Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 80(22): 4878-4885, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32816855

RESUMEN

Tight junction (TJ) proteins are essential for mediating interactions between adjacent cells and coordinating cellular and organ responses. Initial investigations into TJ proteins and junctional adhesion molecules (JAM) in cancer suggested a tumor-suppressive role where decreased expression led to increased metastasis. However, recent studies of the JAM family members JAM-A and JAM-C have expanded the roles of these proteins to include protumorigenic functions, including inhibition of apoptosis and promotion of proliferation, cancer stem cell biology, and epithelial-to-mesenchymal transition. JAM function by interacting with other proteins through three distinct molecular mechanisms: direct cell-cell interaction on adjacent cells, stabilization of adjacent cell surface receptors on the same cell, and interactions between JAM and cell surface receptors expressed on adjacent cells. Collectively, these diverse interactions contribute to both the pro- and antitumorigenic functions of JAM. In this review, we discuss these context-dependent functions of JAM in a variety of cancers and highlight key areas that remain poorly understood, including their potentially diverse intracellular signaling networks, their roles in the tumor microenvironment, and the consequences of posttranslational modifications on their function. These studies have implications in furthering our understanding of JAM in cancer and provide a paradigm for exploring additional roles of TJ proteins.


Asunto(s)
Comunicación Celular/fisiología , Progresión de la Enfermedad , Molécula A de Adhesión de Unión/fisiología , Molécula C de Adhesión de Unión/fisiología , Neoplasias/etiología , Neoplasias/patología , Apoptosis/fisiología , Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , Molécula A de Adhesión de Unión/química , Moléculas de Adhesión de Unión/química , Moléculas de Adhesión de Unión/fisiología , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/fisiopatología , Receptor ErbB-2/metabolismo , Relación Estructura-Actividad , Uniones Estrechas , Microambiente Tumoral/inmunología , Proteínas Supresoras de Tumor/fisiología
2.
Int J Mol Med ; 34(6): 1451-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25319473

RESUMEN

The tight junction is an important subcellular organelle which plays a vital role in epithelial barrier function. Claudin, as the integral membrane component of tight junctions, creates a paracellular transport pathway for various ions to be reabsorbed by the kidneys. This review summarizes advances in claudin structure, function and pathophysiology in kidney diseases. Different claudin species confer selective paracellular permeability to each of three major renal tubular segments: the proximal tubule, the thick ascending limb of Henle's loop and the distal nephron. Defects in claudin function can cause a wide spectrum of kidney diseases, such as hypomagnesemia, hypercalciuria, kidney stones and hypertension. Studies using transgenic mouse models with claudin mutations have recapitulated several of these renal disease phenotypes and have elucidated the underlying biological mechanisms. Modern recording approaches based upon scanning ion conductance microscopy may resolve the biophysical nature of claudin transport function and provide novel insight into tight junction architecture.


Asunto(s)
Riñón/metabolismo , Modelos Biológicos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Animales , Transporte Biológico , Claudinas/química , Claudinas/metabolismo , Cristalografía por Rayos X , Humanos , Moléculas de Adhesión de Unión/química , Moléculas de Adhesión de Unión/metabolismo , Riñón/citología
3.
Anticancer Res ; 33(6): 2353-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23749882

RESUMEN

Brain metastasis is one of the most deadly types of metastasis, frequently seen as a result of cancer spread from lung cancer, breast cancer and malignant melanoma. A key cellular structure in controlling brain metastasis is the blood-brain barrier (BBB). The BBB is known to protect metastatic tumour cells from chemotherapy and antitumor immunity. On the other hand, the BBB is also a key cellular structure which cancer cells must breach before settling in brain tissues. Tight junctions (TJs), central to the BBB, have received much attention in recent decades. There has been progress in investigating cerebral TJs and brain microvascular endothelial cells. Junctional adhesion molecules (JAMs) are transmembrane proteins within TJs and have been shown to be key to the integrity of the BBB and to play a role in controlling brain metastasis. The current article summarizes the recent progress in the regulation of JAMs in BBB TJs and the signaling pathways involved during brain metastasis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Moléculas de Adhesión de Unión/metabolismo , Uniones Estrechas/metabolismo , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/ultraestructura , Neoplasias Encefálicas/ultraestructura , Células Endoteliales , Humanos , Moléculas de Adhesión de Unión/química , Estructura Terciaria de Proteína , Transducción de Señal
4.
PLoS One ; 7(7): e40810, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815827

RESUMEN

The mammalian JAM family is composed of three cell surface receptors. Interactions between the proteins have well-characterised roles in inflammation and tight junction formation, but little is known about their function in early development. Recently, we identified a role for jamb and jamc in zebrafish myocyte fusion. Genome duplication in the teleost lineage raised the possibility that additional JAM family paralogues may also function in muscle development. To address this, we searched the zebrafish genome to identify potential paralogues and confirmed their homology, bringing the total number of zebrafish jam family members to six. We then compared the physical binding properties of each paralogue by surface plasmon resonance and determined the gene expression patterns of all zebrafish jam genes at different stages of development. Our results suggest a significant sub-functionalisation of JAM-B and JAM-C orthologues with respect to binding strength (but not specificity) and gene expression. The paralogous genes, jamb2 and jamc2, were not detected in the somites or myotome of wild-type embryos. We conclude that it is unlikely that the paralogues have a function in primary myogenesis.


Asunto(s)
Embrión no Mamífero/metabolismo , Genoma/genética , Moléculas de Adhesión de Unión/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Moléculas de Adhesión de Unión/química , Moléculas de Adhesión de Unión/genética , Unión Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...