Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Pestic Biochem Physiol ; 204: 106045, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277372

RESUMEN

Reticulitermes flaviceps is an economically important pest in agriculture, forestry, and construction. Recent studies have shown an increase in research focusing on the anti-termite properties of plant essential oils, however, there remains a lack of information regarding the specific molecular mechanism involved. In this study, RNA-seq analysis was conducted on termites exposed to Mentha spicata essential oil (EO) and carvone, leading to the discovery of various genes that were expressed differentially under different treatment conditions. Numerous genes that exhibited a response to M. spicata EO and carvone found to be associated with stress-related pathways, such as drug metabolism cytochrome P450, glutathione metabolism, fatty acid metabolism, citric acid cycle, neuroactive ligand-receptor interaction, cell apoptosis, the AMPK signalling pathway, the mTOR signalling pathway, the longevity regulation pathway, ubiquitin-mediated protein hydrolysis, and the calcium signalling pathway. The up-regulation of genes (SPHK) associated with calcium channels, such as SPHK, indicates a potential mechanism of neurotoxicity, while the up-regulation of apoptosis-associated genes, including ACTB_G1, PYG, SQSTM1, RNF31, suggests a potential mechanism of cytotoxicity. The metabolism of M. spicata EO induces oxidative stress, elevates free Ca2+ levels in mitochondria, and initiates the generation of reactive oxygen species (ROS), ultimately resulting in programmed cell necrosis and apoptosis, as well as facilitating cellular autophagy. The monoterpenes exhibited neurotoxic and cytotoxic effects on R. flaviceps and could be exploited to advance termiticide development and eco-friendly termite control.


Asunto(s)
Calcio , Monoterpenos Ciclohexánicos , Isópteros , Mentha spicata , Aceites Volátiles , Animales , Calcio/metabolismo , Mentha spicata/metabolismo , Isópteros/efectos de los fármacos , Isópteros/genética , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/toxicidad , Apoptosis/efectos de los fármacos
2.
Mol Phylogenet Evol ; 200: 108177, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142526

RESUMEN

Despite the many advances of the genomic era, there is a persistent problem in assessing the uncertainty of phylogenomic hypotheses. We see this in the recent history of phylogenetics for cockroaches and termites (Blattodea), where huge advances have been made, but there are still major inconsistencies between studies. To address this, we present a phylogenetic analysis of Blattodea that emphasizes identification and quantification of uncertainty. We analyze 1183 gene domains using three methods (multi-species coalescent inference, concatenation, and a supermatrix-supertree hybrid approach) and assess support for controversial relationships while considering data quality. The hybrid approach-here dubbed "tiered phylogenetic inference"-incorporates information about data quality into an incremental tree building framework. Leveraging this method, we are able to identify cases of low or misleading support that would not be possible otherwise, and explore them more thoroughly with follow-up tests. In particular, quality annotations pointed towards nodes with high bootstrap support that later turned out to have large ambiguities, sometimes resulting from low-quality data. We also clarify issues related to some recalcitrant nodes: Anaplectidae's placement lacks unbiased signal, Ectobiidae s.s. and Anaplectoideini need greater taxon sampling, the deepest relationships among most Blaberidae lack signal. As a result, several previous phylogenetic uncertainties are now closer to being resolved (e.g., African and Malagasy "Rhabdoblatta" spp. are the sister to all other Blaberidae, and Oxyhaloinae is sister to the remaining Blaberidae). Overall, we argue for more approaches to quantifying support that take data quality into account to uncover the nature of recalcitrant nodes.


Asunto(s)
Cucarachas , Isópteros , Filogenia , Animales , Isópteros/genética , Isópteros/clasificación , Cucarachas/genética , Cucarachas/clasificación , Genómica , Modelos Genéticos
3.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112457

RESUMEN

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Asunto(s)
Genómica , Isópteros , Filogenia , Isópteros/genética , Isópteros/clasificación , Animales , Genómica/métodos , Genoma de los Insectos
4.
Mol Ecol ; 33(17): e17494, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136107

