Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Biochem ; 93: 80-89, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33831386

RESUMEN

OBJECTIVES: Mutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood dementia Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. In this work, we present the generation and characterization of laforin nanobodies, with one being a laforin inhibitor. DESIGN AND METHODS: We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Using para-nitrophenyl phosphate (pNPP) and a malachite gold-based assay specific for glucan phosphatase activity, we assess the inhibitory effect of one nanobody on laforin's catalytic activity. RESULTS: Six families of laforin nanobodies are characterized and their epitopes mapped. One nanobody is identified and characterized that serves as an inhibitor of laforin's phosphatase activity. CONCLUSIONS: The six generated and characterized laforin nanobodies, with one being a laforin inhibitor, are an important set of tools that open new avenues to define unresolved glycogen metabolism questions.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/química , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/química , Animales , Bioensayo , Camélidos del Nuevo Mundo , Cromatografía en Gel , Inhibidores Enzimáticos/farmacología , Mapeo Epitopo , Glucógeno/metabolismo , Oro/química , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Enfermedad de Lafora/enzimología , Modelos Moleculares , Nitrofenoles/química , Compuestos Organometálicos/química , Compuestos Organofosforados/química , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Anticuerpos de Dominio Único/aislamiento & purificación
2.
Methods Mol Biol ; 1447: 107-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27514803

RESUMEN

Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity.


Asunto(s)
Pruebas de Enzimas/métodos , Glucógeno/metabolismo , Enfermedad de Lafora/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Fluoresceínas/metabolismo , Humanos , Enfermedad de Lafora/metabolismo , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Especificidad por Sustrato
3.
Biochem J ; 473(3): 335-45, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26578817

RESUMEN

Laforin is a human dual-specificity phosphatase (DSP) involved in glycogen metabolism regulation containing a carbohydrate-binding module (CBM). Mutations in the gene coding for laforin are responsible for the development of Lafora disease, a progressive fatal myoclonus epilepsy with early onset, characterized by the intracellular deposition of abnormally branched, hyperphosphorylated insoluble glycogen-like polymers, called Lafora bodies. Despite the known importance of the CBM domain of laforin in the regulation of glycogen metabolism, the molecular mechanism of laforin-glycogen interaction is still poorly understood. Recently, the structure of laforin with bound maltohexaose was determined and despite the importance of such breakthrough, some molecular interaction details remained missing. We herein report a thorough biophysical characterization of laforin-carbohydrate interaction using soluble glycans. We demonstrated an increased preference of laforin for the interaction with glycans with higher order of polymerization and confirmed the importance of tryptophan residues for glycan interaction. Moreover, and in line with what has been described for other CBMs and lectins, our results confirmed that laforin-glycan interactions occur with a favourable enthalpic contribution counter-balanced by an unfavourable entropic contribution. The analysis of laforin-glycan interaction through the glycan side by saturation transfer difference (STD)-NMR has shown that the CBM-binding site can accommodate between 5 and 6 sugar units, which is in line with the recently obtained crystal structure of laforin. Overall, the work in the present study complements the structural characterization of laforin and sheds light on the molecular mechanism of laforin-glycan interaction, which is a pivotal requisite to understand the physiological and pathological roles of laforin.


Asunto(s)
Enfermedad de Lafora/enzimología , Polisacáridos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Sitios de Unión , Glucógeno/química , Glucógeno/metabolismo , Humanos , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Polisacáridos/química , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética , Especificidad por Sustrato
4.
Brain ; 137(Pt 3): 806-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24430976

RESUMEN

Lafora progressive myoclonus epilepsy (Lafora disease) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. The vast majority of patients carry mutations in either the EPM2A or EPM2B genes, encoding laforin, a glucan phosphatase, and malin, an E3 ubiquitin ligase, respectively. Although the precise physiological role of these proteins is not fully understood, work in past years has established a link between glycogen synthesis, Lafora bodies formation and Lafora disease development. To determine the role of the phosphatase activity of laforin in disease development we generated two Epm2a(-/-) mouse lines expressing either wild-type laforin or a mutant (C265S) laforin lacking only the phosphatase activity. Our results demonstrate that expression of either transgene blocks formation of Lafora bodies and restores the impairment in macroautophagy, preventing the development of Lafora bodies in Epm2a(-/-) mice. These data indicate that the critical pathogenic process is the control of abnormal glycogen accumulation through intracellular proteolytic systems by the laforin-malin complex, and not glycogen dephosphorylation by laforin. Understanding which is the essential process leading to Lafora disease pathogenesis represents a critical conceptual advance that should facilitate development of appropriate therapeutics.


Asunto(s)
Fosfatasas de Especificidad Dual/deficiencia , Fosfatasas de Especificidad Dual/metabolismo , Enfermedad de Lafora/metabolismo , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Femenino , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Fosforilación/genética , Proteínas Tirosina Fosfatasas no Receptoras
5.
Ann Neurol ; 75(3): 442-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24419970

RESUMEN

Ubiquitin ligases regulate quantities and activities of target proteins, often pleiotropically. The malin ubiquitin E3 ligase is reported to regulate autophagy, the misfolded protein response, microRNA silencing, Wnt signaling, neuronatin-mediated endoplasmic reticulum stress, and the laforin glycogen phosphatase. Malin deficiency causes Lafora disease, pathologically characterized by neurodegeneration and accumulations of malformed glycogen (Lafora bodies). We show that reducing glycogen production in malin-deficient mice by genetically removing PTG, a glycogen synthesis activator protein, nearly completely eliminates Lafora bodies and rescues the neurodegeneration, myoclonus, seizure susceptibility, and behavioral abnormality. Glycogen synthesis downregulation is a potential therapy for the fatal adolescence onset epilepsy Lafora disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/terapia , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Condicionamiento Psicológico , Regulación hacia Abajo , Miedo/psicología , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Lafora/psicología , Ratones , Ratones Noqueados , Mioclonía/enzimología , Mioclonía/genética , Mioclonía/terapia , Fármacos Neuroprotectores/metabolismo , Placa Amiloide , Convulsiones/enzimología , Convulsiones/genética , Convulsiones/terapia
6.
Cell Metab ; 17(5): 756-67, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23663739

RESUMEN

Laforin or malin deficiency causes Lafora disease, characterized by altered glycogen metabolism and teenage-onset neurodegeneration with intractable and invariably fatal epilepsy. Plant starches possess small amounts of metabolically essential monophosphate esters. Glycogen contains similar phosphate amounts, which are thought to originate from a glycogen synthase error side reaction and therefore lack any specific function. Glycogen is also believed to lack monophosphates at glucosyl carbon C6, an essential phosphorylation site in plant starch metabolism. We now show that glycogen phosphorylation is not due to a glycogen synthase side reaction, that C6 is a major glycogen phosphorylation site, and that C6 monophosphates predominate near centers of glycogen molecules and positively correlate with glycogen chain lengths. Laforin or malin deficiency causes C6 hyperphosphorylation, which results in malformed long-chained glycogen that accumulates in many tissues, causing neurodegeneration in brain. Our work advances the understanding of Lafora disease pathogenesis and suggests that glycogen phosphorylation has important metabolic function.


Asunto(s)
Glucógeno/metabolismo , Enfermedad de Lafora/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Carbono/metabolismo , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/enzimología , Masculino , Ratones , Fosforilación , Conejos
7.
Mol Neurobiol ; 48(1): 49-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23546741

RESUMEN

Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.


Asunto(s)
Progresión de la Enfermedad , Fosfatasas de Especificidad Dual/metabolismo , Estrés del Retículo Endoplásmico , Glucanos/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/patología , Neuronas/patología , Regulación Alostérica , Animales , Apoptosis , Activación Enzimática , Técnicas de Silenciamiento del Gen , Glucógeno/biosíntesis , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Hidrólisis , Enfermedad de Lafora/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Neuronas/enzimología , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras , alfa-Amilasas/metabolismo
8.
Int J Biochem Cell Biol ; 45(7): 1479-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23624058

RESUMEN

Protein phosphatase type 1 (PP1) plays a major role in the regulation of glycogen biosynthesis. PP1 is recruited to sites of glycogen formation by its binding to specific targeting subunits. There, it dephosphorylates different enzymes involved in glycogen homeostasis leading to an activation of glycogen biosynthesis. Regulation of these targeting subunits is crucial, as excess of them leads to an enhancement of the action of PP1, which results in glycogen accumulation. In this work we present evidence that PPP1R3D (R6), one of the PP1 glycogenic targeting subunits, interacts physically with laforin, a glucan phosphatase involved in Lafora disease, a fatal type of progressive myoclonus epilepsy. Binding of R6 to laforin allows the ubiquitination of R6 by the E3-ubiquitin ligase malin, what targets R6 for autophagic degradation. As a result of the action of the laforin-malin complex on R6, its glycogenic activity is downregulated. Since R6 is expressed in brain, our results suggest that the laforin-malin complex downregulates the glycogenic activity of R6 present in neuron cells to prevent glycogen accumulation.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Enfermedad de Lafora/metabolismo , Proteína Fosfatasa 1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autofagia , Proteínas Portadoras , Línea Celular Tumoral , Regulación hacia Abajo , Glucógeno/metabolismo , Células HEK293 , Humanos , Enfermedad de Lafora/enzimología , Ratones , Neuronas/metabolismo , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitinación
9.
J Biol Chem ; 287(30): 25650-9, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22669944

