Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Biomolecules ; 11(10)2021 10 09.
Article En | MEDLINE | ID: mdl-34680119

Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.


Carboxylic Ester Hydrolases/metabolism , Jatropha/enzymology , Models, Molecular , Static Electricity , Amino Acid Sequence , Analysis of Variance , Carboxylic Ester Hydrolases/chemistry , Catalytic Domain , Cations, Divalent/pharmacology , Esterases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Isoelectric Point , Proteolysis/drug effects , Proteomics , Solvents , Stereoisomerism , Substrate Specificity/drug effects , Temperature
2.
Plant Physiol Biochem ; 136: 92-97, 2019 Mar.
Article En | MEDLINE | ID: mdl-30660100

Aluminum (Al) toxicity has been recognized to be a main limiting factor of crop productivity in acid soil. Al interacts with cell walls disrupting the functions of the plasma membrane and is associated with oxidative damage and mitochondrial dysfunction. Jatropha curcas L. (J. curcas) is a drought resistant plant, widely distributed around the world, with great economic and medicinal importance. Here we investigated the effects of Al on J. curcas mitochondrial function and cell viability, analyzing mitochondrial respiration, phenolic compounds, reducing sugars and cell viability in cultured J. curcas cells. The results showed that at 70 µM, Al limited mitochondrial respiration by inhibiting the alternative oxidase (AOX) pathway in the respiratory chain. An increased concentration of reducing sugars and reduced concentration of intracellular phenolic compounds was observed during respiratory inhibition. After inhibition, a time-dependent upregulation of AOX mRNA was observed followed by restoration of respiratory activity and reducing sugar concentrations. Cultured J. curcas cells were very resistant to Al-induced cell death. In addition, at 70 µM, Al also appeared as an inhibitor of cell wall invertase. In conclusion, Al tolerance in cultured J. curcas cells involves a inhibition of mitochondrial AOX pathway, which seems to start an oxidative burst to induce AOX upregulation, which in turn restores consumption of O2 and substrates. These data provide new insight into the signaling cascades that modulate the Al tolerance mechanism.


Aluminum/pharmacology , Jatropha/drug effects , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Cell Culture Techniques , Jatropha/enzymology , Jatropha/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidoreductases/antagonists & inhibitors , Oxygen Consumption/drug effects , Plant Proteins/antagonists & inhibitors
3.
Plant Biotechnol J ; 17(2): 517-530, 2019 02.
Article En | MEDLINE | ID: mdl-30059608

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed.


Euphorbiaceae/enzymology , Jatropha/enzymology , Multigene Family , Phosphorus-Oxygen Lyases/metabolism , Biofuels , Chromosome Mapping , Euphorbiaceae/genetics , Euphorbiaceae/growth & development , Gene Expression Profiling , Jatropha/genetics , Jatropha/growth & development , Lipids/biosynthesis , Molecular Sequence Annotation , Phorbol Esters/metabolism , Phosphorus-Oxygen Lyases/genetics , Phylogeny , Plant Breeding , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/growth & development
4.
Sci Rep ; 8(1): 331, 2018 01 10.
Article En | MEDLINE | ID: mdl-29321580

Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.


Jatropha/genetics , Multigene Family , Papain/genetics , Ricinus communis/genetics , Sequence Analysis, DNA , Ricinus communis/classification , Ricinus communis/enzymology , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Jatropha/classification , Jatropha/enzymology , Papain/metabolism , Phylogeny , Transcriptome
5.
Metab Eng ; 45: 142-148, 2018 01.
Article En | MEDLINE | ID: mdl-29247866

Euphorbiaceae are an important source of medically important diterpenoids, such as the anticancer drug ingenol-3-angelate and the antiretroviral drug prostratin. However, extraction from the genetically intractable natural producers is often limited by the small quantities produced, while the organic synthesis of terpene-derived drugs is challenging and similarly low-yielding. While transplanting the biosynthetic pathway into a heterologous host has proven successful for some drugs, it has been largely unsuccessful for diterpenoids due to their elaborate biosynthetic pathways and lack of genetic resources and tools for gene discovery. We engineered casbene precursor production in S. cerevisiae, verified the ability of six Euphorbia lathyris and Jatropha curcas cytochrome P450s to oxidize casbene, and optimized the expression of these P450s and an alcohol dehydrogenase to generate jolkinol C, achieving ~800mg/L of jolkinol C and over 1g/L total oxidized casbanes in millititer plates, the highest titer of oxidized diterpenes in yeast reported to date. This strain enables the semisynthesis of biologically active jolkinol C derivatives and will be an important tool in the elucidation of the biosynthetic pathways for ingenanes, tiglianes, and lathyranes. These findings demonstrate the ability of S. cerevisiae to produce oxidized drug precursors in quantities that are sufficient for drug development and pathway discovery.


Cytochrome P-450 Enzyme System , Diterpenes/metabolism , Euphorbia/genetics , Jatropha/genetics , Microorganisms, Genetically-Modified , Plant Proteins , Saccharomyces cerevisiae , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Euphorbia/enzymology , Jatropha/enzymology , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
J Agric Food Chem ; 65(39): 8683-8690, 2017 Oct 04.
Article En | MEDLINE | ID: mdl-28880083

The aim of this work was to evaluate the potential of crude lipase powders made from Adansonia grandidieri and Jatropha mahafalensis seeds for the synthesis of fatty acid alkyl esters in a solvent-free system. The influence of the nature of the alcohol, the amount of glycerol, and hydration of the powder was investigated. Results showed that the activity of these crude lipase powders was inversely proportional to the alcohol polarity and the amount of the glycerol in the reaction medium. To ensure optimum activity, A. grandidieri and J. mahafalensis powders must be conditioned to a water activity of 0.33 and 0.66. To obtain a fatty acid ethyl ester yield greater than 95% with A. grandidieri, ethanol should be introduced at an amount corresponding to a triacylglycerol to ethanol molar ratio of 2:1 every 15 h for 96 h and use 25% of preconditioned crude lipase powders (2 additions of 12.5%).


Biofuels , Lipase/metabolism , Seeds/enzymology , Adansonia/enzymology , Catalysis , Esterification , Esters , Ethanol , Fatty Acids , Glycerol , Jatropha/enzymology , Thermodynamics , Water
7.
J Plant Physiol ; 214: 152-160, 2017 Jul.
Article En | MEDLINE | ID: mdl-28521208

The ß-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants.


3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Cloning, Molecular/methods , Isoenzymes/metabolism , Jatropha/enzymology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/classification , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Amino Acid Sequence , Isoenzymes/classification , Isoenzymes/genetics , Jatropha/genetics , Phylogeny
8.
Plant Physiol Biochem ; 115: 249-258, 2017 Jun.
Article En | MEDLINE | ID: mdl-28399490

The description of physiological disorders in physic nut plants deficient in nitrogen (N), phosphorus (P) and potassium (K) may help to predict nutritional imbalances before the appearance of visual symptoms and to guide strategies for early nutrient supply. The aim of this study was to evaluate the growth of physic nuts (Jatropha curcas L.) during initial development by analyzing the gas exchange parameters, nutrient uptake and use efficiency, as well as the nitrate reductase and acid phosphatase activities and polyamine content. Plants were grown in a complete nutrient solution and solutions from which N, P or K was omitted. The nitrate reductase activity, phosphatase acid activity, polyamine content and gas exchange parameters from leaves of N, P and K-deficient plants indicates earlier imbalances before the appearance of visual symptoms. Nutrient deficiencies resulted in reduced plant growth, although P- and K-deficient plants retained normal net photosynthesis (A), stomatal conductance (gs) and instantaneous carboxylation efficiency (k) during the first evaluation periods, as modulated by the P and K use efficiencies. Increased phosphatase acid activity in P-deficient plants may also contribute to the P use efficiency and to A and gs during the first evaluations. Early physiological and biochemical evaluations of N-, P- and K-starved plants may rely on reliable, useful methods to predict early nutritional imbalances.


Jatropha/enzymology , Jatropha/metabolism , Nitrate Reductase/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Potassium/metabolism , Jatropha/genetics , Nitrate Reductase/genetics , Nitrogen/deficiency , Phosphorus/deficiency , Polyamines/metabolism
9.
J Plant Physiol ; 212: 69-79, 2017 May.
Article En | MEDLINE | ID: mdl-28278442

Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na+ and Cl- than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H2O2) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation.