RESUMEN

Social insects have developed a broad diversity of nesting and foraging strategies. One of these, inquilinism, occurs when one species (the inquiline) inhabits the nest built and occupied by another species (the host). Obligatory inquilines must overcome strong constraints upon colony foundation and development, due to limited availability of host colonies. To reveal how inquilinism shapes reproductive strategies in a termite host-inquiline dyad, we carried out a microsatellite marker study on Inquilinitermes inquilinus and its host Constrictotermes cavifrons. The proportion of simple, extended and mixed families was recorded in both species, as well as the presence of neotenics, parthenogenesis and multiple foundations. Most host colonies (95%) were simple families and all were monodomous. By contrast, the inquiline showed a higher proportion of extended (30%) and mixed (5%) families, and frequent neotenics (in 25% of the nests). This results from the simultaneous foundation in host nests of numerous incipient colonies, which, as they grow, may compete, fight, or merge. We also documented the use of parthenogenesis by female-female pairs. In conclusion, the classical monogamous colony pattern of the host species suggests uneventful development of simple foundations dispersed in the environment, in accordance with the wide distribution of their resources. By contrast, the multiple reproductive patterns displayed by the inquiline species reveal strong constraints on foundation sites: founders first concentrate into host nests, then must attempt to outcompete or absorb the neighbouring foundations to gain full control of the resources provided by the host nest.


Asunto(s)
Isópteros , Repeticiones de Microsatélite , Partenogénesis , Animales , Isópteros/genética , Repeticiones de Microsatélite/genética , Femenino , Partenogénesis/genética , Reproducción/genética , Masculino , Comportamiento de Nidificación
5.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772420

RESUMEN

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Asunto(s)
Isópteros , Partenogénesis , Animales , Isópteros/fisiología , Isópteros/genética , Femenino , Reproducción , Conducta Social
6.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772424

RESUMEN

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Asunto(s)
Genoma de los Insectos , Isópteros , Selección Genética , Animales , Isópteros/genética , Filogenia , Evolución Molecular , Cucarachas/genética , Conducta Social
7.
J Evol Biol ; 37(7): 758-769, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38630634

RESUMEN

Domains as functional protein units and their rearrangements along the phylogeny can shed light on the functional changes of proteomes associated with the evolution of complex traits like eusociality. This complex trait is associated with sterile soldiers and workers, and long-lived, highly fecund reproductives. Unlike in Hymenoptera (ants, bees, and wasps), the evolution of eusociality within Blattodea, where termites evolved from within cockroaches, was accompanied by a reduction in proteome size, raising the question of whether functional novelty was achieved with existing rather than novel proteins. To address this, we investigated the role of domain rearrangements during the evolution of termite eusociality. Analysing domain rearrangements in the proteomes of three solitary cockroaches and five eusocial termites, we inferred more than 5,000 rearrangements over the phylogeny of Blattodea. The 90 novel domain arrangements that emerged at the origin of termites were enriched for several functions related to longevity, such as protein homeostasis, DNA repair, mitochondrial activity, and nutrient sensing. Many domain rearrangements were related to changes in developmental pathways, important for the emergence of novel castes. Along with the elaboration of social complexity, including permanently sterile workers and larger, foraging colonies, we found 110 further domain arrangements with functions related to protein glycosylation and ion transport. We found an enrichment of caste-biased expression and splicing within rearranged genes, highlighting their importance for the evolution of castes. Furthermore, we found increased levels of DNA methylation among rearranged compared to non-rearranged genes suggesting fundamental differences in their regulation. Our findings indicate the importance of domain rearrangements in the generation of functional novelty necessary for termite eusociality to evolve.


Asunto(s)
Evolución Biológica , Isópteros , Animales , Isópteros/genética , Isópteros/fisiología , Conducta Social , Filogenia , Proteoma/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Dominios Proteicos , Blattellidae/genética
8.
PeerJ ; 12: e16843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436016

RESUMEN

The soldier caste is one of the most distinguished castes inside the termite colony. The mechanism of soldier caste differentiation has mainly been studied at the transcriptional level, but the function of microRNAs (miRNAs) in soldier caste differentiation is seldom studied. In this study, the workers of Coptotermes formosanus Shiraki were treated with methoprene, a juvenile hormone analog which can induce workers to transform into soldiers. The miRNomes of the methoprene-treated workers and the controls were sequenced. Then, the differentially expressed miRNAs (DEmiRs) were corrected with the differentially expressed genes DEGs to construct the DEmiR-DEG regulatory network. Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which 116 miRNAs were screened as DEmiRs between the methoprene-treated group and the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term was recognized as significant in the cellular component, molecular function, or biological process categories. The KEGG enrichment analysis of the DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs and DEGs form a complex network regulating soldier caste differentiation in termites.


