Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Tree Physiol ; 44(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38531772

Xylem embolism is a significant factor in tree mortality. Restoration of hydraulic conductivity after massive embolization of the vascular system requires the application of positive pressure to the vessels and/or the creation of new conductive elements. Some species generate positive pressure from the root system to propagate pressure in distal, aboveground organs in spring, whereas other species generate positive pressure locally at the stem level during winter. We provide a mechanistic explanation for winter stem pressure build-up in the walnut tree. We have developed a physical model that accounts for temperature fluctuations and phase transitions. This model is based on the exchange of water and sugars between living cells and vessels. Our computations demonstrate that vessel pressurization can be attributed to the transfer of water between vessels across the parenchyma rays, which is facilitated by a radial imbalance in sugar concentration. The ability to dispose of soluble sugars in living cells, and to transport them between living cells and up to the vessels, is identified as the main drivers of stem pressure build-up in the walnut tree.


Juglans , Plant Stems , Seasons , Trees , Xylem , Juglans/physiology , Plant Stems/physiology , Xylem/physiology , Trees/physiology , Pressure , Models, Biological , Water/metabolism , Water/physiology , Biological Transport
2.
Plant Physiol Biochem ; 210: 108548, 2024 May.
Article En | MEDLINE | ID: mdl-38552263

Salt stress is an important abiotic stress that seriously affects plant growth. In order to research the salt tolerance of walnut rootstocks so as to provide scientific basis for screening salt-tolerant walnut rootstocks, two kinds of black walnut seedlings, Juglans microcarpa L. (JM) and Juglans nigra L. (JN), were treated under salt stress with different concentrations of NaCl (0, 50, 100, and 200 mM) and the growth situation of seedlings were observed. The physiological indexes of JM and JN seedlings were also measured in different days after treatment. Our study showed salt stress inhibited seedlings growth and limited biomass accumulation. Walnut mainly increased osmotic adjustment ability by accumulation Pro and SS. Furthermore, with the duration of treatment time increased, SOD and APX activities decreased, TPC and TFC contents increased. Walnut accumulated Na mostly in roots and transported more K and Ca to aboveground parts. The growth and physiological response performance differed between JM and JN, specifically, the differences occurred in the ability to absorb minerals, regulate osmotic stress, and scavenge ROS. Salt tolerance of JM and JN was assessed by principal component analysis (PCA) and resulted in JN > JM. In conclusion, our results indicated that JN has higher salt tolerance than JM, and JN might be used as a potential germplasm resource for the genetic breeding of walnuts.


Juglans , Salt Tolerance , Seedlings , Juglans/physiology , Juglans/metabolism , Juglans/drug effects , Seedlings/drug effects , Seedlings/physiology , Seedlings/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Superoxide Dismutase/metabolism , Sodium Chloride/pharmacology
3.
Tree Physiol ; 44(1)2024 02 06.
Article En | MEDLINE | ID: mdl-37738582

Frost resistance is the major factor affecting the distribution of plant species at high latitude and elevation. The main effects of freeze-thaw cycles are damage to living cells and formation of gas embolism in tree xylem vessels. Lethal intracellular freezing can be prevented in living cells by two mechanisms, such as dehydration and deep supercooling. We developed a multiphysics numerical model coupling water flow, heat transfer and phase change, considering different cell types in plant tissues, to study the dynamics and extent of cell dehydration, xylem pressure changes and stem diameter changes in response to freezing and thawing. Results were validated using experimental data for stem diameter changes of walnut trees (Juglans regia). The effect of cell mechanical properties was found to be negligible as long as the intracellular tension developed during dehydration was sufficiently low compared with the ice-induced cryostatic suction. The model was finally used to explore the coupled effects of relevant physiological parameters (initial water and sugar content) and environmental conditions (air temperature variations) on the dynamics and extent of dehydration. It revealed configurations where cell dehydration could be sufficient to protect cells from intracellular freezing, and situations where supercooling was necessary. This model, freely available with this paper, could easily be extended to explore different anatomical structures, different species and more complex physical processes.