Jatropha/metabolism , Nitric Oxide/pharmacology , Oxidation-Reduction/drug effects , Salt Tolerance/drug effects , Seedlings/drug effects , Adaptation, Physiological/drug effects , Antioxidants/metabolism , Ascorbic Acid/metabolism , Catalase/metabolism , Chlorides/metabolism , Chlorides/toxicity , Enzyme Activation , Gene Expression Regulation, Plant/drug effects , Genes, Plant/drug effects , Genes, Plant/genetics , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Jatropha/enzymology , Jatropha/growth & development , Oxidative Stress/drug effects , Plant Proteins/drug effects , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Salinity , Seeds/drug effects , Seeds/genetics , Sodium/metabolism , Sodium/toxicity , Sodium Chloride/adverse effects , Sodium Chloride/metabolism , Stress, Physiological/drug effects , Time Factors , Up-Regulation
10.
Bioresour Technol ; 225: 215-224, 2017 Feb.
Article En | MEDLINE | ID: mdl-27894040

Jatropha de-oiled seed cake was explored to utilize as a basic nutrient source for Candida parapsilosis, isolated from poultry garbage and selected based on the production of lipase and phytase enzymes under submerged fermentation. At optimized parameters under solid-state fermentation, lipase and phytase activities were recorded as 1056.66±2.92 and 833±2.5U/g of substrate (U/g), respectively. Besides enzyme production, complete elimination of phorbol esters and significant phytate reduction from 6.51±0.01 to 0.43±0.01g/100g of seed cake were noted after 3days incubation. Curcin and trypsin inhibition activity were reduced significantly from 26.33±0.43 to 0.56±0.02mg/100g and 229.33±2.02 to 11.66±0.28U/g, respectively after 5days incubation. Saponins were reduced from 5.56±0.19 to 1.95±0.01g/100g of seed cake after 7days incubation.


6-Phytase/metabolism , Jatropha/enzymology , Lipase/metabolism , Plant Proteins/metabolism , Refuse Disposal/methods , Seeds , Animals , Candida , Fermentation , Garbage , Poultry , Seeds/chemistry , Seeds/enzymology
11.
J Plant Physiol ; 195: 39-49, 2016 May 20.
Article En | MEDLINE | ID: mdl-26995646

Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, ß-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.


Aldehyde Reductase/metabolism , Jatropha/enzymology , Pyruvaldehyde/metabolism , Aldehyde Reductase/genetics , Aldehydes/metabolism , Aldehydes/toxicity , Aldo-Keto Reductases , Droughts , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/physiology , Gene Expression , Jatropha/genetics , Jatropha/physiology , Ketones/metabolism , Ketones/toxicity , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Polyethylene Glycols/metabolism , Pyruvaldehyde/toxicity , Recombinant Proteins , Sodium Chloride/metabolism , Stress, Physiological , Transgenes , Yeasts/enzymology , Yeasts/genetics , Yeasts/physiology
12.
Plant Cell Rep ; 35(1): 103-14, 2016 Jan.
Article En | MEDLINE | ID: mdl-26441058

KEY MESSAGE: Casbene is a precursor to phorbol esters and down-regulating casbene synthase effectively reduces phorbol ester biosynthesis. Seed-specific reduction of phorbol ester (PE) helps develop Jatropha seed cake for animal nutrition. Phorbol esters (PEs) are diterpenoids present in some Euphorbiaceae family members like Jatropha curcas L. (Jatropha), a tropical shrub yielding high-quality oil suitable as feedstock for biodiesel and bio jet fuel. Jatropha seed contains up to 40 % of oil and can produce oil together with cake containing high-quality proteins. However, skin-irritating and cancer-promoting PEs make Jatropha cake meal unsuitable for animal nutrition and also raise some safety and environmental concerns on its planting and processing. Two casbene synthase gene (JcCASA163 and JcCASD168) homologues were cloned from Jatropha genome and both genes were highly expressed during seed development. In vitro functional analysis proved casbene synthase activity of JcCASA163 in converting geranylgeranyl diphosphate into casbene which has been speculated to be the precursor to PEs. A seed-specific promoter driving inverted repeats for RNAi interference targeting at either JcCASA163 or both genes could effectively down-regulate casbene synthase gene expression with concurrent marked reduction of PE level (by as much as 85 %) in seeds with no pleiotropic effects observed. Such engineered low PE in seed was heritable and co-segregated with the transgene. Our work implicated casbene synthase in Jatropha PE biosynthesis and provided evidence for casbene being the precursor for PEs. The success in reducing seed PE content through down-regulation of casbene synthase demonstrates the feasibility of intercepting PE biosynthesis in Jatropha seed to help address safety concerns on Jatropha plantation and seed processing and facilitate use of its seed protein for animal nutrition.


Gene Expression Regulation, Plant , Jatropha/enzymology , Phorbol Esters/metabolism , Phosphorus-Oxygen Lyases/genetics , Amino Acid Sequence , Animals , Biofuels , Down-Regulation , Gene Expression Profiling , Genetic Engineering , Humans , Jatropha/chemistry , Jatropha/genetics , Organ Specificity , Phosphorus-Oxygen Lyases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , RNA Interference , Seeds/chemistry , Seeds/enzymology , Seeds/genetics , Sequence Alignment
13.
Genet Mol Res ; 14(2): 4879-89, 2015 May 11.
Article En | MEDLINE | ID: mdl-25966262

Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.


Arabidopsis/genetics , Ascorbate Peroxidases/genetics , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Arabidopsis/growth & development , Chlorophyll/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Jatropha/enzymology , Plants, Genetically Modified/physiology , Salt Tolerance/physiology , Sodium Chloride/toxicity , Stress, Physiological/drug effects , Stress, Physiological/genetics
14.
Appl Biochem Biotechnol ; 176(2): 428-39, 2015 May.
Article En | MEDLINE | ID: mdl-25825250

Reactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp. This ORF encodes a polypeptide of 504 amino acids with theoretical molecular weight of 56.6 kDa and pI value of 4.85. One N-terminal signal peptide (-MASKGSIWSCMFLFSLI VAISAGEG-) and the C-terminal anchoring sequence motif (-KDEL-) specific to the endoplasmic reticulum, as well as two thioredoxin domains (-CGHC-), are also found by predictions. Through semi-quantitative RT-PCR, the expression of JcPDI was characterized to be tissue-differential strongly in leaves and roots, but weakly in stems, and of cold-induced alternations. Furthermore, JcPDI overexpression in yeast could notably enhance the cold resistance of host cells. Conclusively, these results explicitly suggested a considerable association of JcPDI to cold response and a putative application potential for its correlated genetic engineering.


Cloning, Molecular , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Jatropha , Plant Proteins , Protein Disulfide-Isomerases , Jatropha/enzymology , Jatropha/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Protein Disulfide-Isomerases/biosynthesis , Protein Disulfide-Isomerases/genetics
15.
Genet Mol Res ; 14(1): 2086-98, 2015 Mar 20.
Article En | MEDLINE | ID: mdl-25867355

Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To characterize the function of this gene with respect to salt tolerance, the construct p35S:JcCu/Zn-SOD was developed and transformed into Arabidopsis using Agrobacterium-mediated transformation. Compared with wild-type, transgenic plants over-expressing JcCu/Zn-SOD showed enhanced tolerance to salt stress during germination, seedling establishment, and growth in terms of longer root, larger rosette area, and a larger number of leaves in addition to higher SOD activity levels under NaCl stress. In addition, over-expression of JcCu/Zn-SOD resulted in lower monodialdehyde content in transgenic Arabidopsis compared to wild-type plants under the same NaCl stress. Therefore, JcCu/Zn-SOD can increase a plant salt stress tolerance potentially by reducing oxidant injury.


Arabidopsis/enzymology , Jatropha/enzymology , Salt Tolerance/physiology , Superoxide Dismutase/physiology , Arabidopsis/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Jatropha/genetics , Plants, Genetically Modified , Salt Tolerance/genetics , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/genetics , Sodium Chloride , Stress, Physiological/genetics , Stress, Physiological/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
16.
Biotechnol Lett ; 37(4): 891-8, 2015 Apr.
Article En | MEDLINE | ID: mdl-25515798

Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.


Arabidopsis/enzymology , Ascorbate Peroxidases/chemistry , Ascorbate Peroxidases/metabolism , Jatropha/enzymology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Arabidopsis/radiation effects , Ascorbate Peroxidases/genetics , Enzyme Stability , Jatropha/radiation effects , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Fusion Proteins/genetics , Temperature
17.
Luminescence ; 30(6): 818-22, 2015 Sep.
Article En | MEDLINE | ID: mdl-25511847

Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection.


Jatropha/enzymology , Luminescent Measurements/methods , Luminol/chemistry , Peroxidase/chemistry , Catalysis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Hydrogen Peroxide/chemistry , Kinetics , Limit of Detection , Luminescence , Oxidation-Reduction , Peroxidase/metabolism , Plant Leaves/enzymology , Temperature
18.
Appl Biochem Biotechnol ; 175(5): 2413-26, 2015 Mar.
Article En | MEDLINE | ID: mdl-25502926

Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response.


Cloning, Molecular , Jatropha/enzymology , Plant Proteins/genetics , Proline Oxidase/genetics , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Plant , Jatropha/chemistry , Jatropha/classification , Jatropha/genetics , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Proline Oxidase/chemistry , Proline Oxidase/metabolism , Sequence Alignment
19.
Electron. j. biotechnol ; 17(6): 296-303, Nov. 2014. ilus, graf, tab
Article En | LILACS | ID: lil-730261

Background Jatropha curcas is a rich reservoir of pharmaceutically active terpenoids. More than 25 terpenoids have been isolated from this plant, and their activities are anti-bacterial, anti-fungal, anti-cancer, insecticidal, rodenticidal, cytotoxic and molluscicidal. But not much is known about the pathway involved in the biosynthesis of terpenoids. The present investigation describes the cloning, characterization and subcellular localization of isopentenyl diphosphate isomerase (IPI) gene from J. curcas. IPI is one of the rate limiting enzymes in the biosynthesis of terpenoids, catalyzing the crucial interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Results A full-length JcIPI cDNA consisting of 1355 bp was cloned. It encoded a protein of 305 amino acids. Analysis of deduced amino acid sequence predicted the presence of conserved active sites, metal binding sites and the NUDIX motif, which were consistent with other IPIs. Phylogenetic analysis indicated a significant evolutionary relatedness with Ricinus communis. Southern blot analysis showed the presence of an IPI multigene family in J. curcas. Comparative expression analysis of tissue specific JcIPI demonstrated the highest transcript level in flowers. Abiotic factors could induce the expression of JcIPI. Subcellular distribution showed that JcIPI was localized in chloroplasts. Conclusion This is the first report of cloning and characterization of IPI from J. curcas. Our study will be of significant interest to understanding the regulatory role of IPI in the biosynthesis of terpenoids, although its function still needs further confirmation.


Carbon-Carbon Double Bond Isomerases/genetics , Carbon-Carbon Double Bond Isomerases/metabolism , Jatropha/enzymology , Jatropha/chemistry , Hemiterpenes/genetics , Hemiterpenes/metabolism , Phylogeny , RNA/isolation & purification , Gene Expression , Chloroplasts , Blotting, Southern , Cloning, Molecular , DNA, Complementary/chemical synthesis , Reverse Transcriptase Polymerase Chain Reaction
20.
Bull Environ Contam Toxicol ; 93(5): 611-7, 2014 Nov.
Article En | MEDLINE | ID: mdl-25212459

Effects of lead treatment on growth and micronutrient uptake in Jatropha curcas L. seedlings were assessed by means of microcosm experiments. Results suggested that superoxide dismutase (SOD) activity increased with increasing lead concentration. There was significant positive correlation between lead treatment concentration and SOD and peroxidase activity. Catalase activity was initiated under lower lead stress but, was inhibited under higher lead exposure. Lead had a stimulating effect on seedlings height and leaf area at lower lead concentrations. The J. curcas can accumulate higher amounts of available lead from soil but can translocate only low amounts to the shoots. Results indicating SOD and peroxidase activity in J. curcas seedlings played an important role in resisting the oxidative stress induced by lead. The addition of lead significantly increased the content of zinc in plant tissue and enhanced the transport of iron from roots to shoots but contributed to a decrease in measured copper, iron, and manganese content.


Jatropha/drug effects , Jatropha/metabolism , Lead/toxicity , Micronutrients/metabolism , Soil Pollutants/toxicity , Biological Transport/drug effects , Dose-Response Relationship, Drug , Jatropha/enzymology , Jatropha/growth & development , Lead/metabolism , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism
...