Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.039
Filtrar
1.
BMC Genomics ; 25(1): 884, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304820

RESUMEN

BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.


Asunto(s)
Enfermedad de Alzheimer , Genoma Bacteriano , Kéfir , Lactobacillus , Microbiota , Péptidos , Kéfir/microbiología , Lactobacillus/genética , Brasil , Péptidos/química , Péptidos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Metagenómica/métodos
2.
J Hazard Mater ; 479: 135700, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241365

RESUMEN

The study of antibiotic resistance in the silage microbiome has attracted initial attention. However, the influences of lactic acid bacteria inoculants and dry matter (DM) content on antibiotic resistance genes (ARGs) reduction in whole-plant corn silage remain poorly studied. This study accessed the ARGs' risk and transmission mechanism in whole-plant corn silage with different DM levels and treated with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. The macrolide and tetracycline were the main ARGs in corn silage. The dominant species (Lent. buchneri and Lactobacillus acetotolerans) were the main ARGs carriers in whole-plant corn silage. The application of Lent. buchneri increased total ARGs abundance regardless of corn DM. Whole-plant corn silage with 30 % DM reduced the abundances of integrase and plasmid compared with 40 % DM. The correlation and structural equation model analysis demonstrated that bacterial community succession, resulting from changes in DM content, was the primary driving factor influencing the ARGs distribution in whole-plant corn silage. Interestingly, whole-plant corn silage inoculated with Lent. buchneri reduced abundances of high-risk ARGs (mdtG, mepA, tetM, mecA, vatE and tetW) by regulating pathogens (Escherichia coli), mobile genetic elements (MGEs) genes (IS3 and IS1182), and this effect was more pronounced at 30 % DM level. In summary, although whole-plant corn silage inoculated with Lent. buchneri increased the total ARGs abundance at both DM levels, it decreased the abundance of high-risk ARGs by reducing the abundances of the pathogens and MGEs, and this effect was more noticeable at 30 % DM level.


Asunto(s)
Ensilaje , Zea mays , Zea mays/microbiología , Ensilaje/microbiología , Genes Bacterianos , Secuencias Repetitivas Esparcidas , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Lactobacillus/genética , Lactobacillus/efectos de los fármacos , Fermentación
3.
Artículo en Inglés | MEDLINE | ID: mdl-39264830

RESUMEN

Seven novel lactic acid bacterial strains (BF125T, BF186, TKL145, YK3, YK6, YK10 and NSK) were isolated from the fresh faeces of Japanese black beef cattle and weanling piglets, spent mushroom substrates, or steeping water of a corn starch production plant. These strains are rod-shaped, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, cytochrome oxidase-negative, facultatively anaerobic, and homofermentative. Strain BF125T did not produce any gas from glucose; both d- and l-lactate were produced as end-products of glucose (D/L, 40 : 60). Growth occurred at 30-45 °C (optimum, 37 °C), pH 5.0-8.0 (optimum, pH 6.0), and with NaCl concentration of 1.0-3.0% (w/v). The G+C content of genomic DNA of strain BF125T was 37.8 mol% (whole-genome analysis). The major fatty acids were C16 : 0, C18 : 1 ω9c, C19 cyclopropane 9, 10, and summed feature 10. The 16S rRNA gene in strain BF125T showed high similarity to that of the type strain of Lactobacillus amylovorus (99.93%), and the other isolates were also identified as L. amylovorus based on these similarities. A phylogenetic tree based on the core genomes of L. amylovorus strains (n=54), including the seven isolates, showed that they could be divided into two clusters. Strains YK3, YK6, YK10, and NSK were in the first cluster, along with the type strain DSM 20531T, while the second cluster included isolates BF125T, BF186, TKL145, and other strains isolated from various animal origins. Phenotypic differences in fermentability were observed for lactose, salicin, and gentiobiose between these two groups. The intergroup digital DNA-DNA hybridization values (72.9-78.6%) and intergroup average nucleotide identity values (95.64-96.92%) were comparable to values calculated using datasets of other valid subspecies of the genus (ex-) Lactobacillus. In light of the physiological, genotypic, and phylogenetic evidence, we propose a novel subspecies of L. amylovorus, named Lactobacillus amylovorus subsp. animalis subsp. nov. (type strain BF125T=MAFF 212522T=DSM 115528T). Our findings also led to the automatic creation of Lactobacillus amylovorus subsp. amylovorus subsp. nov. and an emended description of the species L. amylovorus.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Heces , Lactobacillus , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Animales , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Porcinos , Heces/microbiología , Bovinos , Lactobacillus/genética , Lactobacillus/clasificación , Lactobacillus/aislamiento & purificación , Hibridación de Ácido Nucleico , Japón
4.
mSystems ; 9(9): e0073824, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39120153

RESUMEN

The vaginal microbiome (VM) is associated with human papillomavirus (HPV) infection and progression, but a thorough understanding of the relation between HPV infection, and VM needs to be elucidated. From August to December 2022, women who underwent routine gynecological examinations were screened for HPV infection. The distribution of HPV variants and clinical characteristics were collected. Then, a total of 185 participants were enrolled and divided into HPV-negative (HC), high-risk HPV (H), low-risk HPV (L), multiple high-risk HPV (HH), and mixed high-low risk HPV (HL) groups. Samples were collected from the mid-vagina of these 185 participants and sent for 16S rDNA sequencing (V3-V4 region). Among 712 HPV-positive women, the top 3 most frequently detected genotypes were HPV52, HPV58, and HPV16. Among 185 participants in the microbiology study, the ß diversity of the HC group was significantly different from HPV-positive groups (P < 0.001). LEfSe analysis showed that Lactobacillus iners was a potential biomarker for H group, while Lactobacillus crispatus was for L group. Regarding HPV-positive patients, the α diversity of cervical lesion patients was remarkably lower than those with normal cervix (P < 0.05). Differential abundance analysis showed that Lactobacillus jensenii significantly reduced in cervical lesion patients (P < 0.001). Further community state type (CST) clustering displayed that CST IV was more common than other types in HC group (P < 0.05), while CST I was higher than CST IV in H group (P < 0.05). Different HPV infections had distinct vaginal microbiome features. HPV infection might lead to the imbalance of Lactobacillus spp. and cause cervical lesions. IMPORTANCE: In this study, we first investigated the prevalence of different HPV genotypes in south China, which could provide more information for HPV vaccinations. Then, a total of 185 subjects were selected from HPV-negative, high-risk, low-risk, multiple hr-hr HPV infection, and mixed hr-lr HPV infection populations to explore the vaginal microbiome changes. This study displayed that HPV52, HPV58, and HPV16 were the most prevalent high-risk variants in south China. In addition, high-risk HPV infection was featured by Lactobacillus iners, while low-risk HPV infection was by Lactobacillus crispatus. Further sub-group analysis showed that Lactobacillus jensenii was significantly reduced in patients with cervical lesions. Finally, CST clustering showed that CST IV was the most common type in HC group, while CST I accounted the most in H group. In a word, this study for the first time systemically profiled vaginal microbiome of different HPV infections, which may add bricks to current knowledge on HPV infection and lay the foundation for novel treatment/prevention development.


Asunto(s)
Microbiota , Infecciones por Papillomavirus , Vagina , Humanos , Femenino , Vagina/microbiología , Vagina/virología , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología , China/epidemiología , Adulto , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Prevalencia , Persona de Mediana Edad , Adulto Joven , ARN Ribosómico 16S/genética , Genotipo , Virus del Papiloma Humano
5.
Sci Rep ; 14(1): 19199, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160300

RESUMEN

The main purpose was to determine the abundance of dominant phyla, Bifidobacterium spp., and Lactobacillus in breast milk of obese mothers versus normal-weights in fourth month of lactation in Iranian population. Sixty health women at the fourth month of breastfeeding, aged 18-40 years, were included and categorized based on body mass index (BMI) to the obese (BMI ≥ 30 kg/m2) and normal-weights (18.5 ≤ BMI ≤ 24.9). Bacterial DNA was extracted and qPCR of the 16S region was performed after human milk donation in a sterile condition. A multiple linear mixed model was used to determine the effective factors on the phyla population. Bifidobacterium spp. was significantly higher in milk of normal-weight group than the obese. The current weight showed a significant effect on the Actinobacteria abundance in milk. The Bacteroidetes and Firmicutes were significantly lower in mother's milk with cesarean section (p = 0.04). Pre-pregnancy obesity decreased the Firmicutes and Lactobacillus abundance in maternal milk (p = 0.04 and p = 0.01). The Actinobacteria and Bifidobacterium spp. showed a significant effect on infant's height (p = 0.008 and p = 0.04). The maternal current and pre-pregnancy weight showed an important effect on abundance of Actinobacteria and Bifidobacterium spp., as the good phyla and genus in milk which are associated with the infant's height.


Asunto(s)
Lactancia , Leche Humana , Obesidad , Probióticos , Humanos , Femenino , Leche Humana/microbiología , Adulto , Obesidad/microbiología , Adulto Joven , Adolescente , Bifidobacterium/aislamiento & purificación , Bifidobacterium/genética , Lactancia Materna , Índice de Masa Corporal , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Embarazo , Irán
7.
J Agric Food Chem ; 72(32): 18100-18109, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39090787

RESUMEN

Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.


Asunto(s)
Proteínas Bacterianas , Estabilidad de Enzimas , Hexosiltransferasas , Inulina , Lactobacillus , Mutagénesis Sitio-Dirigida , Inulina/metabolismo , Inulina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Lactobacillus/enzimología , Lactobacillus/genética , Lactobacillus/metabolismo , Cinética , Calor , Ingeniería de Proteínas , Especificidad por Sustrato
8.
Sci Rep ; 14(1): 18866, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143192

RESUMEN

Isomalto/malto-polysaccharides (IMMPs) are a novel type of soluble dietary fibres with a prebiotic potential promoting growth of beneficial microbes in the gut. However, the mode of action of IMMPs remains unknown. Previous studies on IMMPs showed an increase in total bacteria, especially lactobacilli, and higher production of short chain fatty acids (SCFA) when IMMPs were fed to rats or used during in vitro fermentation. Here we used metatranscriptomics to investigate how IMMPs with different amounts of α - (1 → 6) glycosidic linkages affected microbial function during incubation with human fecal inoculum. We showed that active microbial community dynamics during fermentation varied depending on the type of IMMP used and that the observed changes were reflected in the community gene expression profiles. Based on metatranscriptome analysis, members of Bacteroides, Lactobacillus and Bifidobacterium were the predominant degraders of IMMPs, and the increased gene expression in these bacteria correlated with high amounts of α - (1 → 6) glycosidic linkages. We also noted an increase in relative abundance of these bacteria and an activation of pathways involved in SCFA synthesis. Our findings could provide a baseline for more targeted approaches in designing prebiotics for specific bacteria and to achieve more controlled modulation of microbial activity towards desired health outcomes.


Asunto(s)
Heces , Microbioma Gastrointestinal , Prebióticos , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Fermentación , Polisacáridos/metabolismo , Colon/microbiología , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Fibras de la Dieta/metabolismo , Lactobacillus/metabolismo , Lactobacillus/genética , Bacterias/genética , Bacterias/metabolismo
9.
J Agric Food Chem ; 72(31): 17465-17480, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046216

RESUMEN

Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.


Asunto(s)
Proteínas Bacterianas , Alimentos Fermentados , Lactobacillus , Fenetilaminas , Tiramina , Tiramina/metabolismo , Fenetilaminas/metabolismo , Fenetilaminas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Lactobacillus/enzimología , Lactobacillus/genética , Lactobacillus/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Simulación del Acoplamiento Molecular , Cinética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química , Fermentación
10.
J Agric Food Chem ; 72(28): 15875-15889, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957928

RESUMEN

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.


Asunto(s)
Fermentación , Aromatizantes , Lactobacillus , Proteínas de Guisantes , Pisum sativum , Gusto , Humanos , Proteínas de Guisantes/metabolismo , Proteínas de Guisantes/química , Lactobacillus/metabolismo , Lactobacillus/genética , Pisum sativum/química , Pisum sativum/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Proteómica , Adulto , Masculino , Femenino , Adulto Joven , Bebidas/análisis , Bebidas/microbiología
11.
Front Cell Infect Microbiol ; 14: 1390088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040604

RESUMEN

Introduction: The dysbiosis of vaginal microbiota is recognized as a potential underlying factor contributing to infertility in women. This study aimed to compare the vaginal microbiomes of infertile and fertile women to investigate their relationship with infertility. Methods: Metagenomic analysis was conducted on samples from 5 infertile and 5 fertile individuals using both amplicon 16S and metagenomics shotgun sequencing methods. Results and discussion: In the infertile group, the bacterial community was primarily represented by three major bacterial genera: Lactobacillus (79.42%), Gardnerella (12.56%) and Prevotella (3.33%), whereas, the fertile group exhibited a more diverse composition with over 8 major bacterial genera, accompanied by significantly reduced abundance of Lactobacillus (48.79%) and Gardnerella (6.98%). At the species level, higher abundances of L. iners, L. gasseri and G. vaginalis were observed in the infertile group. Regarding the microbiome composition, only one fertile and two infertile subjects exhibited the healthiest Community State Types, CST-1, while CST-3 was observed among two infertile and one fertile subject, and CST-4 in three other fertile and one infertile subject. Overall, alpha diversity metrics indicated greater diversity and lower species richness in the control (fertile) group, while the infertile group displayed the opposite trend. However, beta-diversity analysis did not show distinct clustering of samples associated with any specific group; instead, it demonstrated CST-type specific clustering. Shotgun metagenomics further confirmed the dominance of Firmicutes, with a greater abundance of Lactobacillus species in the infertile group. Specifically, L. iners and G. vaginalis were identified as the most dominant and highly abundant in the infertile group. Fungi were only identified in the control group, dominated by Penicillium citrinum (62.5%). Metagenome-assembled genomes (MAGs) corroborated read-based taxonomic profiling, with the taxon L. johnsonii identified exclusively in disease samples. MAG identities shared by both groups include Shamonda orthobunyavirus, L. crispatus, Human endogenous retrovirus K113, L. iners, and G. vaginalis. Interestingly, the healthy microbiomes sequenced in this study contained two clusters, Penicillium and Staphylococcus haemolyticus, not found in the public dataset. In conclusion, this study suggests that lower species diversity with a higher abundance of L. iners, L. gasseri and G. vaginalis, may contribute to female infertility in our study datasets. However, larger sample sizes are necessary to further evaluate such association.


Asunto(s)
Bacterias , Infertilidad Femenina , Metagenómica , Microbiota , Vagina , Humanos , Femenino , Vagina/microbiología , Metagenómica/métodos , Infertilidad Femenina/microbiología , Adulto , Microbiota/genética , Bangladesh , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Metagenoma , Adulto Joven , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Lactobacillus/clasificación , Disbiosis/microbiología , Filogenia
12.
Front Cell Infect Microbiol ; 14: 1409774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006741

RESUMEN

Background: Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods: Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and ß-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results: The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion: Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.


Asunto(s)
Gardnerella vaginalis , Lactobacillus , Microbiota , Reacción en Cadena en Tiempo Real de la Polimerasa , Vagina , Vaginosis Bacteriana , Femenino , Vaginosis Bacteriana/diagnóstico , Vaginosis Bacteriana/microbiología , Humanos , Vagina/microbiología , Microbiota/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Gardnerella vaginalis/aislamiento & purificación , Gardnerella vaginalis/genética , Adulto Joven , Sensibilidad y Especificidad , Prevotella/aislamiento & purificación , Prevotella/genética , Megasphaera/aislamiento & purificación , Megasphaera/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/genética , Actinobacteria/clasificación , Persona de Mediana Edad , Lactobacillus crispatus/aislamiento & purificación , Lactobacillus crispatus/genética , Adolescente , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Embarazo , ARN Ribosómico 16S/genética
13.
Forensic Sci Int ; 362: 112147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067179

RESUMEN

The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.


Asunto(s)
ADN Bacteriano , Reacción en Cadena de la Polimerasa Multiplex , ARN Ribosómico 16S , Saliva , Vagina , Humanos , Saliva/microbiología , Saliva/química , Femenino , ADN Bacteriano/análisis , Vagina/microbiología , Streptococcus salivarius/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Gardnerella vaginalis/aislamiento & purificación , Gardnerella vaginalis/genética , Moco del Cuello Uterino/microbiología , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/genética
14.
Int J Food Microbiol ; 423: 110845, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39079449

RESUMEN

The primary objective of this study was to characterize lactic acid bacteria (LAB) strains derived from sourdough for possible utilization as functional starters to produce sourdough and various cereal-based fermented foods. A total of 350 autochthonous LAB strains were isolated from 65 Type I sourdough samples and characterized using six random amplified polymorphic DNA (RAPD) primers at intra- and interspecific levels. Species identification of selected strains representing distinct clusters from RAPD analysis was performed based on the 16S rRNA region. The LAB strains were identified as Companilactobacillus crustorum (n = 135), Levilactobacillus brevis (n = 125), Latilactobacillus curvatus (n = 40), Companilactobacillus paralimentarius (n = 32), and Lactiplantibacillus plantarum (n = 18). A total of 66 LAB strains were selected for technological characterization along with two commercial strains. The characterization involved acidity development, EPS production potential, leavening activity, and growth abilities under harsh conditions. Principle component analysis (PCA) identified 2 Lp. plantarum and 14 Lev. brevis strains as the most relevant technologically. Among them, Lp. plantarum L35.1 and Lev. brevis L37.1 were resistant to tetracycline. Evaluation of probiotic characteristics (survival in pH 2.5 and bile presence, auto aggregation capacity, hydrophobic activity, antioxidant activity, antimicrobial activity) by PCA identified four strains with relevance to Lactobacillus rhamnosus GG (LGG), which were further selected for in vitro digestion assays. Lactiplantibacillus plantarum L7.8, Lev. brevis L55.1, and L62.2 demonstrated similar viability indices to LGG, along with increased auto aggregation capacity and antioxidant activity. These strains are promising as candidate starters for producing sourdough and sourdough-related fermented food products.


Asunto(s)
Pan , Fermentación , Microbiología de Alimentos , Técnica del ADN Polimorfo Amplificado Aleatorio , Pan/microbiología , ARN Ribosómico 16S/genética , Alimentos Fermentados/microbiología , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Lactobacillales/clasificación , Lactobacillales/metabolismo , Filogenia , Antibacterianos/farmacología , ADN Bacteriano/genética , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/clasificación , Lactobacillus/metabolismo
15.
Microb Genom ; 10(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949867

RESUMEN

Lactobacillus species are common inhabitants of the 'healthy' female urinary and vaginal communities, often associated with a lack of symptoms in both anatomical sites. Given identification by prior studies of similar bacterial species in both communities, it has been hypothesized that the two microbiotas are in fact connected. Here, we carried out whole-genome sequencing of 49 Lactobacillus strains, including 16 paired urogenital samples from the same participant. These strains represent five different Lactobacillus species: L. crispatus, L. gasseri, L. iners, L. jensenii, and L. paragasseri. Average nucleotide identity (ANI), alignment, single-nucleotide polymorphism (SNP), and CRISPR comparisons between strains from the same participant were performed. We conducted simulations of genome assemblies and ANI comparisons and present a statistical method to distinguish between unrelated, related, and identical strains. We found that 50 % of the paired samples have identical strains, evidence that the urinary and vaginal communities are connected. Additionally, we found evidence of strains sharing a common ancestor. These results establish that microbial sharing between the urinary tract and vagina is not limited to uropathogens. Knowledge that these two anatomical sites can share lactobacilli in females can inform future clinical approaches.


Asunto(s)
Lactobacillus , Microbiota , Polimorfismo de Nucleótido Simple , Vagina , Humanos , Femenino , Vagina/microbiología , Lactobacillus/genética , Lactobacillus/clasificación , Genoma Bacteriano , Filogenia , Sistema Urinario/microbiología , Secuenciación Completa del Genoma , Orina/microbiología
16.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038938

RESUMEN

With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.


Asunto(s)
Envejecimiento , Suplementos Dietéticos , Microbioma Gastrointestinal , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Humanos , Anciano , Femenino , Masculino , Anciano de 80 o más Años , Persona de Mediana Edad , Lactobacillus/genética , Metagenómica/métodos , Bifidobacterium
17.
Mol Ecol ; 33(17): e17478, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39075965

RESUMEN

Gut microbial communities confer protection against natural pathogens in important pollinators from the genera Bombus and Apis. In commercial species B. terrestris and B. impatiens, the microbiota increases their resistance to the common and virulent trypanosomatid parasite Crithidia bombi. However, the mechanisms by which gut microorganisms protect the host are still unknown. Here, we test two hypotheses: microbiota protect the host (1) through stimulation of its immune response or protection of the gut epithelium and (2) by competing for resources with the parasite inside the gut. To test them, we reduced the microbiota of workers and then rescued the microbial community by feeding them with microbiota supplements. We then exposed them to an infectious dose of C. bombi and characterised gene expression and gut microbiota composition. We examined the expression of three antimicrobial peptide genes and Mucin-5AC, a gene with a putative role in gut epithelium protection, using qPCR. Although a protective effect against C. bombi was observed in bumblebees with supplemented microbiota, we did not observe an effect of the microbiota on gene expression that could explain alone the protective effect observed. On the other hand, we found an increased relative abundance of Lactobacillus bacteria within the gut of infected workers and a negative correlation of this genus with Gilliamella and Snodgrassella genera. Therefore, our results point to a displacement of bumblebee endosymbionts by C. bombi that might be caused by competition for space and nutrients between the parasite and the microbiota within the gut.


La microbiota intestinal confiere protección frente a los patógenos naturales en polinizadores importantes de los géneros Bombus y Apis. En concreto, la microbiota de las especies comerciales B. terrestris y B. impatients, incrementa su resistencia frente al parásito tripanosomátido común y virulento Crithidia bombi. Sin embargo, los mecanismos por los cuales los microorganismos protegen al hospedador todavía se desconocen. Aquí probamos dos hipótesis: la microbiota protege al hospedador (1) a través de la estimulación de la respuesta inmunitaria o la protección del epitelio y (2) por competición por los recursos con el parásito dentro del intestino. Para probar estas hipótesis, redujimos la microbiota de obreras y dimos suplementos de microbiota a una parte de ellas. Las expusimos a una dosis infecciosa de C. bombi y caracterizamos la expresión génica y la composición de la microbiota intestinal. Examinamos la expresión de los genes de tres péptidos antimicrobianos (AMPs) y de Mucin­5AC, un gen con un rol putativo en la protección del epitelio intestinal, usando la qPCR. Aunque observamos un efecto protector contra C. bombi en los abejorros suplementados con microbiota, no vimos un efecto en la expresión génica que pudiese explicar por sí solo la protección observada. Por otro lado, encontramos un incremento en la abundancia relativa de bacterias del género Lactobacillus en el intestino de obreras infectadas y una correlación negativa de este género con los géneros Gilliamella y Snodgrassella. Por tanto, nuestros resultados apuntan a un desplazamiento de los endosimbiontes por parte de C. bombi, que podría estar causado por la competición por espacio y nutrientes entre el parásito y la microbiota dentro del intestino.


Asunto(s)
Crithidia , Microbioma Gastrointestinal , Lactobacillus , Animales , Crithidia/patogenicidad , Crithidia/genética , Abejas/microbiología , Abejas/parasitología , Lactobacillus/genética
18.
Front Cell Infect Microbiol ; 14: 1403782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912205

RESUMEN

Introduction: We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods: Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results: Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion: These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.


Asunto(s)
Chlamydia trachomatis , Lactobacillus , ARN Ribosómico 16S , Vagina , Femenino , Humanos , Vagina/microbiología , ARN Ribosómico 16S/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/genética , Lactobacillus/metabolismo , Chlamydia trachomatis/aislamiento & purificación , Adulto , Streptococcus/aislamiento & purificación , Adulto Joven , Lactobacillus crispatus/aislamiento & purificación , Infecciones por Chlamydia/microbiología
19.
Virulence ; 15(1): 2368080, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38899573

RESUMEN

Dendritic cells (DCs) present an ideal target for delivering immunogenic cargo due to their potent antigen-presenting capabilities. This targeting approach holds promise in vaccine development by enhancing the efficiency of antigen recognition and capture by DCs. To identify a high-affinity targeting peptide binding to rabbit DCs, rabbit monocyte-derived DCs (raMoDCs) were isolated and cultured, and a novel peptide, HS (HSLRHDYGYPGH), was identified using a phage-displayed peptide library. Alongside HS, two other DC-targeting peptides, KC1 and MY, previously validated in our laboratory, were employed to construct recombinant Lactgobacillus reuteri fusion-expressed rabbit hemorrhagic disease virus (RHDV) capsid protein VP60. These recombinant Lactobacillus strains were named HS-VP60/L. reuteri, KC1-VP60/L. reuteri, and MY-VP60/L. reuteri. The ability of these recombinant Lactobacillus to bind rabbit DCs was evaluated both in vivo and in vitro. Results demonstrated that the DC-targeting peptide KC1 significantly enhanced the capture efficiency of recombinant Lactobacillus by raMoDCs, promoted DC maturation, and increased cytokine secretion. Furthermore, oral administration of KC1-VP60/L. reuteri effectively induced SIgA and IgG production in rabbits, prolonged rabbit survival post-challenge, and reduced RHDV copies in organs. In summary, the DC-targeting peptide KC1 exhibited robust binding to raMoDCs, and recombinant Lactobacillus expressing KC1-VP60 protein antigens efficiently induced systemic and mucosal immune responses in rabbits, conferring protective efficacy against RHDV. This study offers valuable insights for the development of novel RHDV vaccines.


Asunto(s)
Células Dendríticas , Virus de la Enfermedad Hemorrágica del Conejo , Limosilactobacillus reuteri , Péptidos , Animales , Células Dendríticas/inmunología , Conejos , Virus de la Enfermedad Hemorrágica del Conejo/inmunología , Virus de la Enfermedad Hemorrágica del Conejo/genética , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/inmunología , Péptidos/inmunología , Péptidos/genética , Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/inmunología , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Lactobacillus/genética , Lactobacillus/inmunología
20.
mSphere ; 9(7): e0045024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38926904

RESUMEN

The Gardnerella genus, comprising at least 13 species, is associated with the polymicrobial disorder bacterial vaginosis (BV). However, the details of BV pathogenesis are poorly defined, and the contributions made by individual species, including Gardnerella spp., are largely unknown. We report here that colony phenotypes characterized by size (large and small) and opacity (opaque and translucent) are phase variable and are conserved among all tested Gardnerella strains, representing at least 10 different species. With the hypothesis that these different variants could be an important missing piece to the enigma of how BV develops in vivo, we characterized their phenotypic, proteomic, and genomic differences. Beyond increased colony size, large colony variants showed reduced vaginolysin secretion and faster growth rate relative to small colony variants. The ability to inhibit the growth of Neisseria gonorrhoeae and commensal Lactobacillus species varied by strain and, in some instances, differed between variants. Proteomics analyses indicated that 127-173 proteins were differentially expressed between variants. Proteins with increased expression in large variants of both strains were associated with amino acid and protein synthesis and protein folding, whereas those increased in small variants were related to nucleotide synthesis, phosphate transport, ABC transport, and glycogen breakdown. Furthermore, whole genome sequencing analyses revealed an abundance of genes associated with variable homopolymer tracts, implicating slipped strand mispairing in Gardnerella phase variation and illuminating the potential for previously unrecognized heterogeneity within clonal populations. Collectively, these results suggest that phase variants may be primed to serve different roles in BV pathogenesis.IMPORTANCEBacterial vaginosis is the most common gynecological disorder in women of childbearing age. Gardnerella species are crucial to the development of this dysbiosis, but the mechanisms involved in the infection are not understood. We discovered that Gardnerella species vary between two different forms, reflected in bacterial colony size. A slow-growing form makes large amounts of the toxin vaginolysin and is better able to survive in human cervix tissue. A fast-growing form is likely the one that proliferates to high numbers just prior to symptom onset and forms the biofilm that serves as a scaffold for multiple BV-associated anaerobic bacteria. Identification of the proteins that vary between different forms of the bacteria as well as those that vary randomly provides insight into the factors important for Gardnerella infection and immune avoidance.


Asunto(s)
Gardnerella , Fenotipo , Vaginosis Bacteriana , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Virulencia , Gardnerella/genética , Gardnerella/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Lactobacillus/genética , Genoma Bacteriano , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA