Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.231
1.
Cephalalgia ; 44(5): 3331024241248211, 2024 May.
Article En | MEDLINE | ID: mdl-38729773

OBJECTIVE: To investigate the role of NN414, a selective KATP channel opener for the Kir6.2/SUR1 channel subtype found in neurons and ß-pancreatic cells, in inducing migraine attacks in individuals with migraine without aura. METHODS: Thirteen participants were randomly allocated to receive NN414 and placebo on two days separated by at least one week. The primary endpoint was the difference in the incidence of migraine attacks after NN414 compared with placebo. The secondary endpoints were the difference in the area under the curve for headache intensity scores, middle cerebral artery blood flow velocity (VMCA), superficial temporal artery diameter, heart rate and mean arterial pressure. RESULTS: Twelve participants completed the study, with two (16.6%) reporting migraine attacks after NN414 compared to one (8.3%) after placebo (p = 0.53). The area under the curve for headache intensity, VMCA, superficial temporal artery diameter, heart rate and mean arterial pressure did not differ between NN414 and placebo (p > 0.05, all comparisons). CONCLUSION: The lack of migraine induction upon activation of the Kir6.2/SUR1 channel subtype suggests it may not contribute to migraine pathogenesis. Our findings point to KATP channel blockers that target the Kir6.1/SUR2B subtype, found in cerebral vasculature, as potential candidates for innovative antimigraine treatments.Registration number: NCT04744129.


KATP Channels , Migraine Disorders , Humans , Female , Adult , Male , KATP Channels/metabolism , Double-Blind Method , Migraine Disorders/metabolism , Young Adult , Middle Aged , Benzamides/pharmacology , Benzamides/therapeutic use , Pyridines/pharmacology , Piperidines
2.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654149

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Adenosine Triphosphate , Esophagus , KATP Channels , Muscle, Smooth , Receptors, Purinergic P2Y , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Male , Receptors, Purinergic P2Y/metabolism , Esophagus/drug effects , Esophagus/physiology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , KATP Channels/metabolism , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Rats, Wistar , Muscle Contraction/drug effects , Muscle Contraction/physiology , Purinergic P2Y Receptor Antagonists/pharmacology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Rats, Sprague-Dawley
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38612888

Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.


Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Potassium Channels , Insulin , Insulin, Regular, Human , Pancreatic Hormones , KATP Channels , Obesity , Potassium , Adenosine Triphosphate
4.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575153

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Adult , Animals , Mice , Humans , KATP Channels/genetics , Zebrafish/genetics , Zebrafish/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Congenital Hyperinsulinism/genetics , Insulin/metabolism , Glucose , Adenosine Triphosphate
5.
Channels (Austin) ; 18(1): 2327708, 2024 12.
Article En | MEDLINE | ID: mdl-38489043

KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.


Potassium Channels, Inwardly Rectifying , Sulfonylurea Receptors/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Membrane Potentials , Adenosine Triphosphate/metabolism , KATP Channels/genetics
6.
Eur Rev Med Pharmacol Sci ; 28(5): 2068-2083, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497888

OBJECTIVE: Methyl-2-(4-chloro- phenyl)-5-benzoxazoleacetate (MCBA), a synthetic benzoxazole derivative with established antipsoriatic efficacy, was investigated for potential antinociceptive effects. This study employs various nociceptive assays in mice to elucidate MCBA's antinociceptive mechanisms. MATERIALS AND METHODS: MCBA's antinociceptive potential was tested against various nociception models induced by formalin, glutamate, capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor agonist, and phorbol 12-myristate 13-acetate, a protein kinase C (PKC) activator. It was then assessed using the hot plate test and examined within the acetic acid-induced writhing test. During the acetic acid-induced writhing test, MCBA was pre-challenged against selective receptor antagonists such as naloxone, caffeine, atropine, yohimbine, ondansetron, and haloperidol. It was also pre-challenged with ATP-sensitive potassium channel inhibitor (glibenclamide) to further elucidate its antinociceptive mechanism. RESULTS: The results showed that oral administration of MCBA led to a dose-dependent and significant inhibition (p < 0.05) of nociceptive effects across all evaluated models at doses of 60, 120, and 240 mg/kg. Moreover, the efficacy of MCBA's antinociceptive potential was significantly counteracted (p < 0.0001) by specific antagonists: (i) directed at adenosinergic, alpha-2 adrenergic, and cholinergic receptors using caffeine, yohimbine, and atropine, respectively; and (ii) targeting ATP-sensitive potassium channels, employing glibenclamide. Antagonists aimed at opioidergic and serotoninergic receptors (naloxone and ondansetron, respectively) had poor utility in inhibiting antinociceptive activity. Conversely, the dopaminergic receptor antagonist haloperidol potentiated locomotor abnormalities associated with MCBA treatment. CONCLUSIONS: MCBA-induced antinociception involves modulation of glutamatergic-, TRVP1 receptors- and PKC-signaling pathways. It impacts adenosinergic, alpha-2 adrenergic, and cholinergic receptors and opens ATP-sensitive potassium channels.


Caffeine , Glyburide , Animals , Mice , Haloperidol , Nociception , Ondansetron , Adrenergic Agents , Atropine , KATP Channels , Naloxone/pharmacology , Receptors, Cholinergic , Yohimbine , Analgesics/pharmacology , Acetates
7.
Nat Commun ; 15(1): 2502, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509107

ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic ß-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.


Diabetes Mellitus , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Humans , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Binding Sites , Adenosine Triphosphate/metabolism , KATP Channels/genetics , KATP Channels/metabolism
8.
Sci Rep ; 14(1): 7517, 2024 03 29.
Article En | MEDLINE | ID: mdl-38553483

The objective of this study is to investigate the expression and influence of adenosine triphosphate-sensitive potassium channel (KATP) in human umbilical arterial smooth muscle cells (HUASMCs) of patients with hypertensive disorders of pregnancy (HDP). Western blotting was used to detect the protein expression levels of KATP inwardly rectifying potassium channel (Kir)6.1 and sulphonylurea receptor (SUR)2B subunits in HUASMCs from patients with normal parturients (NP), gestational hypertension (GH), chronic hypertension (CH), preeclampsia (PE) and chronic hypertension with superimposed preeclampsia (CHSP), respectively. There was no significant difference in the protein expression of Kir6.1 subunit in NP group, GH group, CH group, PE group and CHSP group (P > 0.05). The protein expression of SUR2B subunit was gradually decreased in NP group, GH group, CH group, PE group and CHSP group, with statistically significant difference among the groups (P < 0.05). The altered expression level of KATP SUR2B subunit may be involved in the pathogenesis of HDP. The severity of HDP may be related to the degree of decrease of SUR2B subunit.


Hypertension, Pregnancy-Induced , Pre-Eclampsia , Pregnancy , Female , Humans , Umbilical Arteries/metabolism , Pre-Eclampsia/genetics , Sulfonylurea Receptors/metabolism , Myocytes, Smooth Muscle/metabolism , Adenosine Triphosphate/metabolism , KATP Channels/genetics , KATP Channels/metabolism
9.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Article En | MEDLINE | ID: mdl-38428514

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Analgesics , Cannabidiol , Class Ib Phosphatidylinositol 3-Kinase , KATP Channels , Neuralgia , Nitric Oxide Synthase Type I , Nitric Oxide , Signal Transduction , Animals , Cannabidiol/pharmacology , KATP Channels/metabolism , Male , Signal Transduction/drug effects , Neuralgia/drug therapy , Neuralgia/metabolism , Mice , Nitric Oxide/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Nitric Oxide Synthase Type I/metabolism , Analgesics/pharmacology , Analgesia
10.
Mol Pharmacol ; 105(3): 202-212, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38302135

Vascular smooth muscle KATP channels critically regulate blood flow and blood pressure by modulating vascular tone and therefore represent attractive drug targets for treating several cardiovascular disorders. However, the lack of potent inhibitors that can selectively inhibit Kir6.1/SUR2B (vascular KATP) over Kir6.2/SUR1 (pancreatic KATP) has eluded discovery despite decades of intensive research. We therefore screened 47,872 chemically diverse compounds for novel inhibitors of heterologously expressed Kir6.1/SUR2B channels. The most potent inhibitor identified in the screen was an N-aryl-N'-benzyl urea compound termed VU0542270. VU0542270 inhibits Kir6.1/SUR2B with an IC50 of approximately 100 nM but has no apparent activity toward Kir6.2/SUR1 or several other members of the Kir channel family at doses up to 30 µM (>300-fold selectivity). By expressing different combinations of Kir6.1 or Kir6.2 with SUR1, SUR2A, or SUR2B, the VU0542270 binding site was localized to SUR2. Initial structure-activity relationship exploration around VU0542270 revealed basic texture related to structural elements that are required for Kir6.1/SUR2B inhibition. Analysis of the pharmacokinetic properties of VU0542270 showed that it has a short in vivo half-life due to extensive metabolism. In pressure myography experiments on isolated mouse ductus arteriosus vessels, VU0542270 induced ductus arteriosus constriction in a dose-dependent manner similar to that of the nonspecific KATP channel inhibitor glibenclamide. The discovery of VU0542270 provides conceptual proof that SUR2-specific KATP channel inhibitors can be developed using a molecular target-based approach and offers hope for developing cardiovascular therapeutics targeting Kir6.1/SUR2B. SIGNIFICANCE STATEMENT: Small-molecule inhibitors of vascular smooth muscle KATP channels might represent novel therapeutics for patent ductus arteriosus, migraine headache, and sepsis; however, the lack of selective channel inhibitors has slowed progress in these therapeutic areas. Here, this study describes the discovery and characterization of the first vascular-specific KATP channel inhibitor, VU0542270.


KATP Channels , Animals , Mice , Glyburide , KATP Channels/antagonists & inhibitors , Muscle, Smooth, Vascular/metabolism , Sulfonylurea Receptors/antagonists & inhibitors
11.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article En | MEDLINE | ID: mdl-38396807

ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.


Adenosine Triphosphate , Neoplasms , Adenosine Triphosphate/metabolism , Potassium Channels/metabolism , Nucleotides/metabolism , Mitochondria/metabolism , KATP Channels , Neoplasms/drug therapy
12.
Cephalalgia ; 44(1): 3331024231222916, 2024 Jan.
Article En | MEDLINE | ID: mdl-38181724

BACKGROUND: The present study aimed to investigate whether levcromakalim, a KATP channel opener, induces migraine attacks in people with migraine pre-treated with erenumab, a monoclonal CGRP receptor antibody. METHODS: In this double-blind, placebo-controlled, two-way cross-over study, adults with migraine without aura received a subcutaneous injection of 140 mg of erenumab on day 1. Subsequently, they were randomized to receive a 20-minute infusion of 0.05 mg/ml levcromakalim or placebo on two experimental days separated by at least one week (between days 8 and 21). The primary endpoint was the difference in the incidence of migraine attacks between levcromakalim and placebo during the 12-hour post-infusion period. RESULTS: In total, 16 participants completed the study. During the 12-hour observation period, 14 (88%) of 16 participants experienced migraine attacks after levcromakalim, compared to two (12%) after placebo (p < 0.001). The area under the curve for median headache intensity was greater after levcromakalim than placebo (p < 0.001). Levcromakalim elicited dilation of the superficial temporal artery during the first hour after infusion, a response absent following placebo (p < 0.001). CONCLUSIONS: The induction of migraine attacks via opening of KATP channels appears independent of CGRP receptor activation.Trial Registration: ClinicalTrials.gov, Identifier NCT05889442.


KATP Channels , Migraine Disorders , Adult , Humans , Receptors, Calcitonin Gene-Related Peptide , Cromakalim , Cross-Over Studies , Migraine Disorders/chemically induced , Antibodies, Monoclonal , Adenosine Triphosphate
13.
Neurosci Res ; 199: 21-29, 2024 Feb.
Article En | MEDLINE | ID: mdl-37442198

Epilepsy is a common neurological disorder worldwide. Hydrogen sulfide (H2S) has been found to have anti-seizure effects. However, its mechanism remains to be explored. In the present study, we showed that a novel H2S donor attenuated neuroinflammation by up-regulating ATP-sensitive potassium channel (KATP) expression to reduce seizures. The novel H2S donor significantly reduced the expression of TNF-α and increased the expression of IL-10 in LPS-treated BV2 cells and the hippocampus of pilocarpine-induced epileptic mice. The modulatory effects of the H2S donor on inflammatory cytokines were prevented by glibenclamide, a common KATP channels blocker. The H2S donor promoted the expression of KATP channel subunits SUR2 and Kir6.1 in LPS-treated BV2 cells and the hippocampus of pilocarpine-induced epileptic mice. In addition, the H2S donor reduced the electroencephalography amplitude of hippocampal epileptic waves and reduced seizures in pilocarpine-induced epileptic mice, which were also attenuated by glibenclamide. These results indicated that the novel H2S donor reduced seizures and regulated microglial inflammatory cytokines by activating KATP channels, which may provide a prospective therapeutic strategy for the anti-seizure effects of H2S donor.


Hydrogen Sulfide , Mice , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , KATP Channels/metabolism , Neuroinflammatory Diseases , Glyburide/pharmacology , Lipopolysaccharides , Pilocarpine , Adenosine Triphosphate , Cytokines/metabolism
14.
Acta Pharmacol Sin ; 45(3): 480-489, 2024 Mar.
Article En | MEDLINE | ID: mdl-37993535

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.


Flavanones , Neuroblastoma , Potassium Channels, Inwardly Rectifying , Humans , Rats , Animals , KATP Channels , Rotenone/pharmacology , Sulfonylurea Receptors , Potassium Channels, Inwardly Rectifying/metabolism , Glyburide/pharmacology , Molecular Docking Simulation , Apoptosis , Dopaminergic Neurons/metabolism , Adenosine Triphosphate/pharmacology
15.
Pain ; 165(6): 1289-1303, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38127692

ABSTRACT: Activation of adenosine triphosphate-sensitive potassium (K ATP ) channels has been implicated in triggering migraine attacks. However, whether the opening of these channels provoke cluster headache attacks remains undetermined. The hallmark of cluster headache is a distinct cyclical pattern of recurrent, severe headache episodes, succeeded by intervals of remission where no symptoms are present. In our study, we enrolled 41 participants: 10 with episodic cluster headaches during a bout, 15 in the attack-free remission period, and 17 diagnosed with chronic cluster headaches. Over 2 distinct experimental days, participants underwent a continuous 20-minute infusion of levcromakalim, a K ATP channel opener, or a placebo (isotonic saline), followed by a 90-minute observational period. The primary outcome was comparing the incidence of cluster headache attacks within the postinfusion observation period between the levcromakalim and placebo groups. Six of 10 participants (60%) with episodic cluster headaches in bout experienced attacks after levcromakalim infusion, vs just 1 of 10 (10%) with placebo ( P = 0.037). Among those in the remission phase, 1 of 15 participants (7%) reported attacks after levcromakalim, whereas none did postplacebo ( P = 0.50). In addition, 5 of 17 participants (29%) with chronic cluster headache had attacks after levcromakalim, in contrast to none after placebo ( P = 0.037). These findings demonstrate that K ATP channel activation can induce cluster headache attacks in participants with episodic cluster headaches in bout and chronic cluster headache, but not in those in the remission period. Our results underscore the potential utility of K ATP channel inhibitors as therapeutic agents for cluster headaches.


Cluster Headache , Cromakalim , KATP Channels , Humans , Cluster Headache/drug therapy , Male , Adult , Female , Cromakalim/therapeutic use , Middle Aged , KATP Channels/metabolism , Double-Blind Method , Young Adult
16.
Structure ; 32(2): 168-176.e2, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38101402

ATP-sensitive potassium channels (KATP) are inhibited by ATP but activated by Mg-ADP, coupling the intracellular ATP/ADP ratio to the potassium conductance of the plasma membrane. Although there has been progress in determining the structure of KATP, the functional significance of the domain-domain interface in the gating properties of KATP channels remains incompletely understood. In this study, we define the structure of KATP as two modules: KATPcore and SURABC. Based on this model, we identified two functionally important interfaces between these two modules, namely interface I and interface II. Further structure-guided mutagenesis experiments indicate that destabilizing interface II by deleting ECL3 on the SUR1 subunit impairs KNtp-independent Mg-ADP activation, demonstrating the essential role of intramolecular interactions between KATPcore and SURABC in Mg-ADP activation. Additionally, interface II is functionally conserved between SUR1 and SUR2, and the hydrophobic residue F351 on ECL3 of SUR1 is crucial for maintaining the stability of this interface.


KATP Channels , Potassium Channels, Inwardly Rectifying , KATP Channels/genetics , KATP Channels/metabolism , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism
17.
Eur J Cardiothorac Surg ; 64(6)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38060261

OBJECTIVES: In myocardial infarction, the addition of mineralocorticoid receptor blockers to standard therapies, such as angiotensin-converting enzyme inhibitors or beta-blockers, reportedly reduces mortality and cardiac events. We investigated whether the non-steroidal mineralocorticoid receptor blocker esaxerenone has cardioprotective effects and its protective mechanisms. METHODS: Isolated rat hearts were Langendorff-perfused (constant pressure, 80 mmHg) with oxygenated Krebs-Henseleit bicarbonate buffer and reperfused for 60 min; afterwards, recovery of function (left ventricular pressure, measured with an intraventricular balloon) and myocardial injury were measured. In a preliminary study, we determined the optimal concentration of esaxerenone required for myocardial protection. Next, esaxerenone was administered in the pre- and post-ischaemic phases to determine the optimal timing of administration. In addition, we assessed coronary flow response to acetylcholine with and without esaxerenone. We examined whether esaxerenone-induced cardioprotection was prevented by targeting putative components in the preconditioning manner (the mitochondrial ATP-sensitive potassium [KATP] channel). RESULTS: Myocardial protection by esaxerenone was observed when esaxerenone was administered before ischaemia but not after ischaemia. The coronary flow response to acetylcholine was significantly better in the esaxerenone group than in the control group. The cardioprotective effect of esaxerenone was eliminated by the mitochondrial KATP channel blocker, 5-hydroxy decanoate. CONCLUSIONS: This study confirmed the myocardial protective effect of the pre-ischaemic administration of esaxerenone. Esaxerenone may contribute to coronary endothelial protection and exert pharmacological preconditioning via the mitochondrial KATP channel.


Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Acetylcholine/therapeutic use , Receptors, Mineralocorticoid/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , KATP Channels
18.
J Cardiovasc Pharmacol Ther ; 28: 10742484231213175, 2023.
Article En | MEDLINE | ID: mdl-37946524

Background: The aging process is accompanied by the weakening of the protective systems of the organism, in particular by the decrease in the expression of ATP-sensitive potassium (KATP) channels and in the synthesis of H2S. The aim of our work was to investigate the role of KATP channels in the cardioprotection induced by pyridoxal-5-phosphate (PLP) in aging. Methods: Experiments were performed on adult and old (aged 24 months) male Wistar rats, which were divided into 3 groups: adults, old, and old PLP-treated rats. PLP was administered orally once a day for 14 days at a dose of 0.7 mg/kg. The levels of mRNA expression of subunits KATP channels were determined by reverse transcription and real-time polymerase chain reaction analysis. Protein expression levels were determined by the Western blot. Cardiac tissue morphology was determined using transverse 6 µm deparaffinized sections stained with picrosirius red staining. Vasorelaxation responses of isolated aortic rings and the function of Langendorff-perfused isolated hearts during ischemia-reperfusion, H2S levels, and markers of oxidative stress were also studied. Results: Administration of PLP to old rats reduces cardiac fibrosis and improves cardiac function during ischemia-reperfusion and vasorelaxation responses to KATP channels opening. At the same time, there was a significant increase in mRNA and protein expression of SUR2 and Kir6.1 subunits of KATP channels, H2S production, and reduced markers of oxidative stress. The specific KATP channel inhibitor-glibenclamide prevented the enhancement of vasodilator responses and anti-ischemic protection in PLP-treated animals. Conclusions: We suggest that this potential therapeutic effect of PLP in old animals may be a result of increased expression of KATP channels and H2S production.


KATP Channels , Vasodilation , Rats , Male , Animals , KATP Channels/metabolism , Rats, Wistar , Up-Regulation , Adenosine Triphosphate , Ischemia , RNA, Messenger , Phosphates/metabolism , Pyridoxal
19.
Cephalalgia ; 43(11): 3331024231210930, 2023 11.
Article En | MEDLINE | ID: mdl-37917826

OBJECTIVE: To investigate whether levcromakalim (a KATP channel opener) induces migraine-like headache in people with persistent post-traumatic headache who had no known history of migraine. METHODS: In a randomized, double-blind, placebo-controlled, 2-way crossover trial, participants were randomly assigned to receive a 20-minute continuous intravenous infusion of levcromakalim (50 µg/mL) or placebo (isotonic saline) on two separate experimental days with a 1-week wash-out period in between. The primary endpoint was the difference in incidence of migraine-like headache between levcromakalim and placebo during a 12-hour observational period after infusion start. The secondary endpoint was the difference in area under the curve for baseline-corrected median headache intensity scores between levcromakalim and placebo during the 12-hour observational period. RESULTS: A total of 21 participants with persistent post-traumatic headache were randomized and completed the trial. During the 12-hour observational period, 12 (57%) of 21 participants reported experiencing migraine-like headache following the levcromakalim infusion, compared with three after placebo (P = 0.013). Moreover, the baseline-corrected median headache intensity scores were higher following the levcromakalim infusion than after placebo (P = 0.003). CONCLUSION: Our findings suggest that KATP channels play an important role in the pathogenesis of migraine-like headache in people with persistent post-traumatic headache. This implies that KATP channel blockers might represent a promising avenue for drug development. Further research is warranted to explore the potential therapeutic benefits of KATP channel blockers in managing post-traumatic headache.Trial Registration: ClinicalTrials.gov Identifier: NCT05243953.


Hypersensitivity , Migraine Disorders , Post-Traumatic Headache , Tension-Type Headache , Humans , Post-Traumatic Headache/drug therapy , Post-Traumatic Headache/etiology , Cromakalim/adverse effects , KATP Channels , Migraine Disorders/drug therapy , Headache , Double-Blind Method , Adenosine Triphosphate
20.
Diabetes ; 72(6): 693-702, 2023 06 01.
Article En | MEDLINE | ID: mdl-37815796

Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic ß-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates ß-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated ß-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less ß-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.


Diabetes Mellitus, Type 2 , Insulin Secretion , KATP Channels , Humans , Adenosine Triphosphate , Awards and Prizes , Glucose , Insulin , KATP Channels/genetics
...