Juglans , Trees , Freezing , Trees/physiology , Dehydration , Water/physiology , Temperature , Juglans/physiology , Plant Stems
4.
Tree Physiol ; 44(1)2024 02 06.
Article En | MEDLINE | ID: mdl-37847599

Water content (WC) is a key variable in plant physiology even during the winter period. To simulate stem WC during the dormant season, a series of experiments were carried out on walnut trees under controlled conditions. In the field, WC was significantly correlated with soil temperature at 50 cm depth (R2 = 0.526). In the greenhouse, WC remained low as long as soil temperature was kept cold (<+5 °C) and increased after the soil temperature was warmed to +15 °C regardless of the date. Stem dehydration rate was significantly influenced by the WC and evaporative demand. A parsimonious model with functions describing the main experimental results was calibrated and validated with field data from 13 independent winter dynamics in Juglans regia L. orchards. Three functions of water uptake were tested, and these gave equivalent accuracies (root-mean-square error (RMSE) = 0.127-8; predictive root-mean-square error = 0.116). However, only a sigmoid function describing the relationship between the root water uptake and soil temperature gave values in agreement with the experimental results. Finally, the simulated WC provided a similar accuracy in predicting frost hardiness compared with the measured WC (RMSE ca 3 °C) and was excellent in spring (RMSE ca 2 °C). This model may be a relevant tool for predicting the risk of spring frost in walnut trees. Its genericity should be tested in other fruit and forest tree species.


Juglans , Juglans/physiology , Water/physiology , Trees/physiology , Cold Temperature , Seasons , Soil
5.
Sci Rep ; 10(1): 15207, 2020 09 16.
Article En | MEDLINE | ID: mdl-32938965

Breeding studies in walnut (Juglans regia L.) are usually time consuming due to the long juvenile period and therefore, this study aimed to determine markers associated with time of leaf budburst and flowering-related traits by performing a genome-wide association study (GWAS). We investigated genotypic variation and its association with time of leaf budburst and flowering-related traits in 188 walnut accessions. Phenotypic data was obtained from 13 different traits during 3 consecutive years. We used DArT-seq for genotyping with a total of 33,519 (14,761 SNP and 18,758 DArT) markers for genome-wide associations to identify marker underlying these traits. Significant correlations were determined among the 13 different traits. Linkage disequilibrium decayed very quickly in walnut in comparison with other plants. Sixteen quantitative trait loci (QTL) with major effects (R2 between 0.08 and 0.23) were found to be associated with a minimum of two phenotypic traits each. Of these QTL, QTL05 had the maximum number of associated traits (seven). Our study is GWAS for time of leaf budburst and flowering-related traits in Juglans regia L. and has a strong potential to efficiently implement the identified QTL in walnut breeding programs.


Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Juglans/physiology , Quantitative Trait Loci , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Juglans/genetics , Linkage Disequilibrium , Phenotype , Plant Breeding , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Sequence Analysis, RNA
6.
Plant Physiol ; 184(2): 881-894, 2020 10.
Article En | MEDLINE | ID: mdl-32764130

Knowledge about physiological stress thresholds provides crucial information about plant performance and survival under drought. In this study, we report on the triphasic nature of the relationship between plant water potential (Ψ) at predawn and midday and describe a method that predicts Ψ at stomatal closure and turgor loss exclusively from this water potential curve (WP curve). The method is based on a piecewise linear regression model that was developed to predict the boundaries (termed Θ1 and Θ2) separating the three phases of the curve and corresponding slope values. The method was tested for three economically important woody species. For all species, midday Ψ was much more negative than predawn Ψ during phase I (mild drought), reductions in midday Ψ were minor while predawn Ψ continued to decline during phase II (moderate drought), and midday and predawn Ψ reached similar values during phase III (severe drought). Corresponding measurement of leaf gas exchange indicated that boundary Θ1 between phases I and II coincided with Ψ at stomatal closure. Data from pressure-volume curves demonstrated that boundary Θ2 between phases II and III predicted Ψ at leaf turgor loss. The WP curve method described here is an advanced application of the Scholander-type pressure chamber to categorize plant dehydration under drought into three distinct phases and to predict Ψ thresholds of stomatal closure and turgor loss.


Adaptation, Physiological , Circadian Rhythm/physiology , Dehydration , Droughts , Plant Leaves/physiology , Plant Stomata/physiology , Water/metabolism , Juglans/physiology , Models, Theoretical , Prunus dulcis/physiology , Vitis/physiology
7.
BMC Genomics ; 21(1): 203, 2020 Mar 04.
Article En | MEDLINE | ID: mdl-32131731

BACKGROUND: Unravelling the genetic architecture of agronomic traits in walnut such as budbreak date and bearing habit, is crucial for climate change adaptation and yield improvement. A Genome-Wide Association Study (GWAS) using multi-locus models was conducted in a panel of 170 walnut accessions genotyped using the Axiom™ J. regia 700 K SNP array, with phenological data from 2018, 2019 and legacy data. These accessions come from the INRAE walnut germplasm collection which is the result of important prospecting work performed in many countries around the world. In parallel, an F1 progeny of 78 individuals segregating for phenology-related traits, was genotyped with the same array and phenotyped for the same traits, to construct linkage maps and perform Quantitative Trait Loci (QTLs) detection. RESULTS: Using GWAS, we found strong associations of SNPs located at the beginning of chromosome 1 with both budbreak and female flowering dates. These findings were supported by QTLs detected in the same genomic region. Highly significant associated SNPs were also detected using GWAS for heterodichogamy and lateral bearing habit, both on chromosome 11. We developed a Kompetitive Allele Specific PCR (KASP) marker for budbreak date in walnut, and validated it using plant material from the Walnut Improvement Program of the University of California, Davis, demonstrating its effectiveness for marker-assisted selection in Persian walnut. We found several candidate genes involved in flowering events in walnut, including a gene related to heterodichogamy encoding a sugar catabolism enzyme and a cell division related gene linked to female flowering date. CONCLUSIONS: This study enhances knowledge of the genetic architecture of important agronomic traits related to male and female flowering processes and lateral bearing in walnut. The new marker available for budbreak date, one of the most important traits for good fruiting, will facilitate the selection and development of new walnut cultivars suitable for specific climates.


Chromosome Mapping/methods , Genome-Wide Association Study/methods , Juglans/physiology , Quantitative Trait Loci , Chromosomes, Plant/genetics , Juglans/genetics , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Seeds/genetics
8.
Plant J ; 102(2): 410-423, 2020 04.
Article En | MEDLINE | ID: mdl-31823432

Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.


Genome, Plant/genetics , Genomics , Juglans/genetics , Transcriptome , Disease Resistance/genetics , Juglans/physiology , Stress, Physiological
9.
J Plant Physiol ; 240: 153013, 2019 Sep.
Article En | MEDLINE | ID: mdl-31374485

The HCN-induced seed dormancy release necessitates alterations in reactive oxygen species (ROS) metabolism and radicle cell wall loosening. Little is known about the interaction of ROS metabolism with cell wall hydrolytic enzymes during HCN-induced seed dormancy release. Thus dormant walnut (Juglans regia L.) kernels were exposed to HCN (4 h) and studied for redox metabolism and cell wall-modifying enzymes during 10 days of incubation (DI) i.e. before radicle emergence. HCN increased ROS especially in the embryonic axes (EAs) but decreased ROS-generating NADPH oxidase and ROS scavenging superoxide dismutase (SOD) and peroxidase (POX) with no effects on catalase (CAT), ascorbate peroxidase (APX) and cell wall-modifying enzymes activities in short term up to 2 DI. In long term roughly from 4 DI onwards, HCN-exposed EA displayed greater superoxide anions and enhanced activities of POX, APX, NADPH oxidase, cell wall peroxidase (CW-POX), ß- 1, 4-D glucanase, mannanase, polygacturonase and xylanase. Meanwhile HCN increased greater expression of POX and mannanase isoforms as revealed by in-gel activity assay. Except for higher activities of CAT, POX and APX, cotyledonary activities of CW-POX, mannanase and polygacturonase and to some extent ß- 1, 4-D glucanase remained unaffected by HCN. Thus short term ROS accumulation in HCN-treated EA is due to declined SOD and POX activities. In long term the enhanced activities of both NADPH oxidase: CW-POX couple and cell wall-modifying enzymes in EA bring about wall loosening in preparation for radicle emergence. Evidences for the simultaneous operation of both mechanisms are provided in walnut EAs during dormancy release.


