdivided into carbocyclic iridoids and secoiridoids. These monoterpenoids belong to the cyclopentan[c]-pyran system, which has a wide range of biological activities, including antiviral, anticancer, antiplasmodial, neuroprotective, anti-thrombolytic, antitrypanosomal, antidiabetic, hepatoprotective, anti-oxidant, antihyperlipidemic and anti-inflammatory properties. The basic chemical structure of iridoids in plants (the iridoid ring scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial as a substrate. With advances in phytochemical research, many iridoid compounds with novel structure and outstanding activity have been identified in recent years. Biologically active iridoid derivatives have been found in a variety of plant families, including Plantaginaceae, Rubiaceae, Verbenaceae, and Scrophulariaceae. Iridoids have the potential of modulating many biological events in various diseases. This review highlights the multitarget potential of iridoids and includes a compilation of recent publications on the pharmacology of iridoids. Several in vitro and in vivo models used, along with the results, are also included in the paper. This paper's systematic summary was created by searching for relevant iridoid material on websites such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. The compilation will provide the researchers with a thorough understanding of iridoid and its congeners, which will further help in designing a large number of potential compounds with a strong impact on curing various diseases.


Iridoid Glycosides , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Iridoids/metabolism , Plants , Plant Extracts/chemistry , Monoterpenes , Antioxidants
9.
Genes (Basel) ; 13(12)2022 12 15.
Article En | MEDLINE | ID: mdl-36553639

Gentiana macrophylla Pall. (G. macrophylla)-a member of the family Gentianaceae-is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla.


Gentiana , Gentiana/genetics , Gentiana/chemistry , Gentiana/metabolism , Iridoids/metabolism , Transcriptome/genetics , Gene Expression Profiling , Flowers/genetics , Flowers/metabolism
10.
Integr Biol (Camb) ; 14(8-12): 171-183, 2022 12 30.
Article En | MEDLINE | ID: mdl-36573280

The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell-matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell-cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell-cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.


Iridoids , Kidney Tubules , Kidney Tubules/metabolism , Kidney Tubules/pathology , Iridoids/pharmacology , Iridoids/metabolism , Basement Membrane/physiology , Epithelial Cells , Kidney Tubules, Proximal
12.
Proc Natl Acad Sci U S A ; 119(42): e2211254119, 2022 10 18.
Article En | MEDLINE | ID: mdl-36227916

Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.


Aphids , Biological Products , Sex Attractants , Animals , Aphids/genetics , Aphids/metabolism , Biological Products/metabolism , Iridoids/chemistry , Iridoids/metabolism , Lipids , Monoterpenes/metabolism , Pheromones/metabolism , Plants/metabolism , Sex Attractants/genetics , Sex Attractants/metabolism
13.
J Agric Food Chem ; 70(38): 11967-11980, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36104266

Vascular dementia (VaD) is associated with cerebral hypoperfusion, which results in long-term cognitive impairment and memory loss. Cornel iridoid glycoside (CIG) is the major active constituent isolated from the ripe fruit of Cornus officinalis. Previous studies have shown that CIG enhances neurological function in VaD rats. In the present research, we attempted to clarify the molecular processes underlying the role of CIG in neuroinflammation in VaD. We created a chronic cerebral ischemia rat model by ligation of the bilateral common carotid arteries (2VO) and then treated rats with different concentrations of CIG. Comprehensive analyses revealed that CIG ameliorated myelin integrity and neuronal loss. Furthermore, we also found that CIG inhibited polarized microglia activation and attenuated inflammasome-mediated production of proinflammatory cytokines in BV2 microglia cells induced by LPS/IFN-γ and in the brains of 2VO rats. To further elucidate the role of CIG in microglia-mediated inflammatory response, we investigated the expression and activity of calpain. CIG inhibited the expression and activity of calpain 1/2, which was characterized by decreased calpastatin and spectrin αII expression. In particular, intra- and extracellular calpain 1 levels were reduced by CIG. However, CIG showed weak interaction with calpain 1. In addition, we found that CG administration significantly repressed the assembly of the NOD-like receptor protein 3 (NLRP3) inflammasome, including NLRP3, ASC, and caspase-1. In conclusion, our knowledge of the mechanisms by which CIG regulates NLRP3/calpain signaling to influence inflammatory responses offers further insights into potential therapeutic strategies to treat VaD.


Iridoids , Microglia , Animals , Calpain/metabolism , Caspases/metabolism , Cytokines/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Iridoid Glycosides/pharmacology , Iridoid Glycosides/therapeutic use , Iridoids/metabolism , Lipopolysaccharides/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Rats , Spectrin/metabolism
14.
J Biol Chem ; 298(9): 102237, 2022 09.
Article En | MEDLINE | ID: mdl-35809640

Terpene indole alkaloids (TIAs) are plant-derived specialized metabolites with widespread use in medicine. Species-specific pathways derive various TIAs from common intermediates, strictosidine or strictosidinic acid, produced by coupling tryptamine with secologanin or secologanic acid. The penultimate reaction in this pathway is catalyzed by either secologanin synthase (SLS) or secologanic acid synthase (SLAS) according to whether plants produce secologanin from loganin or secologanic acid from loganic acid. Previous work has identified SLSs and SLASs from different species, but the determinants of selectivity remain unclear. Here, combining molecular modeling, ancestral sequence reconstruction, and biochemical methodologies, we identified key residues that toggle SLS and SLAS selectivity in two CYP72A (cytochrome P450) subfamily enzymes from Camptotheca acuminata. We found that the positions of foremost importance are in substrate recognition sequence 1 (SRS1), where mutations to either of two adjacent histidine residues switched selectivity; His131Phe selects for and increases secologanin production whereas His132Asp selects for secologanic acid production. Furthermore, a change in SRS3 in the predicted substrate entry channel (Arg/Lys270Thr) and another in SRS4 at the start of the I-helix (Ser324Glu) decreased enzyme activity toward either substrate. We propose that the Camptotheca SLASs have maintained the broadened activities found in a common asterid ancestor, even as the Camptotheca lineage lost its ability to produce loganin while the campanulid and lamiid lineages specialized to produce secologanin by acquiring mutations in SRS1. The identification here of the residues essential for the broad substrate scope of SLASs presents opportunities for more tailored heterologous production of TIAs.


Camptotheca , Cytochrome P-450 Enzyme System , Iridoid Glucosides , Iridoids , Oxidoreductases Acting on CH-CH Group Donors , Camptotheca/enzymology , Camptotheca/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Histidine/chemistry , Histidine/genetics , Iridoid Glucosides/metabolism , Iridoids/metabolism , Mutation , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Tryptamines/metabolism
15.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article En | MEDLINE | ID: mdl-35806407

Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air-liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.


Gingiva , Iridoids , Cells, Cultured , Collagen/metabolism , Cytochalasin D , Fibroblasts/metabolism , Humans , Iridoids/metabolism , Iridoids/pharmacology , Keratinocytes , Tissue Engineering/methods
16.
Genes (Basel) ; 13(6)2022 06 19.
Article En | MEDLINE | ID: mdl-35741854

Terpenoids are naturally occurring compounds involved in respiration, photosynthesis, membrane fluidity, and pathogen interactions and are classified according to the structure of their carbon skeleton. Although most terpenoids possess pharmacological activity, knowledge about terpenoid metabolism in medicinal plants is insufficient. Rehmannia glutinosa (R. glutinosa) is a traditional herb that is widely used in East Asia and has been reported to contain various terpenoids. In this study, we performed a comprehensive transcriptome analysis of terpenoid metabolism in R. glutinosa using two RNA sequencing platforms: Illumina and PacBio. The results show that the sterol, saponin, iridoid, and carotenoid pathways are active in R. glutinosa. Sterol and saponin biosynthesis were mevalonate pathway dependent, whereas iridoid and carotenoid biosynthesis were methylerythritol 4-phosphate pathway dependent. In addition, we found that the homologous genes of key enzymes involved in terpenoid metabolism were expressed differentially and that the differential expression of these genes was associated with specific terpenoid biosynthesis. The different expression of homologous genes encoding acetyl-CoA acetyltransferase, 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate diphosphate decarboxylase, farnesyl pyrophosphate synthase, squalene synthase, and squalene epoxidase was associated with sterol and saponin biosynthesis. Homologous genes encoding 1-deoxy-D-xylulose 5-phosphate synthase were also differentially expressed and were associated with carotenoid and iridoid biosynthesis. These results suggest that the biosynthesis of specific terpenoids can be regulated by the homologous of key enzymes involved in plant terpenoid metabolism.


Rehmannia , Saponins , Carotenoids/metabolism , Iridoids/metabolism , Rehmannia/genetics , Rehmannia/metabolism , Saponins/metabolism , Sterols/metabolism , Terpenes/metabolism
17.
Methods Mol Biol ; 2505: 69-77, 2022.
Article En | MEDLINE | ID: mdl-35732937

The plant Catharanthus roseus is well known for its spatial separation of iridoid and monoterpenoid indole alkaloid (MIA) biosynthesis at both intracellular and intercellular levels, collectively suggested by RNA in situ hybridization, enzymatic and transcriptomic studies using leaf epidermis, and fluorescent protein tagging studies. Although documented in other plant species, the long-distance transport of iridoid glycosides, such as secologanin, has not been known in C. roseus until a recent study suggested that secologanin is transported from root to shoot, by grafting low iridoid/MIA mutant scions onto wild-type stock plants. This chapter describes the in vitro cultivation of C. roseus plants and grafting techniques to enable studies concerning iridoid/MIA transport between organs. The iridoid and MIA analysis methods are also provided.


Catharanthus , Catharanthus/genetics , Catharanthus/metabolism , Gene Expression Regulation, Plant , Iridoids/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome
18.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Article En | MEDLINE | ID: mdl-35581509

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Picrorhiza , Plants, Medicinal , Acyltransferases/genetics , Acyltransferases/metabolism , Cinnamates/metabolism , Glycosides , Iridoid Glucosides/metabolism , Iridoids/metabolism , Ligands , Molecular Docking Simulation , Picrorhiza/genetics , Picrorhiza/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
19.
Br J Pharmacol ; 179(16): 4078-4091, 2022 08.
Article En | MEDLINE | ID: mdl-35362097

BACKGROUND AND PURPOSE: Current mainstream antidepressants have limited efficacy with a delayed onset of action. Yueju, a herbal medicine, has a rapid antidepressant action. Identification of the active ingredients in Yueju and the mechanism/s involved was carried out. EXPERIMENTAL APPROACH: Key molecule/s and compounds involved in this antidepressant action was identified by transcriptomic and HPLC analysis, respectively. Antidepressant effects were evaluated using various behavioural experiments. The signalling involved was assessed using site-directed pharmacological intervention or optogenetic manipulation. KEY RESULTS: Transcriptomic analysis showed that Yueju up-regulated pituitary adenylate cyclase activating polypeptide (PACAP) expression in the hippocampus. Two iridoids, geniposide and shanzhiside methyl ester, were identified and quantified from Yueju. Only co-treatment with both, at an equivalent concentrations found in Yueju, increased PACAP expression and elicited a rapid antidepressant action, which were blocked by intra-dentate gyrus infusion of a PACAP antagonist or optogenetic inactivation of PACAP expressing neurons. Geniposide and shanzhiside methyl ester co-treatment rapidly inhibited CaMKII phosphorylation and enhanced mTOR/4EBP1/P70S6k/BDNF ignalling, while intra-dentate gyrus infusions of a CaMKII activator blunted the rapid antidepressant action and BDNF expression up-regulation induced by the co-treatment. A single co-treatment of them rapidly improved depression-like behaviours and up-regulated hippocampal PACAP signalling in the repeated corticosterone-induced depression model, further confirming the involvement of PACAP. CONCLUSION AND IMPLICATIONS: Geniposide and shanzhiside methyl ester co-treatment had a synergistic rapid onset antidepressant action by triggering hippocampal PACAP activity and associated CaMKII-BDNF signalling. This mechanism could be targeted for development of fast onset antidepressants.


Brain-Derived Neurotrophic Factor , Pituitary Adenylate Cyclase-Activating Polypeptide , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Esters/metabolism , Esters/pharmacology , Hippocampus , Iridoids/metabolism , Iridoids/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
20.
Mol Biol Evol ; 39(4)2022 04 10.
Article En | MEDLINE | ID: mdl-35298643

Countless reports describe the isolation and structural characterization of natural products, yet this information remains disconnected and underutilized. Using a cheminformatics approach, we leverage the reported observations of iridoid glucosides with the known phylogeny of a large iridoid producing plant family (Lamiaceae) to generate a set of biosynthetic pathways that best explain the extant iridoid chemical diversity. We developed a pathway reconstruction algorithm that connects iridoid reports via reactions and prunes this solution space by considering phylogenetic relationships between genera. We formulate a model that emulates the evolution of iridoid glucosides to create a synthetic data set, used to select the parameters that would best reconstruct the pathways, and apply them to the iridoid data set to generate pathway hypotheses. These computationally generated pathways were then used as the basis by which to select and screen biosynthetic enzyme candidates. Our model was successfully applied to discover a cytochrome P450 enzyme from Callicarpa americana that catalyzes the oxidation of bartsioside to aucubin, predicted by our model despite neither molecule having been observed in the genus. We also demonstrate aucubin synthase activity in orthologues of Vitex agnus-castus, and the outgroup Paulownia tomentosa, further strengthening the hypothesis, enabled by our model, that the reaction was present in the ancestral biosynthetic pathway. This is the first systematic hypothesis on the epi-iridoid glucosides biosynthesis in 25 years and sets the stage for streamlined work on the iridoid pathway. This work highlights how curation and computational analysis of widely available structural data can facilitate hypothesis-based gene discovery.


Iridoid Glucosides , Lamiaceae , Cheminformatics , Iridoid Glucosides/chemistry , Iridoid Glucosides/metabolism , Iridoids/metabolism , Lamiaceae/genetics , Lamiaceae/metabolism , Phylogeny
...