Asunto(s)
Isópteros , MicroARNs , Animales , Isópteros/genética , Metopreno , Ritmo Circadiano , Grupos Control , MicroARNs/genética
9.
PLoS One ; 19(3): e0299900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427681

RESUMEN

Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.


Asunto(s)
Hormigas , Isópteros , Masculino , Animales , Isópteros/genética , Isópteros/metabolismo , Procesos de Determinación del Sexo/genética
10.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38491951

RESUMEN

The mitogenome sequence data have been widely used in inferring the phylogeny of insects. In this study, we determined the complete mitogenome for Macrotermes sp. (Termitidae, Macrotermitinae) using next-generation sequencing. Macrotermes sp. possesses a typical insect mitogenome, displaying an identical gene order and gene content to other existing termite mitogenomes. We present the first prediction of the secondary structure of ribosomal RNA genes in termites. The rRNA secondary structures of Macrotermes sp. exhibit similarities to closely related insects and also feature distinctive characteristics in their helical structures. Together with 321 published mitogenomes of termites as ingroups and 8 cockroach mitogenomes as outgroups, we compiled the most comprehensive mitogenome sequence matrix for Termitoidae to date. Phylogenetic analyses were conducted using datasets employing different data coding strategies and various inference methods. Robust relationships were recovered at the family or subfamily level, demonstrating the utility of comprehensive mitogenome sampling in resolving termite phylogenies. The results supported the monophyly of Termitoidae, and consistent relationships within this group were observed across different analyses. Mastotermitidae was consistently recovered as the sister group to all other termite families. The families Hodotermitidae, Stolotermitidae, and Archotermopsidae formed the second diverging clade, followed by the Kalotermitidae. The Neoisoptera was consistently supported with strong node support, with Stylotermitidae being sister to the remaining families. Rhinotermitidae was found to be non-monophyletic, and Serritermitidae nested within the basal clades of Rhinotermitidae and was sister to Psammotermitinae. Overall, our phylogenetic results are largely consistent with earlier mitogenome studies.


Asunto(s)
Cucarachas , Genoma Mitocondrial , Isópteros , Humanos , Animales , Filogenia , Isópteros/genética , Cucarachas/genética , Insectos/genética
11.
Heredity (Edinb) ; 132(5): 257-266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509263

RESUMEN

Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.


Asunto(s)
Flujo Génico , Hibridación Genética , Isópteros , Repeticiones de Microsatélite , Animales , Isópteros/genética , Isópteros/fisiología , Femenino , Masculino , Repeticiones de Microsatélite/genética , Taiwán , Especies Introducidas , ADN Mitocondrial/genética
12.
Curr Opin Insect Sci ; 63: 101183, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38428818

RESUMEN

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. During caste differentiation in termites, body parts and caste-specific morphologies are modified during postembryonic development under endocrine controls such as juvenile hormone (JH) and ecdysone. In addition to endocrine factors, developmental toolkit genes such as Hox- and appendage-patterning genes also contribute to the caste-specific body part modifications. These toolkits are thought to provide spatial information for specific morphogenesis. During social evolution, the complex crosstalks between physiological and developmental mechanisms should be established, leading to the sophisticated caste systems. This article reviews recent studies on these mechanisms underlying the termite caste differentiation and addresses implications for the evolution of caste systems in termites.


Asunto(s)
Isópteros , Hormonas Juveniles , Animales , Isópteros/genética , Isópteros/fisiología , Isópteros/crecimiento & desarrollo , Hormonas Juveniles/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ecdisona/metabolismo
13.
Int J Biol Macromol ; 262(Pt 1): 129639, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331075

RESUMEN

Olfaction is critical for survival because it allows animals to look for food and detect pheromonal cues. Neuropeptides modulate olfaction and behaviors in insects. While how the neuroregulation of olfactory recognition affects foraging behavior in termites is still unclear. Here, we analyzed the change after silencing the olfactory co-receptor gene (Orco) and the neuropeptide Y gene (NPY), and then investigated the impact of olfactory recognition on foraging behavior in Odontotermes formosanus under different predation pressures. The knockdown of Orco resulted in the reduced Orco protein expression in antennae and the decreased EAG response to trail pheromones. In addition, NPY silencing led to the damaged ability of olfactory response through downregulating Orco expression. Both dsOrco- and dsNPY-injected worker termites showed significantly reduced walking activity and foraging success. Additionally, we found that 0.1 pg/cm trail pheromone and nestmate soldiers could provide social buffering to relieve the adverse effect of predator ants on foraging behavior in worker termites with the normal ability of olfactory recognition. Our orthogonal experiments further verified that Orco/NPY genes are essential in manipulating termite olfactory recognition during foraging under different predation pressures, suggesting that the neuroregulation of olfactory recognition plays a crucial role in regulating termite foraging behavior.


Asunto(s)
Isópteros , Receptores Odorantes , Animales , Olfato , Isópteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Feromonas
14.
Pest Manag Sci ; 80(7): 3258-3268, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38358092

RESUMEN

BACKGROUND: Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS: In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION: Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.


Asunto(s)
Catalasa , Proteínas de Insectos , Isópteros , Lignina , Animales , Isópteros/inmunología , Isópteros/microbiología , Isópteros/genética , Lignina/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metarhizium/fisiología , Metarhizium/genética , Control de Insectos , Inmunidad Innata , Interferencia de ARN , Secuencia de Aminoácidos
15.
Arthropod Struct Dev ; 78: 101326, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176178

RESUMEN

In lower termites, which exhibit a high degree of compound eye degradation or absence, antennae play a pivotal role in information acquisition. This comprehensive study investigates the olfactory system of Reticulitermes aculabialis, spanning five developmental stages and three castes. Initially, we characterize the structures and distribution of antennal sensilla across different developmental stages. Results demonstrate variations in sensilla types and distributions among stages, aligning with caste-specific division of labor and suggesting their involvement in environmental sensitivity detection, signal differentiation, and nestmate recognition. Subsequently, we explore the impact of antennal excision on olfactory gene expression in various caste categories through transcriptomics, homology analysis, and expression profiling. Findings reveal that olfactory genes expression is influenced by antennal excision, with outcomes varying according to caste and the extent of excision. Finally, utilizing fluorescence in situ hybridization, we precisely localize the expression sites of olfactory genes within the antennae. This research reveals the intricate and adaptable nature of the termite olfactory system, highlighting its significance in adapting to diverse ecological roles and demands of social living.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Hibridación Fluorescente in Situ , Olfato , Sensilos , Perfilación de la Expresión Génica
16.
Insect Mol Biol ; 33(1): 55-68, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37750189

RESUMEN

Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Desecación , Ácidos Grasos , Ácido Graso Desaturasas/genética
17.
Curr Opin Insect Sci ; 61: 101136, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37922983

RESUMEN

The genomes of eusocial insects allow the production and regulation of highly distinct phenotypes, largely independent of genotype. Although rare, eusociality has evolved convergently in at least three insect orders (Hymenoptera, Blattodea and Coleoptera). Despite such disparate origins, eusocial phenotypes show remarkable similarity, exhibiting long-lived reproductives and short-lived sterile workers and soldiers. In this article, we review current knowledge on genomic signatures of eusocial evolution. We confirm that especially an increased regulatory complexity and the adaptive evolution of chemical communication are common to several origins of eusociality. Furthermore, colony life itself can shape genomes of divergent taxa in a similar manner. Future research should be geared towards generating more high-quality genomic resources, especially in hitherto understudied clades, such as ambrosia beetles and termites. The application of more sophisticated tools such as machine learning techniques may allow the detection of more subtle convergent genomic footprints of eusociality.


Asunto(s)
Himenópteros , Isópteros , Animales , Conducta Social , Himenópteros/genética , Genómica , Genoma , Isópteros/genética
18.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059374

RESUMEN

The recombinant genotypes that can be produced when closely related species mate improve the genetic diversity of the population. Among closely related species, the link between interspecific reproduction behaviors and genetic diversity has barely been studied. Reticulitermes chinensis and R. flaviceps, which live close to each other, were used as research subjects in our study to find out how preferring conspecifics affects reproductive behavior between species. We discovered that neither R. chinensis nor R. flaviceps displayed preference behavior for conspecifics. Males of R. chinensis and R. flaviceps chased and groomed not only intraspecific females but also interspecific females. In a brief period of time, 2 mating behaviors, intra- and interspecific mating, were also observed. There were no significant differences in the duration of each behavior (tandem, grooming, and mating) between interspecies and intraspecies partners. Moreover, genetic analysis showed both interspecific mating and intraspecific mating can produce living offspring when the 2 types of mating occur in a colony. Our findings showed that there was no obvious intraspecific preference between the 2 species of termite Reticulitermes when it came to tandem, grooming, and mating, which not only makes it easier for interspecific hybridization to occur but also sheds light on the genetic diversity.


Asunto(s)
Isópteros , Masculino , Femenino , Animales , Isópteros/genética , Reproducción , Simpatría , Hibridación Genética , Variación Genética
19.
PLoS One ; 18(11): e0293813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37956140

RESUMEN

New colonies of Formosan subterranean termites are founded by monogamous pairs. During swarming season, alates (winged reproductives) leave their parental colony. After swarming, they drop to the ground, shed their wings, and male and female dealates find suitable nesting sites where they mate and become kings and queens of new colonies. The first generation of offspring is entirely dependent on the nutritional resources of the founder pair consisting of the fat and protein reserves of the dealates and their microbiota, which include the cellulose-digesting protozoa and diverse bacteria. Since termite kings and queens can live for decades, mate for life and colony success is linked to those initial resources, we hypothesized that gut microbiota of founders affect pair formation. To test this hypothesis, we collected pairs found in nest chambers and single male and female dealates from four swarm populations. The association of three factors (pairing status, sex of the dealates and population) with dealate weights, total protozoa, and protozoa Pseudotrichonympha grassii numbers in dealate hindguts was determined. In addition, Illumina 16S rRNA gene sequencing and the QIIME2 pipeline were used to determine the impact of those three factors on gut bacteria diversity of dealates. Here we report that pairing status was significantly affected by weight and total protozoa numbers, but not by P. grassii numbers and bacteria diversity. Weight and total protozoa numbers were higher in paired compared to single dealates. Males contained significantly higher P. grassii numbers and bacteria richness and marginally higher phylogenetic diversity despite having lower weights than females. In conclusion, this study showed that dealates with high body weight and protozoa numbers are more likely to pair and become colony founders, probably because of competitive advantage. The combined nutritional resources provided by body weight and protozoa symbionts of the parents are important for successful colony foundation and development.


Asunto(s)
Isópteros , Animales , Masculino , Femenino , Isópteros/genética , ARN Ribosómico 16S/genética , Filogenia , Bacterias/genética , Peso Corporal
20.
PLoS One ; 18(11): e0293096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917766

RESUMEN

Altruistic caste, including worker and soldier (derived from worker), plays a critical role in the ecological success of social insects. The proportion of soldiers, soldier sex ratios, and the number of workers vary significantly between species, and also within species, depending on colony developmental stage and environmental factors. However, it is unknown whether there are sex-linked effects from parents on controlling the caste fate or not. Here, we compared soldier sex ratios, soldier proportions, and population size among a four mating types of Reticulitermes amamianus (Ra) and R. speratus (Rs) (male × female, mRa × fRa, mRa × fRs, mRs × fRa, mRs × fRs) and demonstrate that the soldier sex ratio and worker population size of hybrid colonies skew to colonies of king's species, while the soldier proportion skew to queen's species. The survival rate of offspring resulting from interspecies hybridization was significantly higher for mRa × fRs than for mRs × fRa. The results of this study demonstrate the asymmetric influence of kings and queens on caste determination and colony growth, which can contribute to our better understanding of parental influence on the colony dynamics of social insects.


Asunto(s)
Isópteros , Animales , Masculino , Femenino , Isópteros/genética , Razón de Masculinidad , Reproducción , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA