Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.852
1.
Soins Gerontol ; 29(165): 10-20, 2024.
Article Fr | MEDLINE | ID: mdl-38331520

The kidney performs several major functions: it eliminates toxins produced by cellular or xenobiotic metabolism, regulates the homeostasis of the internal environment and plays a hormonal role, producing erythropoietin, calcitriol and renin. Maintaining the body's homeostasis (hydric, ionic [sodium, potassium, calcium, phosphorus, etc.] or acid-base balance) requires the successive action of plasma filtration, followed by reabsorption/secretion mechanisms, which take place in the various portions of the kidney's functional unit known as the nephron. The initial part of the nephron, the glomerulus, is the site of filtration, while the tubule, which collects the glomerular filtrate, is the site of reabsorption/secretion, leading to the composition of the final urine. It's important to understand how these different structures work, before tackling the various disorders that can affect the kidney.


Kidney Glomerulus , Kidney , Humans , Kidney/anatomy & histology , Kidney/metabolism , Kidney Glomerulus/anatomy & histology , Kidney Glomerulus/physiology
2.
Biofabrication ; 15(3)2023 04 12.
Article En | MEDLINE | ID: mdl-36898152

Glomerulus-on-a-chip, as a promising alternative for drug nephrotoxicity evaluation, is attracting increasing attention. For glomerulus-on-a-chip, the more biomimetic the chip is, the more convincing the application of the chip is. In this study, we proposed a hollow fiber-based biomimetic glomerulus chip that can regulate filtration in response to blood pressure and hormone levels. On the chip developed here, bundles of hollow fibers were spherically twisted and embedded in designed Bowman's capsules to form spherical glomerular capillary tufts, with podocytes and endotheliocytes cultured on the outer and inner surfaces of the hollow fibers, respectively. We evaluated the morphology of cells, the viability of cells, and the metabolic function of cells in terms of glucose consumption and urea synthesis by comparing the results obtained under fluidic and static conditions, confirmed the barrier function of the endotheliocyte-fiber membrane-podocyte structure by monitoring the diffusion of fluorescein isothiocyanate (FITC)-labeled inulin, albumin and IgG, and, for the first time, achieved on-chip filtration regulation in response to the hormone atrial natriuretic peptide. In addition, the application of the chip in the evaluation of drug nephrotoxicity was also preliminarily demonstrated. This work offers insights into the design of a more physiologically similar glomerulus on a microfluidic chip.


Kidney Glomerulus , Podocytes , Kidney Glomerulus/blood supply , Kidney Glomerulus/physiology , Endothelial Cells
3.
Compr Physiol ; 13(1): 4215-4229, 2023 01 30.
Article En | MEDLINE | ID: mdl-36715280

Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1ß is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1ß-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.


Kidney Glomerulus , Nitric Oxide Synthase Type I , Sodium Chloride , Humans , Blood Pressure , Feedback , Kidney Glomerulus/physiology , Kidney Tubules , Nitric Oxide , Sodium , Nitric Oxide Synthase Type I/genetics
4.
Lab Chip ; 23(2): 272-284, 2023 01 17.
Article En | MEDLINE | ID: mdl-36514972

Microphysiological systems (MPS) are powerful predictive tools for assessing drug-induced kidney injuries. Previous MPS have examined single regions of the nephron, but lack simultaneous filtration, reabsorption, and secretion functionality. Here, we developed a partially open MPS that structurally and functionally recapitulated the glomerular filtration barrier, proximal tubular reabsorption, and secretion for seven days. The system introduced a recirculation circuit and an open filtrate output as a source of functional testing. As a proof-of-concept, a tri-culture of immortalized podocytes, umbilical vein endothelial cells, and proximal tubule (PCT) cells were housed in a single MPS: T-junction, glomerulus housing unit, and PCT chip. The MPS successfully retained blood serum protein, reabsorbed glucose, secreted creatinine, and expressed cell-type specific proteins (VE-cadherin, nephrin, and ZO-1). To simulate drug-induced kidney injuries, the system was perfused with cisplatin and adriamycin, and then tested using serum albumin filtration, glucose clearance, and lactate dehydrogenase release. The glomerulus and PCT MPS demonstrated a complex, dynamic microenvironment and recreated some in vivo-like functions in basal and drug-induced conditions, offering a novel prototype for preclinical testing.


Kidney Diseases , Kidney Glomerulus , Microphysiological Systems , Humans , Endothelial Cells , Glucose/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/physiology , Kidney Tubules, Proximal/metabolism
5.
Elife ; 112022 05 06.
Article En | MEDLINE | ID: mdl-35522041

Internephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronize over short distances, and potentially form large synchronized clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed. In the present study, we introduce an approach for high-resolution laser speckle imaging of renal blood flow and apply it to estimate the frequency and phase differences in rat kidney microcirculation under different conditions. The analysis unveiled the spatial and temporal evolution of synchronized blood flow clusters of various sizes, including the formation of large (>90 vessels) and long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback mechanism. Administration of vasoactive agents caused significant changes in the synchronization patterns and, thus, in nephrons' co-operative dynamics. Specifically, infusion of vasoconstrictor angiotensin II promoted stronger synchronization, while acetylcholine caused complete desynchronization. The results confirm the presence of the local synchronization in the renal microcirculatory blood flow and that it changes depending on the condition of the vascular network and the blood pressure, which will have further implications for the role of such synchronization in pathologies development.


Kidney , Renal Circulation , Animals , Kidney Glomerulus/blood supply , Kidney Glomerulus/physiology , Microcirculation , Nephrons/physiology , Rats , Renal Circulation/physiology
6.
Commun Biol ; 4(1): 1351, 2021 12 02.
Article En | MEDLINE | ID: mdl-34857869

The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect. Most 2D models are simplistic and unrepresentative, and 3D organoid approaches are currently difficult to reproduce at scale and do not fit well with current industrial drug-screening approaches. Here we report a rapidly generated and highly reproducible 3D co-culture spheroid model (GlomSpheres), better demonstrating the specialised physical and molecular structure of a glomerulus. Co-cultured using a magnetic spheroid formation approach, conditionally immortalised (CI) human podocytes and glomerular endothelial cells (GEnCs) deposited mature, organized isoforms of collagen IV and Laminin. We demonstrate a dramatic upregulation of key podocyte (podocin, nephrin and podocalyxin) and GEnC (pecam-1) markers. Electron microscopy revealed podocyte foot process interdigitation and endothelial vessel formation. Incubation with pro-fibrotic agents (TGF-ß1, Adriamycin) induced extracellular matrix (ECM) dysregulation and podocyte loss, which were attenuated by the anti-fibrotic agent Nintedanib. Incubation with plasma from patients with kidney disease induced acute podocyte loss and ECM dysregulation relative to patient matched remission plasma, and Nintedanib reduced podocyte loss. Finally, we developed a rapid imaging approach to demonstrate the model's usefulness in higher throughput pharmaceutical screening. GlomSpheres therefore represent a robust, scalable, replacement for 2D in vitro glomerular disease models.


Coculture Techniques/methods , Drug Evaluation, Preclinical/methods , Kidney Glomerulus/physiology , Spheroids, Cellular/physiology , Cells, Cultured , Endothelial Cells/physiology , Humans , Podocytes/physiology
7.
DNA Cell Biol ; 40(11): 1369-1380, 2021 Nov.
Article En | MEDLINE | ID: mdl-34767731

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, but the molecular mechanisms of disease remain not very clear and there is no curative therapeutic strategy so far. This study was carried out to identify the expression profile of circular RNA (circRNA) in human DKD and explore circRNA regulatory function in glomeruli and tubuli simultaneously. As a result, a total of 40 upregulated and 23 downregulated differentially expressed circRNAs (DEcircRNAs) were detected. Six candidate DEcircRNAs were verified by quantitative real-time polymerase chain reaction in high glucose-treated human mesangial cells and human proximal renal tubular epithelial cells, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that both in glomeruli and in tubuli the DEcircRNAs-targeted genes participated in many pathophysiological processes of DKD. Correlation analysis with renal function showed that expression level of DEcircRNA-targeted hub gene was related to renal function. In conclusion, this is the first study to report expression profiles of circRNAs in kidney of DKD patients, and further analysis demonstrated that circRNA probably played a significant regulatory role, providing help for understanding the pathogenesis of DKD and investigating novel diagnostic and therapeutic strategy.


Diabetic Nephropathies/genetics , RNA, Circular/genetics , RNA, Circular/physiology , China , Computational Biology/methods , Diabetes Mellitus/genetics , Diabetic Nephropathies/physiopathology , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Regulatory Networks , Humans , Kidney/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/physiology , Kidney Tubules/metabolism , Kidney Tubules/physiology , MicroRNAs/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Transcriptome/genetics
8.
Sci Rep ; 11(1): 20650, 2021 10 19.
Article En | MEDLINE | ID: mdl-34667204

Podocyte abnormalities are common mechanism driving the progression of glomerular diseases, which account for most chronic kidney diseases (CKDs). However, the role of podocyte in the mechanism of high-risk long-term CKD caused by prematurity has not been well clarified. In present study, urine samples of 86 preterm infants and 32 full-term infants were collected, and podocyte-specific podocin mRNA levels in urine pellet were applied to indicate urinary podocyte mRNA excretion. In addition, in a preterm animal rat model, preterm rats were identified by delivery 2 days early. From the age of 3 weeks-12 months, urine samples were collected to examine podocyte mRNA excretion by measuring podocyte-specific podocin mRNA levels. Kidney samples at the age of 3 weeks, 2 months, and 12 months were collected from 8, 5 and 6 preterm rats and 9, 6 and 8 full-term rats, respectively, to examine podocyte density and podocyte area by measuring the podocyte specific nuclear marker WT-1 and the podocyte specific marker synaptopodin. As results, a more than threefold increase of urinary podocyte-specific podocin mRNA excretion rate was found in preterm infants compared with full-term infants. In addition, there was negative correlation between gestational age at birth and urinary podocin mRNA excretion. In preterm rats, a reduction in the total number of differentiated podocytes in glomeruli and an increased podocyte podocin mRNA excretion rate in urine were detected at the end of kidney differentiation. Moreover, long-term follow-up data in preterm rats showed there was an increased the risk of renal disease indicated by persistent podocyte mRNA loss, proteinuria, and enlarged glomeruli. In conclusion, increasing podocyte mRNA excretion in urine and podocyte loss in kidney led by prematurity drive the progression of long-term abnormal kidney function and could potentially explain the high risk of long-term CKD in preterm infants.


Kidney Diseases/genetics , Podocytes/metabolism , Premature Birth/genetics , Adult , Animals , Biomarkers/urine , China/epidemiology , Diabetic Nephropathies/urine , Disease Progression , Female , Humans , Infant, Newborn , Infant, Premature , Intracellular Signaling Peptides and Proteins/urine , Kidney Diseases/epidemiology , Kidney Diseases/urine , Kidney Glomerulus/physiology , Male , Membrane Proteins/urine , Microfilament Proteins/urine , Pregnancy , Premature Birth/epidemiology , Premature Birth/urine , Proteinuria/urine , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , Rats , Rats, Sprague-Dawley , Risk Factors
10.
Nat Protoc ; 16(8): 4068-4083, 2021 08.
Article En | MEDLINE | ID: mdl-34282333

The kidney glomerulus is essential for proper kidney function. Until recently, technical challenges associated with glomerular isolation and subsequent dissolution into single cells have limited the detailed characterization of cells in the glomerulus. Previous techniques of kidney dissociation result in low glomerular cell yield, which limits high-throughput analysis. The ability to efficiently purify glomeruli and digest the tissue into single cells is especially important for single-cell characterization methods. Here, we present a detailed and comprehensive technique for the extraction and preparation of mouse glomerular cells, with high yield and viability. The method includes direct renal perfusion of Dynabeads via the renal artery followed by kidney dissociation and isolation of glomeruli by magnet; these steps provide a high number and purity of isolated glomeruli, which are further dissociated into single cells. The balanced representation of podocytes, mesangial and endothelial cells in single-cell suspensions of mouse glomeruli, and the high cell viability observed, confirm the efficiency of our method. With some practice, the procedure can be done in <3 h (excluding equipment setup and data analysis). This protocol provides a valuable technique for advancing future single-cell-based studies of the glomerulus in health, injury and disease.


High-Throughput Screening Assays , Kidney Glomerulus/physiology , Kidney/cytology , Single-Cell Analysis/methods , Animals , Cell Culture Techniques , Cell Survival , Culture Media , Male , Mice , Mice, Inbred C57BL
11.
PLoS One ; 16(5): e0251129, 2021.
Article En | MEDLINE | ID: mdl-33951113

Shear stress induced by laminar blood flow has a profound effect on the morphology and functional phenotype of macrovascular endothelial cells. The influence of laminar flow on the glomerular microvascular endothelium, however, remains largely elusive. The glomerular endothelium, including its glycocalyx, is a crucial part of the glomerular filtration barrier, which is involved in blood filtration. We therefore investigated the influence of laminar flow-induced shear stress on the glomerular endothelium. Conditionally immortalized mouse glomerular endothelial cells were cultured for 7 days under a laminar flow of 5 dyn/cm2 to mimic the glomerular blood flow. The cells were subsequently analysed for changes in morphology, expression of shear stress-responsive genes, nitric oxide production, glycocalyx composition, expression of anti-oxidant genes and the inflammatory response. Culture under laminar flow resulted in cytoskeletal rearrangement and cell alignment compared to static conditions. Moreover, production of nitric oxide was increased and the expression of the main functional component of the glycocalyx, Heparan Sulfate, was enhanced in response to shear stress. Furthermore, glomerular endothelial cells demonstrated a quiescent phenotype under flow, characterized by a decreased expression of the pro-inflammatory gene ICAM-1 and increased expression of the anti-oxidant enzymes HO-1 and NQO1. Upon exposure to the inflammatory stimulus TNFα, however, glomerular endothelial cells cultured under laminar flow showed an enhanced inflammatory response. In conclusion, laminar flow extensively affects the morphology and functional phenotype of glomerular endothelial cells in culture. Furthermore, glomerular endothelial cells respond differently to shear stress compared to macrovascular endothelium. To improve the translation of future in vitro studies with glomerular endothelial cells to the in vivo situation, it appears therefore crucial to culture glomerular endothelial cells under physiological flow conditions.


Endothelial Cells/physiology , Kidney Glomerulus/physiology , Animals , Antioxidants/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Humans , Inflammation/metabolism , Inflammation/physiopathology , Intercellular Adhesion Molecule-1/metabolism , Kidney Glomerulus/metabolism , Mice , Nitric Oxide/metabolism , Phenotype , Stress, Mechanical , Tumor Necrosis Factor-alpha/metabolism
12.
J Am Soc Nephrol ; 32(6): 1293-1304, 2021 06 01.
Article En | MEDLINE | ID: mdl-33833078

To perform their functions, the kidneys maintain stable blood perfusion in the face of fluctuations in systemic BP. This is done through autoregulation of blood flow by the generic myogenic response and the kidney-specific tubuloglomerular feedback (TGF) mechanism. The central theme of this paper is that, to achieve autoregulation, nephrons do not work as single units to manage their individual blood flows, but rather communicate electrically over long distances to other nephrons via the vascular tree. Accordingly, we define the nephrovascular unit (NVU) to be a structure consisting of the nephron, glomerulus, afferent arteriole, and efferent arteriole. We discuss features that require and enable distributed autoregulation mediated by TGF across the kidney. These features include the highly variable topology of the renal vasculature which creates variability in circulation and the potential for mismatch between tubular oxygen demand and delivery; the self-sustained oscillations in each NVU arising from the autoregulatory mechanisms; and the presence of extensive gap junctions formed by connexins and their properties that enable long-distance transmission of TGF signals. The existence of TGF synchronization across the renal microvascular network enables an understanding of how NVUs optimize oxygenation-perfusion matching while preventing transmission of high systemic pressure to the glomeruli, which could lead to progressive glomerular and vascular injury.


Feedback, Physiological , Homeostasis , Kidney Diseases/physiopathology , Kidney Glomerulus/physiology , Kidney Tubules/physiology , Renal Circulation/physiology , Animals , Arterioles , Blood Pressure , Connexins/metabolism , Humans , Nephrons/physiology , Signal Transduction
13.
JCI Insight ; 6(10)2021 05 24.
Article En | MEDLINE | ID: mdl-33848265

Endothelial cells are important in the maintenance of healthy blood vessels and in the development of vascular diseases. However, the origin and dynamics of endothelial precursors and remodeling at the single-cell level have been difficult to study in vivo owing to technical limitations. Therefore, we aimed to develop a direct visual approach to track the fate and function of single endothelial cells over several days and weeks in the same vascular bed in vivo using multiphoton microscopy (MPM) of transgenic Cdh5-Confetti mice and the kidney glomerulus as a model. Individual cells of the vascular endothelial lineage were identified and tracked owing to their unique color combination, based on the random expression of cyan/green/yellow/red fluorescent proteins. Experimental hypertension, hyperglycemia, and laser-induced endothelial cell ablation rapidly increased the number of new glomerular endothelial cells that appeared in clusters of the same color, suggesting clonal cell remodeling by local precursors at the vascular pole. Furthermore, intravital MPM allowed the detection of distinct structural and functional alterations of proliferating endothelial cells. No circulating Cdh5-Confetti+ cells were found in the renal cortex. Moreover, the heart, lung, and kidneys showed more significant clonal endothelial cell expansion compared with the brain, pancreas, liver, and spleen. In summary, we have demonstrated that serial MPM of Cdh5-Confetti mice in vivo is a powerful technical advance to study endothelial remodeling and repair in the kidney and other organs under physiological and disease conditions.


Endothelium, Vascular , Intravital Microscopy/methods , Kidney Glomerulus , Single-Cell Analysis/methods , Animals , Endothelium, Vascular/cytology , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/physiology , Kidney Glomerulus/cytology , Kidney Glomerulus/diagnostic imaging , Kidney Glomerulus/physiology , Mice , Mice, Transgenic
14.
Circ Res ; 128(7): 887-907, 2021 04 02.
Article En | MEDLINE | ID: mdl-33793334

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.


Hypertension/etiology , Kidney/cytology , Renin/physiology , Animals , Arterioles/embryology , Blood Pressure/physiology , Cell Communication , Cell Differentiation , Cell Plasticity , Chromatin/physiology , Chromatin Assembly and Disassembly/physiology , Connexins/physiology , Homeostasis , Humans , Integrins/physiology , Juxtaglomerular Apparatus/cytology , Kidney/blood supply , Kidney/embryology , Kidney Glomerulus/physiology , Mice , MicroRNAs/physiology , Phenotype , Regeneration/physiology , Renal Artery , Renin/metabolism , Renin-Angiotensin System/physiology , Stem Cells/physiology , Water-Electrolyte Balance
15.
Exp Physiol ; 106(1): 269-281, 2021 01.
Article En | MEDLINE | ID: mdl-32495481

NEW FINDINGS: What is the central question of this study? Does passive heat acclimation alter glomerular filtration rate and urine-concentrating ability in response to passive heat stress? What is the main finding and its importance? Glomerular filtration rate remained unchanged after passive heat stress, and heat acclimation did not alter this response. However, heat acclimation mitigated the reduction in urine-concentrating ability and reduced the incidence of albuminuria in young healthy adults after passive heat stress. Collectively, these results suggest that passive heat acclimation might improve structural integrity and reduce glomerular permeability during passive heat stress. ABSTRACT: Little is known about the effect of heat acclimation on kidney function during heat stress. The purpose of this study was to determine the impact of passive heat stress and subsequent passive heat acclimation on markers of kidney function. Twelve healthy adults (seven men and five women; 26 ± 5 years of age; 72.7 ± 8.6 kg; 172.4 ± 7.5 cm) underwent passive heat stress before and after a 7 day controlled hyperthermia heat acclimation protocol. The impact of passive heat exposure on urine and serum markers of kidney function was evaluated before and after heat acclimation. Glomerular filtration rate, determined from creatinine clearance, was unchanged with passive heat stress before (pre, 133 ± 41 ml min-1 ; post, 127 ± 51 ml min-1 ; P = 0.99) and after (pre, 129 ± 46 ml min-1 ; post, 130 ± 36 ml min-1 ; P = 0.99) heat acclimation. The urine-to-serum osmolality ratio was reduced after passive heating (P < 0.01), but heat acclimation did not alter this response. In comparison to baseline, free water clearance was greater after passive heating before (pre, -0.86 ± 0.67 ml min-1 ; post, 0.40 ± 1.01 ml min-1 ; P < 0.01) but not after (pre, -0.16 ± 0.57 ml min-1 ; post, 0.76 ± 1.2 ml min-1 ; P = 0.11) heat acclimation. Furthermore, passive heating increased the fractional excretion rate of potassium (P < 0.03) but not sodium (P = 0.13) or chloride (P = 0.20). Lastly, heat acclimation reduced the fractional incidence of albuminuria after passive heating (before, 58 ± 51%; after, 8 ± 29%; P = 0.03). Collectively, these results demonstrate that passive heat stress does not alter the glomerular filtration rate. However, heat acclimation might improve urine-concentrating ability and filtration within the glomerulus.


Exercise/physiology , Heat Stress Disorders/physiopathology , Kidney/physiopathology , Sodium/urine , Acclimatization/physiology , Adult , Female , Heat-Shock Response/physiology , Humans , Hyperthermia, Induced/methods , Kidney Glomerulus/physiology , Male , Young Adult
16.
Eur J Clin Pharmacol ; 77(2): 179-188, 2021 Feb.
Article En | MEDLINE | ID: mdl-33319340

PURPOSE: Olaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for ovarian and metastatic breast cancer. Increased serum creatinine levels have been observed in patients taking olaparib, but the underlying mechanism is unknown. This study aimed to investigate if patients receiving olaparib have increased creatinine levels during olaparib treatment and whether this actually relates to a declined glomerular filtration rate (GFR). METHODS: We retrospectively identified patients using olaparib at the Netherlands Cancer Institute - Antoni van Leeuwenhoek (NKI-AVL) from 2012 until 2020. Patients with at least one plasma or serum sample available at baseline/off treatment and during olaparib treatment were included. Cystatin C levels were measured, creatinine levels were available and renal function was determined by calculating the estimated glomerular filtration rate (eGFR) using the Creatinine Equation (CKD-EPI 2009) and the Cystatin C Equation (CKD-EPI 2012). RESULTS: In total, 66 patients were included. Olaparib treatment was associated with a 14% increase in median creatinine from 72 (inter quartile range (IQR): 22) µmol/L before/off treatment to 82 (IQR: 20) µmol/L during treatment (p < 0.001) and a 13% decrease in median creatinine-derived eGFR from 86 (IQR: 26) mL/min/1.73 m2 before/off treatment to 75 (IQR: 29) mL/min/1.73 m2 during treatment (p < 0.001). Olaparib treatment had no significant effect on median cystatin C levels (p = 0.520) and the median cystatin C-derived eGFR (p = 0.918). CONCLUSIONS: This study demonstrates that olaparib likely causes inhibition of renal transporters leading to a reversible and dose-dependent increase in creatinine and does not affect GFR, since the median cystatin C-derived eGFR was comparable before/off treatment and during treatment of olaparib. Using the creatinine-derived eGFR can give an underestimation of GFR in patients taking olaparib. Therefore, an alternative renal marker such as cystatin C should be used to accurately calculate eGFR in patients taking olaparib.


Glomerular Filtration Rate/drug effects , Neoplasms/drug therapy , Phthalazines/adverse effects , Piperazines/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Biomarkers/metabolism , Creatinine/blood , Creatinine/metabolism , Cystatin C/blood , Cystatin C/metabolism , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Monitoring/methods , Female , Glomerular Filtration Rate/physiology , Humans , Kidney Glomerulus/drug effects , Kidney Glomerulus/physiology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/physiology , Male , Middle Aged , Neoplasms/blood , Netherlands , Phthalazines/administration & dosage , Piperazines/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Renal Elimination/drug effects , Renal Elimination/physiology , Retrospective Studies
17.
Adv Chronic Kidney Dis ; 27(6): 469-476, 2020 11.
Article En | MEDLINE | ID: mdl-33328063

Nephrologists are routinely involved in the care of pregnant women with glomerulonephritis. Prepregnancy counseling is vital to inform women of the potential risks of pregnancy and to reduce those risks by optimizing clinical status and medications. In general, for all glomerulonephritides, the best pregnancy outcomes are achieved when the disease is in remission and the woman has preserved renal function with no proteinuria or hypertension. Each glomerulonephritis has specific considerations, for example in lupus nephritis, mycophenolate is teratogenic and must be stopped at least 6 weeks before conception, hydroxychloroquine is recommended for all pregnant women, and flares are frequently encountered and must be treated appropriately. De novo glomerulonephritis should be considered when significant proteinuria is found early in pregnancy or an acute kidney injury with active urine is encountered. Biopsy can be safely undertaken in the first trimester. Treatment is often with corticosteroids, azathioprine, and/or tacrolimus. Rituximab is increasingly used for severe disease. Women with glomerulonephritis should ideally be managed in a joint renal-obstetric clinic. This review details the approach to the care of women with glomerulonephritis from prepregnancy counseling, through antenatal care and delivery, to the postpartum period. Special attention is given to medications and treatment of glomerulonephritis in pregnancy.


Glomerulonephritis , Kidney Glomerulus , Pregnancy Complications , Female , Glomerulonephritis/etiology , Glomerulonephritis/physiopathology , Glomerulonephritis/therapy , Humans , Kidney Glomerulus/physiology , Kidney Glomerulus/physiopathology , Patient Care/methods , Pregnancy , Pregnancy Complications/etiology , Pregnancy Complications/physiopathology , Pregnancy Complications/therapy , Pregnancy, High-Risk , Risk Adjustment/methods
18.
Kidney Blood Press Res ; 45(6): 996-1008, 2020.
Article En | MEDLINE | ID: mdl-33152733

BACKGROUND: Cr is secreted by the proximal tubules and thus Cr clearance (Ccr) can overestimate inulin clearance (Cin). However, in some cases, Ccr can even underestimate Cin. This suggests that Cr could be reabsorbed in the tubuli. We examined the clinical parameters that are associated with tubular Cr reabsorption. METHODS: In 80 kidney donor candidates (53.9 ± 13.2 years, 29 males), Cin and para-aminohippuric acid clearance were measured simultaneously. Intrarenal hemodynamic parameters were calculated by Gomez's formulae. To quantify the secretory component of Ccr (SFcr), it was calculated as follows: SFcr = (Ccr - Cin)/Ccr. RESULTS: Twenty-five subjects (31.3%) showed SFcr values <0. SFcr that correlated significantly and negatively with efferent arteriolar resistance (Re) and glomerular hydrostatic pressure (Pglo) (Re: r = -0.30, p = 0.008; Pglo: r = -0.28, p = 0.025). In multiple regression analyses, Re and Pglo were significantly and negatively associated with SFcr after adjustment for other confounders. CONCLUSIONS: These findings suggest that tubular reabsorption of Cr can occur in some cases. Intrarenal glomerular hemodynamic burden may be related to tubular creatinine reabsorption, which possibly leads to lower Ccr values.


Creatinine/metabolism , Kidney Glomerulus/physiology , Kidney Tubules/physiology , Adult , Aged , Female , Glomerular Filtration Rate , Healthy Volunteers , Hemodynamics , Humans , Hydrostatic Pressure , Male , Middle Aged , Tissue Donors
19.
Prog Mol Biol Transl Sci ; 172: 107-133, 2020.
Article En | MEDLINE | ID: mdl-32620239

Autophagy is a highly conserved intracellular catabolic process for the degradation of cytoplasmic components that has recently gained increasing attention for its importance in kidney diseases. It is indispensable for the maintenance of kidney homeostasis both in physiological and pathological conditions. Investigations utilizing various kidney cell-specific conditional autophagy-related gene knockouts have facilitated the advancement in understanding of the role of autophagy in the kidney. Recent findings are raising the possibility that defective autophagy exerts a critical role in different pathological conditions of the kidney. An emerging body of evidence reveals that autophagy exhibits cytoprotective functions in both glomerular and tubular compartments of the kidney, suggesting the upregulation of autophagy as an attractive therapeutic strategy. However, there is also accumulating evidence that autophagy could be deleterious, which presents a formidable challenge in developing therapeutic strategies targeting autophagy. Here, we review the recent advances in research on the role of autophagy during different pathological conditions, including acute kidney injury (AKI), focusing on sepsis, ischemia-reperfusion injury, cisplatin, and heavy metal-induced AKI. We also discuss the role of autophagy in chronic kidney disease (CKD) focusing on the pathogenesis of tubulointerstitial fibrosis, podocytopathies including focal segmental glomerulosclerosis, diabetic nephropathy, IgA nephropathy, membranous nephropathy, HIV-associated nephropathy, and polycystic kidney disease.


Autophagy , Kidney Diseases/physiopathology , Animals , Autophagy/physiology , Autophagy-Related Proteins/physiology , Cisplatin/toxicity , Clinical Trials as Topic , Disease Models, Animal , Homeostasis , Humans , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Glomerulus/physiology , Kidney Tubules/physiology , Lysosomes/physiology , Metals, Heavy/toxicity , Mice , Mice, Knockout , Nephrosis, Lipoid/pathology , Podocytes/pathology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology
20.
J Am Soc Nephrol ; 31(8): 1905-1914, 2020 08.
Article En | MEDLINE | ID: mdl-32546595

BACKGROUND: Glomerular hyperfiltration resulting from an elevated intraglomerular pressure (Pglom) is an important cause of CKD, but there is no feasible method to directly assess Pglom in humans. We developed a model to estimate Pglom in patients from combined renal arterial pressure and flow measurements. METHODS: We performed hemodynamic measurements in 34 patients undergoing renal or cardiac angiography under baseline conditions and during hyperemia induced by intrarenal dopamine infusion (30 µg/kg). For each participant during baseline and hyperemia, we fitted an adapted three-element Windkessel model that consisted of characteristic impedance, compliance, afferent resistance, and Pglom. RESULTS: We successfully analyzed data from 28 (82%) patients. Median age was 58 years (IQR, 52-65), median eGFR was 95 ml/min per 1.73 m2 (IQR, 74-100) using the CKD-EPI formula, 30% had microalbuminuria, and 32% had diabetes. The model showed a mean Pglom of 48.0 mm Hg (SD=10.1) at baseline. Under hyperemia, flow increased by 88% (95% CI, 68% to 111%). This resulted in a 165% (95% CI, 79% to 294%) increase in afferent compliance and a 13.1-mm Hg (95% CI, 10.0 to 16.3) decrease in Pglom. In multiple linear regression analysis, diabetes (coefficient, 10.1; 95% CI, 5.1 to 15.1), BMI (0.99 per kg/m2; 95% CI, 0.38 to 1.59), and renal perfusion pressure (0.42 per mm Hg; 95% CI, 0.25 to 0.59) were significantly positively associated with baseline Pglom. CONCLUSIONS: We constructed a model on the basis of proximal renal arterial pressure and flow velocity measurements that provides an overall estimate of glomerular pressure and afferent and efferent resistance in humans. The model provides a novel research technique to evaluate the hemodynamics of CKD on the basis of direct pressure and flow measurements. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Functional HEmodynamics in patients with and without Renal Artery stenosis (HERA), NL40795.018.12 at the Dutch national trial registry (toetsingonline.nl).


Arterial Pressure/physiology , Kidney Glomerulus/physiology , Renal Artery/physiology , Aged , Blood Flow Velocity , Female , Glomerular Filtration Rate , Humans , Male , Middle Aged , Pressure , Renal Insufficiency, Chronic/physiopathology
...