Hydrogen Cyanide/pharmacology , Juglans/physiology , Plant Dormancy/drug effects , Reactive Oxygen Species/metabolism , Cell Wall/metabolism , Juglans/drug effects , Nuts/drug effects , Nuts/physiology , Oxidation-Reduction
10.
BMC Plant Biol ; 18(1): 367, 2018 Dec 20.
Article En | MEDLINE | ID: mdl-30572834

BACKGROUND: GRAS transcription factor (TF) family is unique and numerous in higher plants with diverse functions that involving in plant growth and development processes, such as gibberellin (GA) signal transduction, root development, root nodule formation, and mycorrhiza formation. Walnut tree is exposed to various environmental stimulus that causing concern about its resistance mechanism. In order to understand the molecular mechanism of walnut to adversity response, a GRAS TF (JrGRAS2) was cloned and characterized from Juglans regia in this study. RESULTS: A 1500 bp promoter fragment of JrGRAS2 was identified from the genome of J. regia, in which the cis-elements were screened. This JrGRAS2 promoter displayed expression activity that was enhanced significantly by high temperature (HT) stress. Yeast one-hybrid assay, transient expression and chromatin immunoprecipitation (Chip)-PCR analysis revealed that JrDof3 could specifically bind to the DOFCOREZM motif and share similar expression patterns with JrGRAS2 under HT stress. The transcription of JrGRAS2 was induced by HT stress and up-regulated to 6.73-~11.96-fold in the leaf and 2.53-~4.50-fold in the root to control, respectively. JrGRAS2 was overexpressed in Arabidopsis, three lines with much high expression level of JrGRAS2 (S3, S7, and S8) were selected for HT stress tolerance analysis. Compared to the wild type (WT) Arabidopsis, S3, S7, and S8 exhibited enhanced seed germination rate, fresh weight accumulation, and activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione-S-transferase (GST) under HT stress. In contrast, the Evans blue staining, electrolyte leakage (EL) rates, hydrogen dioxide (H2O2) and malondialdehyde (MDA) content of transgenic seedlings were all lower than those of WT exposed to HT stress. Furthermore, the expression of heat shock proteins (HSPs) in S3, S7, and S8 was significant higher than those in WT plants. The similar results were obtained in JrGRAS2 transient overexpression walnut lines under normal and HT stress conditions. CONCLUSIONS: Our results suggested that JrDof3 TF contributes to improve the HT stress response of JrGRAS2, which could effectively control the expression of HSPs to enhance HT stress tolerance. JrGRAS2 is an useful candidate gene for heat response in plant molecular breeding.


Heat-Shock Proteins/metabolism , Juglans/physiology , Plant Proteins/physiology , Transcription Factors/physiology , Antioxidants/metabolism , Chromatin Immunoprecipitation , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response , Juglans/genetics , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Thermotolerance , Transcription Factors/genetics , Two-Hybrid System Techniques
11.
PLoS One ; 13(12): e0207861, 2018.
Article En | MEDLINE | ID: mdl-30513103

Artificial pollination of black walnut (Juglans nigra L.) is not practical and timber breeders have historically utilized only open-pollinated half-sib families. An alternate approach called "breeding without breeding," consists of genotyping open-pollinated progeny using DNA markers to identify paternal parents and then constructing full-sib families. In 2014, we used 12 SSR markers to genotype 884 open-pollinated half-sib progeny harvested from two clonal orchards containing 206 trees, comprised of 52 elite timber selections. Seed was harvested in 2011 from each of two ramets of 23 clones, one upwind and one downwind, based on prevailing wind direction from the west-southwest. One orchard was isolated from wild black walnut and composed of forward selections while the other orchard was adjacent to a natural forest containing mature black walnut composed of backward selections. Isolation significantly increased within-orchard pollination (85%) of the progeny from the isolated orchard compared to 42% from the non-isolated orchard. Neither prevailing wind direction nor seed tree position in the orchard affected paternity patterns or wild pollen contamination. Genetic diversity indices revealed that progeny from both orchards were in Hardy-Weinberg equilibrium with very little inbreeding and no selfing. A significant level of inbreeding was present among the forward selected parents, but not the first generation (backward selected) parents. Some orchard clones failed to sire any progeny while other clones pollinated upwards of 20% of progeny.


Juglans/genetics , Juglans/physiology , DNA, Plant/genetics , Genetic Variation , Inbreeding , Indiana , Juglans/growth & development , Microsatellite Repeats , Plant Breeding , Pollen/genetics , Pollen/physiology , Pollination/genetics , Pollination/physiology , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Selection, Genetic , Wind
12.
BMC Plant Biol ; 18(1): 323, 2018 Dec 04.
Article En | MEDLINE | ID: mdl-30509158

BACKGROUND: Observations of precocious (early bearing) genotypes of walnut (Juglans regia L.) under natural conditions encouraged us to study the origin and genetic control of these fascinating traits. RESULTS: In this study, the self-fertility, progeny performance, and simple sequence repeat (SSR) locus variation of iron walnut (Juglans sigillata Dode), an ecotype of J. regia, were investigated. The average self-pollinated fruit set rate of J. sigillata cv. 'Dapao' (DP) was 7.0% annually from 1979 to 1982. The average germination rate of self-pollinated seeds was 45.2% during the 4-year period. Most progeny had inbreeding depression. Nine representative self-pollinated progeny (SP1-SP9), with special or typical traits of DP, were selected. SP1-SP4 were precocious because they initiated flowers as early as 2 years after germination, compared to the 7-10-yr period that is typical of DP. SP9 had not flowered since 1980. Twelve SSR markers were used to analyze the SP and DP. The genome of SP had a tendency toward high levels of homozygosity. The high levels of homozygosity reported in 18 additional precocious walnut genotypes complemented the results of this study. CONCLUSIONS: These results provide evidence of precocious phenotypes and genomes with high levels of homozygosity that might be generated from self-pollinating walnut. This suggests that self-pollination might facilitate the generation of unique homozygous parents for subsequent use in walnut-breeding programs. The results also indicate that more attention should be focused on adequate management of precocious walnut to avoid early depression in the production of nuts.


Homozygote , Juglans/genetics , Pollination/genetics , Genetic Association Studies , Genotype , Juglans/physiology , Microsatellite Repeats/genetics , Pollination/physiology , Self-Incompatibility in Flowering Plants/genetics
13.
Int J Biometeorol ; 62(11): 2007-2013, 2018 Nov.
Article En | MEDLINE | ID: mdl-30209614

Phenology is the study of periodic biological events in the plant world that are influenced by the environment. Temperature increase in spring season can advance the spring phases, but warming in autumn and winter may slow the fulfillment of chilling requirements and lead to later onset of spring events. This study examined different genotypes of walnut trees under environmental conditions, and measured the cold demand, heat requirements, and average time from budburst till flowering for 28 walnut genotypes. The information obtained provides a better understanding of the phenological temperature response of walnuts that will be useful for walnut production and will also contribute to the development of adaptation measures in the light of the expected climate change.


Juglans/physiology , Seasons , Temperature , Climate Change , Flowers/physiology , Genotype , Romania
14.
Sci Rep ; 8(1): 9815, 2018 06 29.
Article En | MEDLINE | ID: mdl-29959435

Manchurian walnut and larch are key timber species of northeast China but information on (fine) root traits of both species is scarce. Plasticity of root traits in mixed plantations has been studied rarely although this could give important insights into mechanisms of root competition. This study examined root traits by branching order in 30-yr-old monocultures and their plasticity in mixed plantations. In monocultures, Manchurian walnut and larch differed in key fine root traits. Larch roots hold more absorptive root orders, larger diameter and lower specific root length/area. Walnut root orders featured greater cortex:stele ratios, N-concentrations and respiration rates. Under interspecific competition, the proportion of walnut root tips increased, the biomass/length of larch root orders 1-3 decreased. Larch possessed a greater morphological and anatomical plasticity of terminal root orders than walnut. Mycorrhizal colonization rates of walnut were reduced. Both species differed fundamentally in their fine root properties. Absorptive fine root orders reacted plastic under interspecific competition while traits of higher root orders remained unchanged. In mixture, larch roots possessed a greater plasticity in traits related to resource uptake (efficiency) than walnut roots whose reaction norm is suggested to be predominantly based on interference competition via juglone exudation.


Juglans/physiology , Larix/physiology , Nitrogen/metabolism , Plant Roots/physiology , Trees/physiology , Cell Respiration , Competitive Behavior , Juglans/anatomy & histology , Larix/anatomy & histology , Phenotype , Plant Roots/anatomy & histology , Soil/chemistry , Trees/anatomy & histology
15.
Tree Physiol ; 38(8): 1180-1192, 2018 08 01.
Article En | MEDLINE | ID: mdl-29850910

A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J. hindsii (both native to arid habitats) and J. ailantifolia (native to mesic habitats). Stem xylem of J. microcarpa was more resistant to drought-induced embolism as compared with J. hindsii and J. ailantifolia (differences in embolism susceptibility among older and current year xylem were not detected in any species). Variations in most vessel anatomical traits were negligible among the three species; however, we detected substantial interspecific differences in intervessel pit characteristics. As compared with J. hindsii and J. ailantifolia, low embolism susceptibility in J. microcarpa was associated with smaller pit size in larger diameter vessels, a smaller area of the shared vessel wall occupied by pits, lower pit frequency and no changes in pit characteristics as vessel diameters increased. Changes in amount of embolized vessels following 40 days of re-watering were minor in intact saplings of all three species highlighting that an embolism repair mechanism did not contribute to drought recovery. In conclusion, our data indicate that interspecific variations in drought-induced embolism susceptibility are associated with species-specific pit characteristics, and these traits may provide a future target for breeding efforts aimed at selecting walnut germplasm with improved drought resistance.


Droughts , Juglans/physiology , Xylem/physiology , Seedlings/physiology , Species Specificity , Tomography, X-Ray Computed , X-Ray Microtomography
16.
J Econ Entomol ; 111(2): 996-999, 2018 04 02.
Article En | MEDLINE | ID: mdl-29415131

The walnut twig beetle (Pityophthorus juglandis Blackman) (Coleoptera: Curculionidae) is a regulated pest in the United States due to its causal role in thousand cankers disease of walnut trees, including the commercially valuable eastern black walnut (Juglans nigra L.). Several state quarantines designed to limit spread of P. juglandis regulate movement of kiln-dried walnut lumber that contains bark. Previous research demonstrated that P. juglandis will enter and re-emerge from bark of kiln-dried, J. nigra slabs subjected to extreme beetle pressure (baited with a pheromone lure and hung in infested J. nigra trees). This study evaluated P. juglandis bark colonization of both kiln-dried and fresh J. nigra slabs, varying the presence of aggregation pheromone and relative proximity to a beetle source. Wood treatment, slab location, and pheromone presence all significantly affected P. juglandis colonization, as assessed by subsequent beetle emergence. When placed on the ground directly beneath infested trees, kiln-dried slabs were not colonized, and fresh slabs were colonized only when baited with the pheromone lure (6/14 replicates). When placed in crowns of infested trees, kiln-dried slabs were colonized only when baited with pheromone (3/14 replicates), whereas fresh slabs were colonized with and without pheromone (14/14 and 1/13 replicates, respectively). Timing of emergence indicated that beetles did not reproduce in kiln-dried bark. Results suggest that the risk of kiln-dried walnut bark becoming colonized by the P. juglandis during movement of commercial wood products is very low. This information may be useful to government agencies that administer quarantines regulating the transport of walnut lumber.


Animal Distribution , Food Chain , Hot Temperature , Juglans/physiology , Weevils/physiology , Wood/analysis , Animals , Chemotaxis , Herbivory , Pheromones/pharmacology , Plant Bark/physiology , Weevils/drug effects
17.
BMC Plant Biol ; 18(1): 19, 2018 01 22.
Article En | MEDLINE | ID: mdl-29357825

BACKGROUND: Vacuolar H+-ATPase (V-ATPase) is a vital protein complex involved in abiotic stress response in plants. The G subunit of Juglans regia (JrVHAG1) was previously identified as a drought tolerance-related gene involved in the ABA (abscisic acid)-signal pathway. Heavy metal stress is becoming a major detriment for plant growth, development, and production. In order to understand the role of JrVHAG1, the potential function mechanism of JrVHAG1 exposed to CdCl2 stress was confirmed in this study. RESULTS: Transcription of JrVHAG1 was induced by ABA and increased to 58.89-fold (roots) and 7.38-fold (leaves) and by CdCl2 to 2.65- (roots) and 11.42-fold (leaves) relative to control, respectively. Moreover, when treated simultaneously with ABA and CdCl2 (ABA+CdCl2), JrVHAG1 was up-regulated to 110.13- as well as 165.42-fold relative to control in the roots and leaves, accordingly. Compared to the wild type (WT) Arabidopsis plants, the transgenic plants with overexpression of JrVHAG1 (G2, G6, and G9) exhibited increased seed germination rate, biomass accumulation, proline content, and activities of superoxide dismutase (SOD) and peroxidase (POD) under ABA, CdCl2, and ABA+CdCl2 treatments. In contrast, the reactive oxygen species (ROS) staining, malondialdehyde (MDA) content, hydrogen dioxide (H2O2) content, as well as electrolyte leakage (EL) rates of transgenic seedlings were all lower than those of WT exposed to ABA, CdCl2 and ABA+CdCl2 stresses. Furthermore, a 1200 bp promoter fragment of JrVHAG1 was isolated by analyzing the genome of J. regia, in which the cis-elements were identified. This JrVHAG1 promoter fragment showed expression activity that was enhanced significantly when subjected to the above treatments. Yeast one-hybrid assay and transient expression analysis demonstrated that JrMYB2 specifically bound to the MYBCORE motif and shared similar expression patterns with JrVHAG1 under ABA, CdCl2 and ABA+CdCl2 stress conditions. CONCLUSIONS: Our results suggested that the JrVHAG1 gene functions as a CdCl2 stress response regulator by participating in ABA-signal pathway and MYB transcription regulation network. JrVHAG1 gene is a useful candidate gene for heavy metal stress tolerance in plant molecular breeding.


Arabidopsis/genetics , Cadmium Chloride/adverse effects , Gene Expression Regulation, Plant , Juglans/physiology , Plant Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics , Abscisic Acid/metabolism , Arabidopsis/metabolism , Cadmium/adverse effects , Juglans/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
18.
Plant Cell Environ ; 41(5): 1008-1021, 2018 05.
Article En | MEDLINE | ID: mdl-28185293

Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod, were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, J. regia × nigra 'Early' and 'Late'). The photothermal model predicted more accurate values for all genotypes (efficiency = 0.879; Root Mean Standard Error Predicted (RMSEP) = 2.55 °C) than the thermal model (efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R2  = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter.


Juglans/physiology , Models, Biological , Freezing/adverse effects , Fruit/physiology , Phenotype , Photoperiod , Seasons , Stress, Physiological , Trees
19.
PLoS One ; 12(10): e0185974, 2017.
Article En | MEDLINE | ID: mdl-29023476

The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut.


Genetic Variation , Juglans/genetics , Models, Genetic , Asia , Ecology , Genetics, Population , Juglans/physiology , Microsatellite Repeats , Phylogeography , Polymorphism, Genetic , Refugium
20.
Planta ; 246(3): 495-508, 2017 Sep.
Article En | MEDLINE | ID: mdl-28488188

MAIN CONCLUSION: During spring, bud growth relies on long-distance transport of remotely stored carbohydrates. A new hypothesis suggests this transport is achieved by the interplay of xylem and phloem. During the spring, carbohydrate demand of developing buds often exceeds locally available storage, thus requiring the translocation of sugars from distant locations like limbs, stems and roots. Both the phloem and xylem have the capacity for such long-distance transport, but their functional contribution is unclear. To address this ambiguity, the spatial and temporal dynamics of carbohydrate availability in extension shoots of Juglans regia L. were analyzed. A significant loss of extension shoot carbohydrates in remote locations was observed while carbohydrate availability near the buds remained unaffected. This pattern of depletion of carbohydrate reserves supports the notion of long-distance translocation. Girdling and dye perfusion experiments were performed to assess the role of phloem and xylem in the transport of carbohydrate and water towards the buds. Girdling caused a decrease in non-structural carbohydrate concentration above the point of girdling and an unexpected concurrent increase in water content associated with impeded xylem transport. Based on experimental observations and modeling, we propose a novel mechanism for maintenance of spring carbohydrate translocation in trees where xylem transports carbohydrates and this transport is maintained with the recirculation of water by phloem Münch flow. Phloem Münch flow acts as a pump for generating water flux in xylem and allows for transport and mobilization of sugars from distal locations prior to leaves photosynthetic independence and in the absence of transpiration.


Juglans/growth & development , Phloem/physiology , Plant Shoots/growth & development , Sugars/metabolism , Water/metabolism , Xylem/physiology , Juglans/metabolism , Juglans/physiology , Plant Shoots/metabolism , Plant Shoots/physiology , Trees/growth & development , Trees/metabolism , Trees/physiology
...