RESUMEN

The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Glucógeno/metabolismo , Enfermedad de Lafora/enzimología , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Animales , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Femenino , Glucógeno/genética , Humanos , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Masculino , Ratones , Ratones Noqueados , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/genética , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas/genética
10.
PLoS One ; 6(8): e24040, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21887368

RESUMEN

Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.


Asunto(s)
Fosfatasas de Especificidad Dual/análisis , Enfermedad de Lafora/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Carbohidratos , Proteínas Portadoras/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Unión Proteica , Multimerización de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/análisis , Proteínas Tirosina Fosfatasas no Receptoras/química , Ubiquitina-Proteína Ligasas
11.
EMBO Mol Med ; 3(11): 667-81, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21882344

RESUMEN

Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here, we report a large increase in glycogen synthase (GS) in these mice, in which the enzyme accumulates in LBs. Our study focused on the hippocampus where, under physiological conditions, astrocytes and parvalbumin-positive (PV(+)) interneurons expressed GS and malin. Although LBs have been described only in neurons, we found this polyglucosan accumulation in the astrocytes of the KO mice. They also had LBs in the soma and some processes of PV(+) interneurons. This phenomenon was accompanied by the progressive loss of these neuronal cells and, importantly, neurophysiological alterations potentially related to impairment of hippocampal function. Our results emphasize the relevance of the laforin-malin complex in the control of glycogen metabolism and highlight altered glycogen accumulation as a key contributor to neurodegeneration in LD.


Asunto(s)
Modelos Animales de Enfermedad , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/fisiopatología , Ratones , Degeneración Nerviosa/enzimología , Animales , Astrocitos/enzimología , Femenino , Glucógeno/metabolismo , Glucógeno Sintasa/genética , Hipocampo/enzimología , Humanos , Cuerpos de Inclusión/enzimología , Cuerpos de Inclusión/genética , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/enzimología
12.
Neurobiol Dis ; 44(1): 133-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21742036

RESUMEN

Lafora disease (LD) is the inherited progressive myoclonus epilepsy caused by mutations in either EPM2A gene, encoding the protein phosphatase laforin or the NHLRC1 gene, encoding the ubiquitin ligase malin. Since malin is an ubiquitin ligase and its mutations cause LD, it is hypothesized that improper clearance of its substrates might lead to LD pathogenesis. Here, we demonstrate for the first time that neuronatin is a novel substrate of malin. Malin interacts with neuronatin and enhances its degradation through proteasome. Interestingly, neuronatin is an aggregate prone protein, forms aggresome upon inhibition of cellular proteasome function and malin recruited to those aggresomes. Neuronatin is found to stimulate the glycogen synthesis through the activation of glycogen synthase and malin prevents neuronatin-induced glycogen synthesis. Several LD-associated mutants of malin are ineffective in the degradation of neuronatin and suppression of neuronatin-induced glycogen synthesis. Finally, we demonstrate the increased levels of neuronatin in the skin biopsy sample of LD patients. Overall, our results indicate that malin negatively regulates neuronatin and its loss of function in LD results in increased accumulation of neuronatin, which might be implicated in the formation of Lafora body or other aspect of disease pathogenesis.


Asunto(s)
Proteínas Portadoras/farmacología , Glucógeno/biosíntesis , Enfermedad de Lafora/enzimología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Animales , Western Blotting , Proteínas Portadoras/genética , ADN Complementario/genética , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Células PC12 , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/metabolismo , Piel/patología , Transfección , Ubiquitina-Proteína Ligasas , Ubiquitinación/efectos de los fármacos
13.
Biochem J ; 439(2): 265-75, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21728993

RESUMEN

Lafora progressive myoclonus epilepsy [LD (Lafora disease)] is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual-specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others showed that laforin and malin form a functional complex that regulates multiple aspects of glycogen metabolism, and that the interaction between laforin and malin is enhanced by conditions activating AMPK (AMP-activated protein kinase). In the present study, we demonstrate that laforin is a phosphoprotein, as indicated by two-dimensional electrophoresis, and we identify Ser(25) as the residue involved in this modification. We also show that Ser(25) is phosphorylated both in vitro and in vivo by AMPK. Lastly, we demonstrate that this residue plays a critical role for both the phosphatase activity and the ability of laforin to interact with itself and with previously established binding partners. The results of the present study suggest that phosphorylation of laforin-Ser(25) by AMPK provides a mechanism to modulate the interaction between laforin and malin. Regulation of this complex is necessary to maintain normal glycogen metabolism. Importantly, Ser(25) is mutated in some LD patients (S25P), and our results begin to elucidate the mechanism of disease in these patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Lafora/enzimología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Serina/metabolismo , Línea Celular , Electroforesis en Gel Bidimensional , Humanos , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Tirosina Fosfatasas no Receptoras/química , Técnicas del Sistema de Dos Híbridos
14.
BMC Evol Biol ; 11: 225, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21798009

RESUMEN

BACKGROUND: Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin. RESULTS: After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex. CONCLUSIONS: We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Enfermedad de Lafora/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Humanos , Enfermedad de Lafora/genética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Factores de Transcripción/química , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/química , Ubiquitinación , Vertebrados/clasificación , Vertebrados/genética
15.
Hum Mol Genet ; 20(13): 2571-84, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21493628

RESUMEN

Laforin is a dual specificity protein phosphatase involved in Lafora disease (LD), a fatal form of progressive myoclonus epilepsy characterized by neurodegeneration and the presence of intracellular polyglucosan inclusions (Lafora bodies) in different tissues. In this work, we describe that mice lacking laforin (epm2a-/-) have enhanced insulin response leading to altered whole-body energy balance. This enhanced insulin response overactivates the Akt pathway which increases glucose uptake in the heart, resulting in increased glycogen levels and the formation of polyglucosan inclusions. In addition, enhanced insulin response resulted in increased liver lipid biosynthesis, resulting in hepatic steatosis. On the contrary, overexpression in rat hepatoma FTO2B cells of native laforin but not of a form lacking phosphatase activity (C266S) resulted in attenuation of insulin signaling. These results define laforin as a new regulator of insulin sensitivity, which provides novel insights into LD pathogenesis and identifies this phosphatase as a potential novel component of the insulin signaling cascade.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Metabolismo Energético , Insulina/metabolismo , Enfermedad de Lafora/enzimología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Metabolismo Energético/genética , Femenino , Glucosa/metabolismo , Enfermedad de Lafora/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Actividad Motora/genética , Miocardio/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras , Ratas , Transducción de Señal/genética
16.
Cell Metab ; 13(3): 274-82, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21356517

RESUMEN

Glycogen is a branched polymer of glucose that serves as an energy store. Phosphate, a trace constituent of glycogen, has profound effects on glycogen structure, and phosphate hyperaccumulation is linked to Lafora disease, a fatal progressive myoclonus epilepsy that can be caused by mutations of laforin, a glycogen phosphatase. However, little is known about the metabolism of glycogen phosphate. We demonstrate here that the biosynthetic enzyme glycogen synthase, which normally adds glucose residues to glycogen, is capable of incorporating the ß-phosphate of its substrate UDP-glucose at a rate of one phosphate per approximately 10,000 glucoses, in what may be considered a catalytic error. We show that the phosphate in glycogen is present as C2 and C3 phosphomonoesters. Since hyperphosphorylation of glycogen causes Lafora disease, phosphate removal by laforin may thus be considered a repair or damage control mechanism.


Asunto(s)
Glucógeno/biosíntesis , Fosfatos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/enzimología , Fosforilación , Conejos , Uridina Difosfato Glucosa/metabolismo
17.
Autophagy ; 6(8): 1229-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20818153

RESUMEN

The progressive myoclonus epilepsy of Lafora disease (LD) is a fatal form of neurodegenerative disorder associated with progressive intellectual decline and ataxia in addition to epilepsy. The disease can be caused by defects in the EPM2A gene encoding laforin phosphatase or the NHLRC1 gene encoding malin ubiquitin ligase. Laforin and malin function together as a complex in the ubiquitin-proteasome system, and hence defects in proteolytic processes are thought to underlie some of the symptoms in LD. One of the pathological hallmarks of LD is the presence of cytoplasmic polyglucosan inclusions, the Lafora bodies. While Lafora bodies are known as a lesser branched form of glycogen with high phosphate content, a physiological basis for their genesis in the cytoplasm was not well understood. Recently it was shown in a mouse model for LD that loss of laforin inhibits autophagosome formation, suggesting that laforin plays a critical role in autophagosome biogenesis. The polyglucosan inclusions could be one of the substrates of autophagy, and loss of laforin might affect their sequestration into autophagosomes leading to their aggregation as Lafora bodies. Thus, laforin's proposed role in autophagy suggests a possible link between the proteolytic system and the polyglucosan inclusions in LD.


Asunto(s)
Autofagia , Metabolismo de los Hidratos de Carbono , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Autofagia/genética , Metabolismo de los Hidratos de Carbono/genética , Sitios Genéticos/genética , Humanos , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/genética , Ratones , Modelos Biológicos
18.
Mol Biol Cell ; 21(15): 2578-88, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20534808

RESUMEN

Lafora progressive myoclonus epilepsy is a fatal neurodegenerative disorder caused by defects in the function of at least two proteins: laforin, a dual-specificity protein phosphatase, and malin, an E3-ubiquitin ligase. In this study, we report that a functional laforin-malin complex promotes the ubiquitination of AMP-activated protein kinase (AMPK), a serine/threonine protein kinase that acts as a sensor of cellular energy status. This reaction occurs when any of the three AMPK subunits (alpha, beta, and gamma) are expressed individually in the cell, and it also occurs on AMPK beta when it is part of a heterotrimeric complex. We also report that the laforin-malin complex promotes the formation of K63-linked ubiquitin chains, which are not involved in proteasome degradation. On the contrary, this modification increases the steady-state levels of at least AMPK beta subunit, possibly because it leads to the accumulation of this protein into inclusion bodies. These results suggest that the modification introduced by the laforin-malin complex could affect the subcellular distribution of AMPK beta subunits.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Enfermedad de Lafora/enzimología , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Humanos , Leupeptinas/farmacología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Ubiquitina-Proteína Ligasas , Ubiquitinación/efectos de los fármacos
19.
Hum Mutat ; 30(5): 715-23, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19267391

RESUMEN

Lafora disease (LD) is an autosomal recessive and fatal form of progressive myoclonus epilepsy. LD patients manifest myoclonus and tonic-clonic seizures, visual hallucinations, and progressive neurologic deterioration beginning at 12 to 15 years of age. The two genes known to be associated with LD are EPM2A and NHLRC1. Mutations in at least one other as yet unknown gene also cause LD. The EMP2A encodes a protein phosphatase and NHLRC1 encodes an ubiquitin ligase. These two proteins interact with each other and, as a complex, are thought to regulate critical neuronal functions. Nearly 100 distinct mutations have been discovered in the two genes in over 200 independent LD families. Nearly half of them are missense mutations, and the deletion mutations account for one-quarter. Several reports have provided functional data for the mutant proteins and a few also provide genotype-phenotype correlations. In this review we provide an update on the spectrum of EPM2A and NHLRC1 mutations, and discuss their distribution in the patient population, genotype-phenotype correlations, and on the possible effect of disease mutations on the cellular functions of LD proteins.


Asunto(s)
Proteínas Portadoras/genética , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/genética , Mutación/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Adolescente , Proteínas Portadoras/química , Genotipo , Humanos , Enfermedad de Lafora/diagnóstico , Fenotipo , Proteínas Tirosina Fosfatasas no Receptoras/química , Ubiquitina-Proteína Ligasas
20.
Proc Natl Acad Sci U S A ; 104(49): 19262-6, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18040046

RESUMEN

Lafora disease is a progressive myoclonus epilepsy with onset typically in the second decade of life and death within 10 years. Lafora bodies, deposits of abnormally branched, insoluble glycogen-like polymers, form in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual-specificity protein phosphatase family that additionally contains a glycogen binding domain. The molecular basis for the formation of Lafora bodies is completely unknown. Glycogen, a branched polymer of glucose, contains a small amount of covalently linked phosphate whose origin and function are obscure. We report here that recombinant laforin is able to release this phosphate in vitro, in a time-dependent reaction with an apparent K(m) for glycogen of 4.5 mg/ml. Mutations of laforin that disable the glycogen binding domain also eliminate its ability to dephosphorylate glycogen. We have also analyzed glycogen from a mouse model of Lafora disease, Epm2a(-/-) mice, which develop Lafora bodies in several tissues. Glycogen isolated from these mice had a 40% increase in the covalent phosphate content in liver and a 4-fold elevation in muscle. We propose that excessive phosphorylation of glycogen leads to aberrant branching and Lafora body formation. This study provides a molecular link between an observed biochemical property of laforin and the phenotype of a mouse model of Lafora disease. The results also have important implications for glycogen metabolism generally.


Asunto(s)
Fosfatasas de Especificidad Dual/deficiencia , Glucógeno/metabolismo , Enfermedad de Lafora/enzimología , Animales , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Glucógeno Sintasa/análisis , Glucógeno Sintasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras , Conejos , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA