Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.243
1.
Food Chem Toxicol ; 188: 114633, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608924

The cytotoxic mycotoxin deoxynivalenol (DON) reportedly has adverse effects on oocyte maturation and embryonic development in pigs. Recently, the interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention in embryogenesis. However, the involvement of the inositol-requiring enzyme 1 (IRE1)/c-jun N-terminal kinase (JNK)/C/EBP homologous protein (CHOP) pathways of unfolded protein response (UPR) signaling in DON-induced apoptosis in porcine embryos remains unknown. In this study, we revealed that exposure to DON (0.25 µM) substantially decreased cell viability until the blastocyst stage in porcine embryos, concomitant with initiation of cell apoptosis through the IRE1/JNK/CHOP pathways in response to ER stress. Quantitative PCR confirmed that UPR signaling-related transcription factors were upregulated in DON-treated porcine blastocysts. Western blot analysis showed that IRE1/JNK/CHOP signaling was activated in DON-exposed porcine embryos, indicating that ER stress-associated apoptosis was instigated. The ER stress inhibitor tauroursodeoxycholic acid protected against DON-induced ER stress in porcine embryos, indicating that the toxic effects of DON on early developmental competence of porcine embryos can be prevented. In conclusion, DON exposure impairs the developmental ability of porcine embryos by inducing ER stress-mediated apoptosis via IRE1/JNK/CHOP signaling.


Apoptosis , Endoplasmic Reticulum Stress , Transcription Factor CHOP , Trichothecenes , Animals , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Swine , Trichothecenes/toxicity , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Embryo, Mammalian/drug effects , Unfolded Protein Response/drug effects , Blastocyst/drug effects , Blastocyst/metabolism , Female
2.
J Agric Food Chem ; 72(14): 7832-7844, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38544357

Lycopene has been proven to alleviate nonalcoholic steatohepatitis (NASH), but the precise mechanisms are inadequately elucidated. In this study, we found a previously unknown regulatory effect of lycopene on the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in both in vivo and in vitro models. Lycopene supplementation (3 and 6 mg/kg/day) exhibited a significant reduction in lipid accumulation, inflammation, and fibrosis of the liver in mice fed with a high-fat/high-cholesterol diet or a methionine-choline-deficient diet. RNA sequencing uncovered that the mitogen-activated protein kinases signaling pathway, which is closely associated with inflammation and endoplasmic reticulum (ER) stress, was significantly downregulated by lycopene. Furthermore, we found lycopene ameliorated ER swelling and decreased the expression levels of ER stress markers (i.e., immunoglobulin heavy chain binding protein, C/EBP homologous protein, and X-box binding protein 1s). Especially, the inositol-requiring enzyme 1α involved in the ASK1 phosphorylation was inhibited by lycopene, resulting in the decline of the subsequent c-Jun N-terminal kinase (JNK) signaling cascade. ASK1 inhibitor DQOP-1 eliminated the lycopene-induced inhibition of the ASK1-JNK pathway in oleic acid and palmitic acid-induced HepG2 cells. Molecular docking further indicated hydrophobic interactions between lycopene and ASK1. Collectively, our research indicates that lycopene can alleviate ER stress and attenuate inflammation cascades and lipid accumulation by inhibiting the ASK1-JNK pathway.


MAP Kinase Signaling System , Non-alcoholic Fatty Liver Disease , Animals , Mice , MAP Kinase Signaling System/physiology , Lycopene/metabolism , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/pharmacology , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , JNK Mitogen-Activated Protein Kinases/genetics , Inflammation/drug therapy , Inflammation/genetics , Endoplasmic Reticulum Stress , Lipids/pharmacology , Apoptosis
3.
J Neuroimmunol ; 382: 578152, 2023 09 15.
Article En | MEDLINE | ID: mdl-37454525

The c-Jun amino terminal kinases (JNKs) regulate transcription, and studies suggest they contribute to neuropathology in the EAE model of MS. To examine the role of the JNK3 isoform, we compared EAE in JNK3 null mice to wild type (WT) littermates. Although disease severity was similar in female mice, in male JNK3 null mice the day of onset and time to reach 100% incidence occurred sooner, and disease severity was increased. While glial activation in spinal cord was similar, white matter lesions were increased in JNK3 null mice. These results suggest JNK3 normally limits EAE disease in a sex-dependent manner.


Mitogen-Activated Protein Kinase 10 , Multiple Sclerosis , Animals , Female , Male , Mice , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase 10/genetics , Mitogen-Activated Protein Kinase 10/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Patient Acuity , Phosphorylation , Sex Factors
4.
Fish Shellfish Immunol ; 139: 108912, 2023 Aug.
Article En | MEDLINE | ID: mdl-37353063

Temperature is an essential environmental factor for the survival of aquatic animals. Low temperature stress can induce mitochondria to produce excessive ROS and free radicals, and destroy homeostasis. c-Jun N-terminal kinase (JNK) is involved in regulating various physiological processes, including inflammatory responses, cell cycle, reproduction, and apoptosis. Here, we investigated the mechanism of ROS/JNK pathway under low temperature stress both in vitro and in vivo. In this study, transcriptome analysis revealed that apoptosis, autophagy, calcium channel, and antioxidant were involved in the mediation of low temperature tolerance in Pacific white shrimp (penaeus vannamei). PvJNK was activated in response to low temperature stress. Treatments with different temperature caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, and induced apoptosis as confirmed by indicator FITC. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated low temperature induced apoptosis, and inhibited the expression of PvJNK. In addition, we demonstrate that mediator PvJNK translocated to nuclear through interacting with PvRheb. By using flow cytometry, inhibiting PvJNK can increase the expression of apoptosis related genes, accelerate tissue damage, and induce ROS and cell apoptosis. The ultimate inhibition of PvJNK accelerates the mortality of shrimp under low temperature stress. Overall, these findings suggest that during low temperature stress, PvJNK was activated by ROS to regulates apoptosis via interacting with PvRheb to promote PvJNK into the nucleus and to improve low temperature tolerance of shrimp.


JNK Mitogen-Activated Protein Kinases , Penaeidae , Animals , JNK Mitogen-Activated Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Penaeidae/genetics , Penaeidae/metabolism , Temperature , Apoptosis/genetics
5.
Eur J Cell Biol ; 102(2): 151300, 2023 Jun.
Article En | MEDLINE | ID: mdl-36858008

A-kinase anchoring protein (AKAP) comprises a family of scaffold proteins, which decides the subcellular localisation of a combination of signalling molecules. Spoonbill (Spoon) is a putative A-kinase anchoring protein in Drosophila. We have earlier reported that Spoon suppresses ribonuclear foci formed by trinucleotide repeat expanded transcripts associated with Spinocerebellar Ataxia 8 neurodegeneration in Drosophila. However, the role of Spoonbill in cellular signalling was unexplored. In this report, we have unravelled a novel function of Spoon protein in the regulation of the apoptotic pathway. The Drosophila TNFα homolog, Eiger, induces apoptosis via activation of the JNK pathway. We have shown here that Spoonbill is a positive regulator of the Eiger-induced JNK signalling. Further genetic interaction studies show that the spoon interacts with components of the JNK pathway, TGF-ß activated kinase 1 (Tak1 - JNKKK), hemipterous (hep - JNKK) and basket (bsk - JNK). Interestingly, Spoonbill alone can also induce ectopic activation of the JNK pathway in a context-specific manner. To understand the molecular mechanism underlying Spoonbill-mediated modulation of the JNK pathway, the interaction between Spoon and Drosophila JNK was assessed. basket encodes the only known JNK in Drosophila. This serine/threonine-protein kinase phosphorylates Jra/Kay, which transcriptionally regulate downstream targets like Matrix metalloproteinase 1 (Mmp1), puckered (puc), and proapoptotic genes hid, reaper and grim. Interestingly, we found that Spoonbill colocalises and co-immunoprecipitates with the Basket protein in the developing photoreceptor neurons. Hence, we propose that Spoon plays a vital role in JNK-induced apoptosis. Furthermore, stress-induced JNK activation underlying Parkinson's Disease was also examined. In the Parkinson's Drosophila model of neurodegeneration, depletion of Spoonbill leads to a partial reduction of JNK pathway activation, along with improvement in adult motor activity. These observations suggest that the putative scaffold protein Spoonbill is a functional and physical interacting partner of the Drosophila JNK protein, Basket. Spoon protein is localised on the outer mitochondrial membrane (OMM), which may perhaps provide a suitable subcellular niche for activation of Drosophila Basket protein by its kinases which induce apoptosis.


Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , MAP Kinase Signaling System , A Kinase Anchor Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Apoptosis/genetics , Phosphoprotein Phosphatases/metabolism
6.
Drug Resist Updat ; 66: 100908, 2023 01.
Article En | MEDLINE | ID: mdl-36493511

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Gefitinib/pharmacology , Gefitinib/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
7.
PLoS Genet ; 18(12): e1010533, 2022 12.
Article En | MEDLINE | ID: mdl-36469525

Stress-induced cell death, mainly apoptosis, and its subsequent tissue repair is interlinked although our knowledge of this connection is still very limited. An intriguing finding is apoptosis-induced proliferation (AiP), an evolutionary conserved mechanism employed by apoptotic cells to trigger compensatory proliferation of their neighboring cells. Studies using Drosophila as a model organism have revealed that apoptotic caspases and c-Jun N-terminal kinase (JNK) signaling play critical roles to activate AiP. For example, the initiator caspase Dronc, the caspase-9 ortholog in Drosophila, promotes activation of JNK leading to release of mitogenic signals and AiP. Recent studies further revealed that Dronc relocates to the cell cortex via Myo1D, an unconventional myosin, and stimulates production of reactive oxygen species (ROS) to trigger AiP. During this process, ROS can attract hemocytes, the Drosophila macrophages, which further amplify JNK signaling cell non-autonomously. However, the intrinsic components connecting Dronc, ROS and JNK within the stressed signal-producing cells remain elusive. Here, we identified LIM domain kinase 1 (LIMK1), a kinase promoting cellular F-actin polymerization, as a novel regulator of AiP. F-actin accumulates in a Dronc-dependent manner in response to apoptotic stress. Suppression of F-actin polymerization in stressed cells by knocking down LIMK1 or expressing Cofilin, an inhibitor of F-actin elongation, blocks ROS production and JNK activation, hence AiP. Furthermore, Dronc and LIMK1 genetically interact. Co-expression of Dronc and LIMK1 drives F-actin accumulation, ROS production and JNK activation. Interestingly, these synergistic effects between Dronc and LIMK1 depend on Myo1D. Therefore, F-actin remodeling plays an important role mediating caspase-driven ROS production and JNK activation in the process of AiP.


Actins , Drosophila Proteins , Animals , Actins/genetics , Actins/metabolism , Reactive Oxygen Species/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Apoptosis/genetics , Caspases/genetics , Caspases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Cell Proliferation/genetics
8.
Open Biol ; 12(9): 220111, 2022 09.
Article En | MEDLINE | ID: mdl-36069078

The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae, and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones.


Anopheles , Cardiovascular System , Animals , Anopheles/genetics , Hemocytes , Hemolymph , Insecta , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mammals
9.
PLoS One ; 17(9): e0275072, 2022.
Article En | MEDLINE | ID: mdl-36156601

The propensity of viruses to co-opt host cellular machinery by reprogramming the host's RNA-interference machinery has been a major focus of research, however, regulation of host defense mechanisms by virus-encoded miRNA, is an additional regulatory realm gaining momentum in the arena of host-viral interactions. The Human Cytomegalovirus (HCMV) miRNAs, regulate many cellular pathways alone or in concordance with HCMV proteins, thereby paving a conducive environment for successful infection in the human host. We show that HCMV miRNA, hcmv-miR-UL148D inhibits staurosporine-induced apoptosis in HEK293T cells. We establish that ERN1 mRNA is a bonafide target of hcmv-miR-UL148D and its encoded protein IRE1α is translationally repressed by the overexpression of hcmv-miR-UL148D resulting in the attenuation of apoptosis. Unlike the host microRNA seed sequence (6-8 nucleotides), hcmv-miR-UL148D has long complementarity to 3' UTR of ERN1 mRNA resulting in mRNA degradation. The repression of IRE1α by the hcmv-miR-UL148D further downregulates Xbp1 splicing and c-Jun N-terminal kinase phosphorylation thus regulating ER-stress and ER-stress induced apoptotic pathways. Strikingly, depletion of ERN1 attenuates staurosporine-induced apoptosis which further suggests that hcmv-miR-UL148D functions through regulation of its target ERN1. These results uncover a role for hcmv-miR-UL148D and its target ERN1 in regulating ER stress-induced apoptosis.


Cytomegalovirus , MicroRNAs , 3' Untranslated Regions , Apoptosis/genetics , Cytomegalovirus/physiology , Endoplasmic Reticulum/metabolism , Endoribonucleases/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , JNK Mitogen-Activated Protein Kinases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleotides , Protein Serine-Threonine Kinases/genetics , Staurosporine/pharmacology
10.
Int J Cancer ; 151(12): 2215-2228, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36094276

Oncogenic human papillomavirus (HPV) types control the phenotype of cervical cancer cells through the sustained expression of the viral E6/E7 oncogenes. Here, we show that they strongly restrain expression of the putative tumor suppressor protein Dkk1 (Dickkopf-1) in HPV-positive cervical cancer cells through the restriction of p53 expression by the continuously expressed endogenous E6 oncoprotein. Moreover, our study reveals that compromised Dkk1 expression is linked to increased resistance of HPV-positive cervical cancer cells toward the proapoptotic activity of Cisplatin. Although Dkk1 can act as a Wnt antagonist, the antiapoptotic effect resulting from Dkk1 repression is not linked to an activation of this pathway. Rather, transcriptome and functional analyses uncover that Dkk1 repression leads to a strongly diminished stimulation of c-Jun N-terminal kinase (JNK) signaling which is required for efficient apoptosis induction by Cisplatin in cervical cancer cells. Further, we observed that Dkk1-depleted cervical cancer cells induce senescence under Cisplatin treatment instead of apoptosis, suggesting that Dkk1 levels can strongly influence the phenotypic response of these cells toward Cisplatin. Collectively, these results provide new insights into the virus/host cell crosstalk in cervical cancer cells by identifying Dkk1 as a cellular target which is maintained under strong negative control by the continuous expression of the HPV oncogenes. Moreover, they identify Dkk1 as a critical determinant for the sensitivity of cervical cancer cells toward Cisplatin, showing that Dkk1 repression leads to increased Cisplatin resistance by impairing proapoptotic JNK signaling.


Alphapapillomavirus , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Alphapapillomavirus/genetics , Cisplatin/pharmacology , JNK Mitogen-Activated Protein Kinases/genetics , Oncogene Proteins, Viral/metabolism , Oncogenes , Papillomaviridae/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism
11.
J Fish Biol ; 101(4): 972-984, 2022 Oct.
Article En | MEDLINE | ID: mdl-35818162

The mitogen-activated protein kinase (MAPK) gene family has been systematically described in several fish species, but less so in channel catfish (Ictalurus punctatus), which is an important global aquaculture species. In this study, 16 MAPK genes were identified in the channel catfish genome and classified into three subfamilies based on phylogenetic analysis, including six extracellular signal regulated kinase (ERK) genes, six p38-MAPK genes and four C-Jun N-terminal kinase (JNK) genes. All MAPK genes were distributed unevenly across 10 chromosomes, of which three (IpMAPK8, IpMAPK12 and IpMAPK14) underwent teleost-specific whole genome duplication during evolution. Gene expression profiles in channel catfish during salinity stress were analysed using transcriptome sequencing and qRT-PCR (quantitative reverse transcription PCR). Results from reads per kilobase million (RPKM) analysis showed IpMAPK13, IpMAPK14a and IpMAPK14b genes were differentially expressed when compared with other genes between treatment and control groups. Furthermore, three of these genes were validated by qRT-PCR, of which IpMAPK14a expression levels were significantly upregulated in treatment groups (high and low salinity) when compared with the control group, with the highest expression levels in the low salinity group (P < 0.05). Therefore, IpMAPK14a may have important response roles to salinity stress in channel catfish.


Ictaluridae , Animals , Ictaluridae/genetics , Phylogeny , Salt Stress , JNK Mitogen-Activated Protein Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/genetics
12.
J Biol Chem ; 298(8): 102263, 2022 08.
Article En | MEDLINE | ID: mdl-35843311

Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.


CDC2 Protein Kinase , Cyclin-Dependent Kinase 2 , Ovarian Neoplasms , CDC2 Protein Kinase/metabolism , Cell Division/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Female , G2 Phase Cell Cycle Checkpoints , HeLa Cells , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Mitosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphorylation , Mitogen-Activated Protein Kinase Kinase Kinase 11
13.
Leukemia ; 36(7): 1861-1869, 2022 07.
Article En | MEDLINE | ID: mdl-35488020

Anthracycline-based chemotherapy resistance represents a major challenge in diffuse large B-cell lymphoma (DLBCL). MiRNA and gene expression profiles (n = 47) were determined to uncover potential chemoresistance mechanisms and therapeutic approaches. An independent correlation between high expression of miRNA-363-3p and chemoresistance was observed and validated in a larger cohort (n = 106). MiRNA-363-3p was shown to reduce doxorubicin-induced apoptosis and tumor shrinkage in in vitro and in vivo experiments by ectopic expression and CRISPR/Cas9-mediated knockout in DLBCL cell lines. DNA methylation was found to participate in transcriptional regulation of miRNA-363-3p. Further investigation revealed that dual specificity phosphatase 10 (DUSP10) is a target of miRNA-363-3p and its suppression promotes the phosphorylation of c-Jun N-terminal kinase (JNK). The miRNA-363-3p/DUSP10/JNK axis was predominantly associated with negative regulation of homologous recombination (HR) and DNA repair pathways. Ectopic expression of miRNA-363-3p more effectively repaired doxorubicin-induced double-strand break (DSB) while enhancing non-homologous end joining repair and reducing HR repair. Targeting JNK and poly (ADP-ribose) polymerase 1 significantly inhibited doxorubicin-induced DSB repair, increased doxorubicin-induced cell apoptosis and tumor shrinkage, and improved the survival of tumor-bearing mice. In conclusion, the miRNA-363-3p/DUSP10/JNK axis is a novel chemoresistance mechanism in DLBCL that may be reversed by targeted therapy.


Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Animals , Cell Line, Tumor , DNA Damage , DNA End-Joining Repair , DNA Repair , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Dual-Specificity Phosphatases/genetics , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Mice , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics
14.
Bioengineered ; 13(3): 4869-4884, 2022 03.
Article En | MEDLINE | ID: mdl-35196185

Lung adenocarcinoma (LUAD) is a highly malignant tumor. In this study, we examined the role of miR-3646 and its underlying mechanism in the progression of LUAD. The expression of miR-3646 and sorbin and SH3 domain-containing protein 1 (SORBS1) in LUAD tissues and cells was evaluated by quantitative reverse transcription-polymerase chain reaction. LUAD cell adhesion, proliferation, apoptosis was determined. The targeting relationship between SORBS1 and miR-3646 was verified by dual luciferase and RNA pull-down assays. In vivo assays were performed to verify the in vitro results. The expression of miR-3646 was found to be upregulated in LUAD tissues and cells. MiR-3646 overexpression stimulated the proliferation and adhesion of LUAD cells but inhibite d apoptosis, whereas a miR-3646 inhibitor produced the opposite results. Furthermore, the inhibitory effect of miR-3646 inhibitor was verified in vivo. SORBS1, a target gene identified downstream of miR-3646, was downregulated in LUAD tissues and cells. Additionally, increased SORBS1 inhibited the malignant phenotypes of LUAD cells, which was restored by miR-3646 upregulation. Additionally, western blot analysis revealed that SORBS1 ectopic expression disrupted the JNK signaling pathway, and this effect was restored by miR-3646 overexpression. Thus, this study revealed that miR-3646 promotes LUAD cell proliferation and adhesion, and reduces apoptosis by directly downregulating SORBS1 via the JNK signaling pathway. Investigation of the molecular mechanism of LUAD carcinogenesis revealed that miR-3646 may serve as a biomarker for LUAD treatment.in vivo.


Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Microfilament Proteins , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , Microfilament Proteins/genetics , Signal Transduction/genetics
15.
Viruses ; 14(2)2022 02 09.
Article En | MEDLINE | ID: mdl-35215950

Encephalomyocarditis virus can cause myocarditis and encephalitis in pigs and other mammals, thus posing a potential threat to public health safety. The 2A protein is an important virulence factor of EMCV. Previous studies have shown that the 2A protein may be related to the inhibition of apoptosis by virus, but its specific molecular mechanism is not clear. In this study, the 2A protein was expressed in Escherichia coli in order to find interacting cell proteins. A pull down assay, coupled with mass spectrometry, revealed that the 2A protein possibly interacted with annexin A2. Co-immunoprecipitation assays and confocal imaging analysis further demonstrated that the 2A protein interacted with annexin A2 in cells. In reducing the expression of annexin A2 by siRNA, the ability of the 2A protein to inhibit apoptosis was weakened and the proliferation of EMCV was slowed down. These results suggest that annexin A2 is closely related to the inhibition of apoptosis by 2A. Furthermore, both RT-PCR and western blot results showed that the 2A protein requires annexin A2 interaction to inhibit apoptosis via JNK/c-Jun pathway. Taken together, our data indicate that the 2A protein inhibits apoptosis by interacting with annexin A2 via the JNK/c-Jun pathway. These findings provide insight into the molecular pathogenesis underlying EMCV infection.


Annexin A2/metabolism , Apoptosis , Encephalomyocarditis virus/physiology , JNK Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Viral Proteins/metabolism , Animals , Annexin A2/genetics , Apoptosis/genetics , Cell Line , Cricetinae , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System , Protein Binding , Proto-Oncogene Proteins c-jun/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine , Viral Proteins/genetics , Virus Replication
16.
Cell Chem Biol ; 29(2): 259-275.e10, 2022 02 17.
Article En | MEDLINE | ID: mdl-34520743

Chemical splicing modulators that bind to the spliceosome have provided an attractive avenue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. However, the biological effect of proteins containing translated intron sequences remains unclear. Here, we identify a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) via genome-wide ribosome profiling and bio-orthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through c-Jun N-terminal kinase (JNK) phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.


JNK Mitogen-Activated Protein Kinases/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , RNA Splicing/genetics , Spliceosomes/genetics , Cell Line , Enzyme Inhibitors/pharmacology , Humans , Introns , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Pyrans/pharmacology , RNA Splicing/drug effects , RNA-Seq , Spiro Compounds/pharmacology , Spliceosomes/drug effects
17.
J Appl Microbiol ; 132(1): 605-617, 2022 Jan.
Article En | MEDLINE | ID: mdl-34062034

AIMS: Zona occludens-1 (ZO-1) is a key regulatory tight junction protein that plays an important role in maintaining gastrointestinal health. In this study, we investigated the protective effect and regulation mechanism of the probiotic Enterococcus faecium HDRsEf1 on tight junction protein ZO-1 at the cellular and molecular levels. METHODS AND RESULTS: We established lipopolysaccharide (LPS)-induced intestinal epithelial cell injury model and detected the protective effect of HDRsEf1 on ZO-1 in IPEC-J2 cells by real-time polymerase chain reaction and Western blot. The results showed that HDRsEf1 inhibited the downregulation of ZO-1 expression induced by LPS. HDRsEf1 stabilized the destruction of the ZO-1 structure caused by LPS in an immunofluorescence assay. Through gene overexpression and siRNA interference tests, we found that transcription factor activator protein 1 (AP-1) inhibited the level of ZO-1 expression. Silencing experiment further supported that the protective effect of HDRSEF1 might be mediated by suppression of LPS-provoked activation of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 7 (MKK7)/c-Jun N-terminal kinase (JNK) signalling pathways. In addition, HDRsEf1 could stabilize ZO-1 expression by increasing toll-like receptor 2 (TLR2) expression and competing with LPS for the TLR4 binding site. More interestingly, we also found that HDRsEf1 could stabilize ZO-1 expression through inhibiting the production of tumour necrosis factor-α (TNF-α) induced by LPS. CONCLUSIONS: HDRsEf1 could protect the IPEC-J2 cell against LPS induced downregulation of ZO-1 expression by inhibiting the activation of TLR2/4-mediated JNK-AP-1 and signalling cascade and the production of TNF-α. SIGNIFICANCE AND IMPACT OF THE STUDY: This study can provide a theoretical basis for probiotics to regulate the expression of intestinal tight junction proteins, and supply technical support for probiotics to prevent and treat animal intestinal infectious diseases.


Enterococcus faecium , Lipopolysaccharides , Animals , Down-Regulation , JNK Mitogen-Activated Protein Kinases/genetics , Toll-Like Receptor 2/genetics , Transcription Factor AP-1/genetics
18.
Toxicol Appl Pharmacol ; 434: 115817, 2022 01 01.
Article En | MEDLINE | ID: mdl-34890640

Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.


Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Pyridones/therapeutic use , Analgesics, Non-Narcotic/toxicity , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice , Phosphorylation
19.
Pharm Biol ; 60(1): 87-95, 2022 Dec.
Article En | MEDLINE | ID: mdl-34962453

CONTEXT: Elian Granules have been applied in the treatment of precancerous lesions of gastric cancer (PLGC) and achieved good results. However, its exact mechanism remains unclear. OBJECTIVES: To explore the mechanism of Elian granules in treating PLGC through the mitogen-activated protein kinase (MAPK) signalling pathway based on network pharmacology. MATERIALS AND METHODS: Through network pharmacological methods, the targets of the active component of Elian granules against PLGC were obtained. Subsequently, Specific Pathogen Free (SPF) male Sprague Dawley (SD) rats were randomly divided into normal, model, and Elian granule groups. The N-methyl-N'-nitro-N-nitrosoguanidine comprehensive method was used to establish the PLGC rat model. The model and Elian granule groups were given normal saline and Elian granule aqueous solution (3.24 g/kg/d) intragastric administration, respectively, for 24 weeks. The pathological changes in gastric tissues were observed by hematoxylin-eosin staining. The protein expression of p-JNK and p-p38 was verified by western blotting. RESULTS: 394 and 4,395 targets were identified in Elian granules and PLGC, respectively. The 190 common targets were mainly enriched in MAPK signalling pathways. The gastric mucosal epithelium was still intact, the glands were arranged regularly, and no goblet cells or apparent inflammatory cell infiltration were observed in the Elian granule group. The expression of p-JNK and p-p38 protein of the Elian granule group (0.83 ± 0.08; 1.18 ± 0.40) was significantly higher than the model group (0.27 ± 0.14; 0.63 ± 0.14) (p < 0.01; p < 0.05). DISCUSSION AND CONCLUSIONS: Elian granules may play a critical role in the treatment of rat PLGC by up-regulating the expression of p-JNK and p-p38 proteins in the MAPK signalling pathway, thus providing a scientific basis for clinical application.


Drugs, Chinese Herbal/pharmacology , MAP Kinase Signaling System/drug effects , Precancerous Conditions/drug therapy , Stomach Neoplasms/drug therapy , Animals , Disease Models, Animal , JNK Mitogen-Activated Protein Kinases/genetics , Male , Methylnitronitrosoguanidine , Network Pharmacology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/genetics
20.
Biochem Biophys Res Commun ; 587: 16-23, 2022 01 08.
Article En | MEDLINE | ID: mdl-34861471

Arsenic is a potent carcinogen in humans. However, the molecular mechanisms underlying its toxicity in lung cancer remain unclear. Here, we report that arsenite-induced cytotoxicity is regulated by SQSTM1/p62 and BNIP3L/Nix signaling in non-small-cell lung cancer H460 cells. Arsenite exposure resulted in dose-dependent growth inhibition, which was associated with apoptosis, as demonstrated by depolarized mitochondrial membrane potential and cleavage of caspase-8, caspase-3, PARP-1, and Bax. The autophagy adaptor p62 was detected in the monomeric and multiple high-molecular-weight (HMW) forms, and protein levels were upregulated depending on both arsenite concentrations (≤45 µM) and exposure times (<24 h). LC3-II, an autophagy marker, was upregulated as early as 1 h after arsenite treatment. Expression of Nix, a mitochondrial outer membrane protein, continued to increase with arsenite concentration and exposure time; it was detected in the monomeric and multiple HMW forms. Soon after arsenite exposure, p62 colocalized with Nix in the cytoplasm, and p62 knockdown reduced the Nix levels and increased the LC3-II levels. In contrast, Nix knockdown did not affect the p62 and LC3-II levels but reduced caspase-8, caspase-3, and Bax cleavage, indicating that Nix accumulation resulted from its reduced autophagic degradation and promoted apoptosis. p38 inhibition markedly increased arsenite-induced Nix protein and reduced p62 protein levels, resulting in increased autophagy and apoptosis. Furthermore, c-Jun NH2-terminal kinase inhibition reduced Nix and Bax cleavage, and both signaling pathways were suppressed by N-acetylcysteine treatment. Our results suggest that arsenite-induced cytotoxicity is modulated by the coordinated action of p62 and Nix through MAPK.


Arsenites/toxicity , Epithelial Cells/drug effects , JNK Mitogen-Activated Protein Kinases/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics , Sequestosome-1 Protein/genetics , Sodium Compounds/toxicity , Tumor Suppressor Proteins/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Proto-Oncogene Proteins/metabolism , Sequestosome-1 Protein/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
...