Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(5): e0233792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470001

RESUMEN

BACKGROUND: The Argentinian pouched lamprey, classified as Petromyzon macrostomus Burmeister, 1868 was first described in 1867 in De La Plata River, in Buenos Aires, Argentina, and subsequently recorded in several rivers from Patagonia. Since its original description, the validity of P. macrostomus was questioned by several ichthyologists and 36 years after its original discovery it was considered a junior synonym of Geotria australis Gray, 1851. For a long time, the taxonomic status of G. australis has been uncertain, largely due to the misinterpretations of the morphological alterations that occur during sexual maturation, including the arrangement of teeth, size and position of fins and cloaca, and the development of an exceptionally large gular pouch in males. In this study, the taxonomic status of Geotria from across the "species" range was evaluated using both molecular analysis and examination of morphological characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic and species delimitation analyses based on mitochondrial DNA sequences of Cytochrome b (Cyt b) and Cytochrome C Oxidase Subunit 1 (COI) genes, along with morphological analysis of diagnostic characters reported in the original descriptions of the species were used to assess genetic and morphological variation within Geotria and to determine the specific status of the Argentinian lamprey. These analyses revealed that Geotria from Argentina constitutes a well differentiated lineage from Chilean and Australasian populations. The position of the cloaca and the distance between the second dorsal and caudal fins in sub-adult individuals, and at previous life stages, can be used to distinguish between the two species. In addition, the genetic distance between G. macrostoma and G. australis for the COI and Cyt b mitochondrial genes is higher than both intra- and inter-specific distances reported for other Petromyzontiformes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the Argentinian pouched lamprey, found along a broad latitudinal gradient on the south-west Atlantic coast of South America, should be named as Geotria macrostoma (Burmeister, 1868) and not as G. australis Gray 1851, returning to its earliest valid designation in Argentina. Geotria macrostoma can now be considered as the single lamprey species inhabiting Argentinian Patagonia, with distinct local adaptations and evolutionary potential. It is essential that this distinctiveness is recognized in order to guide future conservation and management actions against imminent threats posed by human actions in the major basins of Patagonia.


Asunto(s)
Lampreas/clasificación , Aletas de Animales/anatomía & histología , Animales , Argentina , Cloaca/anatomía & histología , ADN Mitocondrial/genética , Lampreas/anatomía & histología , Lampreas/genética , Filogenia , Ríos
2.
Genome Biol Evol ; 7(11): 3009-21, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26475318

RESUMEN

The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins.


Asunto(s)
Evolución Biológica , Genes myb/genética , Lampreas/genética , Filogenia , Tiburones/genética , Sintenía , Secuencia de Aminoácidos , Animales , Teorema de Bayes , Funciones de Verosimilitud , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Vertebrados/genética
3.
Genet Mol Res ; 10(4): 3246-50, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22194188

RESUMEN

The Pacific lamprey (Entosphenus tridentatus) is an anadromous fish that is of conservation concern in North America and Asia. Data on Pacific lamprey population structure are scarce and conflicting, impeding conservation efforts. We optimized 12 polymorphic microsatellite loci for the Pacific lamprey. Three to 13 alleles per locus were observed in a sample of 51 fish collected from the West Fork Illinois River, Oregon. Observed heterozygosity ranged from 0.235 to 0.902 and expected heterozygosity ranged from 0.214 to 0.750. Cross-species amplification produced 8 to 12 polymorphic loci in four other Entosphenus species and in the western brook lamprey (Lampetra richardsoni). Two loci appear to be diagnostic for distinguishing Entosphenus from Lampetra. These markers will be valuable for evaluating population structure and making conservation decisions for E. tridentatus and other lamprey species.


Asunto(s)
Genética de Población , Lampreas/genética , Repeticiones de Microsatélite , Alelos , Animales , ADN/genética , Cartilla de ADN/química , Cartilla de ADN/genética , Sitios Genéticos , Biblioteca Genómica , Técnicas de Genotipaje , Heterocigoto , Oregon , Polimorfismo Genético , Ríos , Análisis de Secuencia de ADN
4.
Genetica ; 122(3): 325-33, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15609555

RESUMEN

Lampreys are the only surviving representatives of the oldest known vertebrates. The Mexican lamprey L. geminis (nonparasitic), is particularly interesting, because it is an endemic, biogeographical relict, and a threatened species. RAPD markers were used to describe genetic diversity in L. geminis. A total of 77 specimens were collected from five populations, three in the Río Grande de Morelia-Cuitzeo basin and two in the Río Duero-Lerma-Chapala basin, México. Eighty-eight RAPD markers were obtained from eight primers. Genetic diversity within each population was estimated using Shannon's index (S), heterozygosity (H) and gene diversity (h). These estimates revealed significant variation within populations, although a variance homogeneity test (HOMOVA) showed no significant differences among populations or between basins. Nei genetic distance values indicate a low genetic differentiation among populations. Analysis of molecular variance (AMOVA) indicates that most of the genetic diversity occurs within populations (91.4%), but that a statistically significant amount is found among populations (P < 0.001). Principal coordinates and cluster analyses of RAPD phenotypes show that specimens are not grouped by geographical origin. The genetic diversity found within L. geminis populations may be explained by its breeding system and an overlapping of generations. The scarce genetic differentiation among populations is likely to the low rate of DNA change that characterizes the lamprey group.


Asunto(s)
Variación Genética , Lampreas/genética , Animales , Marcadores Genéticos , Genética de Población , Fenotipo , Filogenia , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA