Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
PeerJ ; 12: e17605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011377

RESUMEN

Viral outbreaks are a constant threat to aquaculture, limiting production for better global food security. A lack of diagnostic testing and monitoring in resource-limited areas hinders the capacity to respond rapidly to disease outbreaks and to prevent viral pathogens becoming endemic in fisheries productive waters. Recent developments in diagnostic testing for emerging viruses, however, offers a solution for rapid in situ monitoring of viral outbreaks. Genomic epidemiology has furthermore proven highly effective in detecting viral mutations involved in pathogenesis and assisting in resolving chains of transmission. Here, we demonstrate the application of an in-field epidemiological tool kit to track viral outbreaks in aquaculture on farms with reduced access to diagnostic labs, and with non-destructive sampling. Inspired by the "lab in a suitcase" approach used for genomic surveillance of human viral pathogens and wastewater monitoring of COVID19, we evaluated the feasibility of real-time genome sequencing surveillance of the fish pathogen, Infectious spleen and kidney necrosis virus (ISKNV) in Lake Volta. Viral fractions from water samples collected from cages holding Nile tilapia (Oreochromis niloticus) with suspected ongoing ISKNV infections were concentrated and used as a template for whole genome sequencing, using a previously developed tiled PCR method for ISKNV. Mutations in ISKNV in samples collected from the water surrounding the cages matched those collected from infected caged fish, illustrating that water samples can be used for detecting predominant ISKNV variants in an ongoing outbreak. This approach allows for the detection of ISKNV and tracking of the dynamics of variant frequencies, and may thus assist in guiding control measures for the rapid isolation and quarantine of infected farms and facilities.


Asunto(s)
Acuicultura , Enfermedades de los Peces , Iridoviridae , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/diagnóstico , Iridoviridae/genética , Iridoviridae/aislamiento & purificación , Ghana/epidemiología , Lagos/virología , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/transmisión , Genoma Viral/genética , Tilapia/virología , Brotes de Enfermedades/veterinaria , Brotes de Enfermedades/prevención & control , Secuenciación Completa del Genoma/métodos , Cíclidos/virología
2.
Vet Res ; 55(1): 88, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010235

RESUMEN

Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC® IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Peces , Iridoviridae , Vacunación , Vacunas Virales , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/prevención & control , Iridoviridae/fisiología , Vacunas Virales/inmunología , Peces/virología , Peces/inmunología , Vacunación/veterinaria
3.
BMC Vet Res ; 20(1): 267, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902724

RESUMEN

BACKGROUND: Scale drop disease virus (SDDV) threatens Asian seabass (Lates calcarifer) aquaculture production by causing scale drop disease (SDD) in Asian seabass. Research on the development of SDDV vaccines is missing an in-depth examination of long-term immunity and the immune reactions it provokes. This study investigated the long-term immune protection and responses elicited by an SDDV vaccine. The research evaluated the effectiveness of a formalin-inactivated SDDV vaccine (SDDV-FIV) using both prime and prime-booster vaccination strategies in Asian seabass. Three groups were used: control (unvaccinated), single-vaccination (prime only), and booster (prime and booster). SDDV-FIV was administered via intraperitoneal route, with a booster dose given 28 days post-initial vaccination. RESULTS: The immune responses in vaccinated fish (single and booster groups) showed that SDDV-FIV triggered both SDDV-specific IgM and total IgM production. SDDV-specific IgM levels were evident until 28 days post-vaccination (dpv) in the single vaccination group, while an elevated antibody response was maintained in the booster group until 70 dpv. The expression of immune-related genes (dcst, mhc2a1, cd4, ighm, cd8, il8, ifng, and mx) in the head kidney and peripheral blood lymphocytes (PBLs) of vaccinated and challenged fish were significantly upregulated within 1-3 dpv and post-SDDV challenge. Fish were challenged with SDDV at 42 dpv (challenge 1) and 70 dpv (challenge 2). In the first challenge, the group that received booster vaccinations demonstrated notably higher survival rates than the control group (60% versus 20%, P < 0.05). However, in the second challenge, while there was an observable trend towards improved survival rates for the booster group compared to controls (42% versus 25%), these differences did not reach statistical significance (P > 0.05). These findings suggest that the SDDV-FIV vaccine effectively stimulates both humoral and cellular immune responses against SDDV. Booster vaccination enhances this response and improves survival rates up to 42 dpv. CONCLUSIONS: This research provides valuable insights into the development of efficient SDDV vaccines and aids in advancing strategies for immune modulation to enhance disease management in the aquaculture of Asian seabass.


Asunto(s)
Enfermedades de los Peces , Inmunización Secundaria , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Inmunización Secundaria/veterinaria , Iridoviridae/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/inmunología , Formaldehído , Anticuerpos Antivirales/sangre , Vacunación/veterinaria , Inmunoglobulina M/sangre , Perciformes/inmunología , Lubina/inmunología
4.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847927

RESUMEN

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Asunto(s)
Proteínas de la Cápside , Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Filogenia , Animales , Enfermedades de los Peces/virología , India , Iridoviridae/genética , Iridoviridae/aislamiento & purificación , Iridoviridae/clasificación , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/veterinaria , Proteínas de la Cápside/genética , Peces/virología , Genotipo , Islas
5.
J Fish Dis ; 47(8): e13963, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38785265

RESUMEN

Diseases caused by pathogens commonly occurring in the aquatic environment or those that are non-host specific are prevalent and threaten the rapid growth of tropical aquaculture. This study investigates causes of mortality in 12 batches of newly stocked juvenile Lates calcarifer from three different hatcheries. Cytology based on Diff-Quik™-stained tissue and blood smears provides rapid diagnosis of possible causes of mortality, while histopathology and haematology provide a better understanding of how prolonged transport and fish with existing chronic disease are more likely to experience elevated mortality post-stocking. Our findings showed that accumulation of ammonia during prolonged transport causes extensive damage to epithelial barriers in gastrointestinal tracts and depressed immunity due to marked hypoglycaemia, predisposing fish to acute Streptococcosis. Lates calcarifer with chronic bacterial enteritis developed severe hypoglycaemia, had low circulating total plasma protein, and suffered high mortality within 24 hours post-stocking. Hypoglycaemia and low circulating blood proteins disrupt osmoregulation and exacerbate dehydration, which is fatal in fish in sea water. Dying L. calcarifer tested PCR positive for scale drop disease virus (SDDV) at 28 days post-stocking showed a 10-fold elevation of white blood cell counts, severe vasculitis, and obstruction of blood supply to major organs. Destruction of important immune organs such as spleen is a hallmark of SDDV infection that explains high incidences of opportunistic Vibrio harveyi infections in 61% of fish with SDDV. Overall, this study reiterates the importance of stocking disease-free fish and reducing transport stress.


Asunto(s)
Enfermedades de los Peces , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Iridoviridae/fisiología , Transportes , Perciformes , Acuicultura
6.
Fish Shellfish Immunol ; 149: 109617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723876

RESUMEN

Microbiome in the intestines of aquatic invertebrates plays pivotal roles in maintaining intestinal homeostasis, especially when the host is exposed to pathogen invasion. Decapod iridescent virus 1 (DIV1) is a devastating virus seriously affecting the productivity and success of crustacean aquaculture. In this study, a metagenomic analysis was conducted to investigate the genomic sequences, community structure and functional characteristics of the intestinal microbiome in the giant river prawn Macrobrachiumrosenbergii infected with DIV1. The results showed that DIV1 infection could significantly reduce the diversity and richness of intestinal microbiome. Proteobacteria represented the largest taxon at the phylum level, and at the species level, the abundance of Gonapodya prolifera and Solemya velum gill symbiont increased significantly following DIV1 infection. In the infected prawns, four metabolic pathways related to purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and pentose phosphate pathway, and five pathways related to nucleotide excision repair, homologous recombination, mismatch repair, base excision repair, and DNA replication were significantly enriched. Moreover, several immune response related pathways, such as shigellosis, bacterial invasion of epithelial cells, Salmonella infection, and Vibrio cholerae infection were repressed, indicating that secondary infection in M. rosenbergii may be inhibited via the suppression of these immune related pathways. DIV1 infection led to the induction of microbial carbohydrate enzymes such as the glycoside hydrolases (GHs), and reduced the abundance and number of antibiotic-resistant ontologies (AROs). A variety of AROs were identified from the microbiota, and mdtF and lrfA appeared as the dominant genes in the detected AROs. In addition, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration were the main antibiotic resistance mechanisms. Collectively, the data would enable a deeper understanding of the molecular response of intestinal microbiota to DIV1, and offer more insights into its roles in prawn resistance to DIVI infection.


Asunto(s)
Microbioma Gastrointestinal , Palaemonidae , Animales , Palaemonidae/inmunología , Palaemonidae/virología , Palaemonidae/microbiología , Palaemonidae/genética , Metagenómica , Metagenoma , Iridoviridae/fisiología
7.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710342

RESUMEN

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Asunto(s)
Secuencia de Aminoácidos , Infecciones por Virus ADN , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Iridoviridae , Perciformes , Filogenia , Alineación de Secuencia , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Perciformes/inmunología , Perciformes/genética , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Iridoviridae/fisiología , Alineación de Secuencia/veterinaria , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Clonación Molecular , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases
8.
Fish Shellfish Immunol ; 150: 109643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763177

RESUMEN

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.


Asunto(s)
Infecciones por Virus ADN , Trampas Extracelulares , Enfermedades de los Peces , Iridoviridae , Perciformes , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Trampas Extracelulares/inmunología , Iridoviridae/fisiología , Perciformes/inmunología , Piel/virología , Piel/patología , Peces/inmunología , Peces/virología
9.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570120

RESUMEN

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Asunto(s)
Lubina , Infecciones por Virus ADN , Elongasas de Ácidos Grasos , Enfermedades de los Peces , Proteínas de Peces , Metabolismo de los Lípidos , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Lubina/inmunología , Lubina/genética , Elongasas de Ácidos Grasos/genética , Nodaviridae/fisiología , Regulación de la Expresión Génica , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Iridovirus/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Reprogramación Metabólica
10.
Virulence ; 15(1): 2349027, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38680083

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Replicación Viral , Animales , Iridoviridae/fisiología , Iridoviridae/genética , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos
11.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460951

RESUMEN

Snakehead vesiculovirus (SHVV) is one of the primary pathogens responsible for viral diseases in the snakehead fish. A TaqMan-based real-time PCR assay was established for the rapid detection and quantification of SHVV in this study. Specific primers and fluorescent probes were designed for phosphoprotein (P) gene, and after optimizing the reaction conditions, the results indicated that the detection limit of this method could reach 37.1 copies, representing a 100-fold increase in detection sensitivity compared to RT-PCR. The specificity testing results revealed that this method exhibited no cross-reactivity with ISKNV, LMBV, RSIV, RGNNV, GCRV, and CyHV-2. Repetition experiments demonstrated that both intra-batch and inter-batch coefficients of variation were not higher than 1.66%. Through in vitro infection experiments monitoring the quantitative changes of SHVV in different tissues, the results indicated that the liver and spleen exhibited the highest viral load at 3 poi. The TaqMan-based real-time PCR method established in this study exhibits high sensitivity, excellent specificity, and strong reproducibility. It can be employed for rapid detection and viral load monitoring of SHVV, thus providing a robust tool for the clinical diagnosis and pathogen research of SHVV.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Perciformes , Infecciones por Rhabdoviridae , Animales , Perciformes/genética , Vesiculovirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades de los Peces/diagnóstico , Reproducibilidad de los Resultados , Iridoviridae/genética , Sensibilidad y Especificidad
12.
Vaccine ; 42(11): 2886-2894, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38519342

RESUMEN

Vaccination is an effective method to prevent viral diseases. However, the biological barrier prevents the immersion vaccine from achieving the best effect without adding adjuvants and carriers. Researches on the targeted presentation technology of vaccines with nanocarriers are helpful to develop immersion vaccines for fish that can break through biological barriers and play an effective role in fish defense. In our study, functionally modified single-walled carbon nanotubes (SWCNTs) were used as carriers to construct a targeted immersion vaccine (SWCNTs-M-MCP) with mannose modified major capsid protein (MCP) to target antigen-presenting cells (APCs), against iridovirus diseases. After bath immunization, our results showed that SWCNTs-M-MCP induced the presentation process and uptake of APCs, triggering a powerful immune response. Moreover, the highest relative percent survival (RPS) was 81.3% in SWCNTs-M-MCP group, which was only 41.5% in SWCNTs-MCP group. Altogether, this study indicates that the SWCNTs-based targeted immersion vaccine induces strong immune response and provided an effective protection against iridovirus diseases.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Nanotubos de Carbono , Vacunas Virales , Animales , Manosa , Inmersión , Proteínas de la Cápside
14.
Commun Biol ; 7(1): 237, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413759

RESUMEN

Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Iridovirus , Virosis , Animales , Iridovirus/genética , Iridoviridae/genética , Infecciones por Virus ADN/veterinaria , Peces
15.
Virus Res ; 339: 199278, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984754

RESUMEN

Rock bream iridovirus (RBIV), belonging to Megalocytivirus, causes severe mortality in rock bream. Almost all deaths associated with RBIV are accompanied by splenic enlargement and anemia. Although red blood cells (RBCs) are involved in the immune response against viral infections, their involvement in rock bream has not yet been studied in terms of the immune response against RBIV. In this study, the viral replication patterns, blood characteristics and anemia-related factors were evaluated in rock bream post RBIV infection. The virus-infected RBCs of rock bream demonstrated similarities in the expression levels of hemoglobins (HGB) (α and ß), cytokine-dependent hematopoietic cell linker (CLNK) and hematopoietic transcription factor GATA (GATA), with significantly decreasing levels from 4 days post infection (dpi) to 17 (dpi), when the viral replication was at its peak. This suggests that the expression of blood-related genes is inadequate for HGB synthesis and RBC production, thereby causing anemia leading to death. Moreover, the levels of complete blood cell count (CBC) indicators, such as RBCs, HGB and hematocrit (HCT), significantly decreased from 10 to 17 dpi. This phenomenon suggests that blood-related gene expression and/or RBC-, HGB- and HCT-related levels are critical factors in RBIV-induced anemia and disease progression. These results highlight the significance of blood-mediated immune responses against RBIV infection in rock bream. Understanding blood-related gene levels to identify blood-related immune response interactions in rock bream will be useful for development of future strategies in controlling RBIV diseases in rock bream.


Asunto(s)
Anemia , Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Iridovirus , Animales , Iridovirus/genética , Infecciones por Virus ADN/veterinaria , Iridoviridae/fisiología , Eritrocitos/metabolismo , Filogenia
16.
J Virol ; 97(11): e0128923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37933966

RESUMEN

IMPORTANCE: Global aquaculture production yielded a record of 122.9 million tons in 2022. However, ~10% of farmed aquatic animal production is lost each year due to various infectious diseases, resulting in substantial economic waste. Therefore, the development of vaccines is important for the prevention and control of aquatic infectious diseases. Gene-deletion live attenuated vaccines are efficacious because they mimic natural pathogen infection and generate a strong antibody response, thus showing good potential for administration via immersion. However, most gene-deletion viruses still have residual virulence, and thus, gene-deletion immersion vaccines for aquatic viruses are rarely developed. In this study, an orf074r deletion strain (Δorf074r) of ISKNV with residual virulence was constructed, and an immunization process was developed to reduce its residual virulence at 22°C, thereby making it a potential immersion vaccine against ISKNV. Our work will aid in the development of an aquatic gene-deletion live-attenuated immersion vaccine.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Inmersión , Inmunización/métodos , Inmunización/veterinaria , Iridoviridae/genética , Vacunas Atenuadas , Virulencia , Frío
17.
Front Immunol ; 14: 1268851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868974

RESUMEN

Lymphocystis disease is frequently prevalent and transmissible in various teleost species worldwide due to lymphocystis disease virus (LCDV) infection, causing unsightly growths of benign lymphocystis nodules in fish and resulting in huge economic losses to aquaculture industry. However, the molecular mechanism of lymphocystis formation is unclear. In this study, LCDV was firstly detected in naturally infected flounder (Paralichthys olivaceus) by PCR, histopathological, and immunological techniques. To further understand lymphocystis formation, transcriptome sequencing of skin nodule tissue was performed by using healthy flounder skin as a control. In total, RNA-seq produced 99.36%-99.71% clean reads of raw reads, of which 91.11%-92.89% reads were successfully matched to the flounder genome. The transcriptome data showed good reproducibility between samples, with 3781 up-regulated and 2280 down-regulated differentially expressed genes. GSEA analysis revealed activation of Wnt signaling pathway, Hedgehog signaling pathway, Cell cycle, and Basal cell carcinoma associated with nodule formation. These pathways were analyzed to interact with multiple viral infection and tumor formation pathways. Heat map and protein interaction analysis revealed that these pathways regulated the expression of cell cycle-related genes such as ccnd1 and ccnd2 through key genes including ctnnb1, lef1, tcf3, gli2, and gli3 to promote cell proliferation. Additionally, cGMP-PKG signaling pathway, Calcium signaling pathway, ECM-receptor interaction, and Cytokine-cytokine receptor interaction associated with nodule formation were significantly down-regulated. Among these pathways, tnfsf12, tnfrsf1a, and tnfrsf19, associated with pro-apoptosis, and vdac2, which promotes viral replication by inhibiting apoptosis, were significantly up-regulated. Visual analysis revealed significant down-regulation of cytc, which expresses the pro-apoptotic protein cytochrome C, as well as phb and phb2, which have anti-tumor activity, however, casp3 was significantly up-regulated. Moreover, bcl9, bcl11a, and bcl-xl, which promote cell proliferation and inhibit apoptosis, were significantly upregulated, as were fgfr1, fgfr2, and fgfr3, which are related to tumor formation. Furthermore, RNA-seq data were validated by qRT-PCR, and LCDV copy numbers and expression patterns of focused genes in various tissues were also investigated. These results clarified the pathways and differentially expressed genes associated with lymphocystis nodule development caused by LCDV infection in flounder for the first time, providing a new breakthrough in molecular mechanisms of lymphocystis formation in fish.


Asunto(s)
Infecciones por Virus ADN , Lenguado , Iridoviridae , Animales , Lenguado/genética , Proteínas Hedgehog , Reproducibilidad de los Resultados , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/metabolismo , Perfilación de la Expresión Génica , Iridoviridae/fisiología
18.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37877715

RESUMEN

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Asunto(s)
Membrana Basal , Células Endoteliales , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virología , Células Endoteliales/citología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Iridoviridae/fisiología , Vasos Linfáticos/citología , Proliferación Celular , Movimiento Celular , Vasos Sanguíneos/citología , Interacciones Microbiota-Huesped
19.
Fish Shellfish Immunol ; 142: 109150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838208

RESUMEN

Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1ß, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.


Asunto(s)
Enfermedades de los Peces , Lenguado , Iridoviridae , Virosis , Animales , FN-kappa B/metabolismo , Bazo/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
20.
J Fish Dis ; 46(12): 1403-1411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697626

RESUMEN

This study investigated the kinetics of red sea bream iridovirus and host gene expression during infection in rock bream (Oplegnathus fasciatus), a species highly sensitive to the virus. After intraperitoneal injection of the viral solution at 104 TCID50/fish, the viral genome copy number in the spleen was 104.7 ± 0.2 and 105.9 ± 0.4 copies/µg DNA at 3 and 5 days post-injection (dpi), respectively. Using transcriptomic analyses via MiSeq, viral gene transcripts were detected at 3 and 5 dpi. Six genes including RING-finger domain-containing protein and laminin-type epidermal growth factor-like domain genes were significantly expressed at 5 dpi. Further, 334 host genes were differentially expressed compared with those before infection. Genes were clustered into four groups based on their expression profiles. Interferon-stimulated genes were more prevalent in groups showing upregulation at 5 dpi and 3 and 5 dpi. In contrast, the group showing downregulation at 3 dpi included inflammation-related genes, such as granzyme and eosinophil peroxidase genes. Downregulation of certain inflammation-related genes may contribute to the susceptibility of this fish to the virus.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Iridovirus , Perciformes , Dorada , Animales , Iridoviridae/fisiología , Bazo , Perciformes/genética , Inflamación , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...