Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.730
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731839

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Alzheimer Disease , Lectins, C-Type , Mice, Transgenic , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Neurons/metabolism , Mice , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Brain/metabolism , Brain/pathology , Gene Expression Regulation , Disease Models, Animal
2.
Front Immunol ; 15: 1372927, 2024.
Article En | MEDLINE | ID: mdl-38742105

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
3.
Sci Rep ; 14(1): 10346, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710903

Mammals are generally resistant to Mycobacterium avium complex (MAC) infections. We report here on a primary immunodeficiency disorder causing increased susceptibility to MAC infections in a canine breed. Adult Miniature Schnauzers developing progressive systemic MAC infections were related to a common founder, and pedigree analysis was consistent with an autosomal recessive trait. A genome-wide association study and homozygosity mapping using 8 infected, 9 non-infected relatives, and 160 control Miniature Schnauzers detected an associated region on chromosome 9. Whole genome sequencing of 2 MAC-infected dogs identified a codon deletion in the CARD9 gene (c.493_495del; p.Lys165del). Genotyping of Miniature Schnauzers revealed the presence of this mutant CARD9 allele worldwide, and all tested MAC-infected dogs were homozygous mutants. Peripheral blood mononuclear cells from a dog homozygous for the CARD9 variant exhibited a dysfunctional CARD9 protein with impaired TNF-α production upon stimulation with the fungal polysaccharide ß-glucan that activates the CARD9-coupled C-type lectin receptor, Dectin-1. While CARD9-deficient knockout mice are susceptible to experimental challenges by fungi and mycobacteria, Miniature Schnauzer dogs with systemic MAC susceptibility represent the first spontaneous animal model of CARD9 deficiency, which will help to further elucidate host defense mechanisms against mycobacteria and fungi and assess potential therapies for animals and humans.


CARD Signaling Adaptor Proteins , Dog Diseases , Genetic Predisposition to Disease , Genome-Wide Association Study , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Animals , CARD Signaling Adaptor Proteins/genetics , Dogs , Mycobacterium avium-intracellulare Infection/veterinary , Mycobacterium avium-intracellulare Infection/genetics , Mycobacterium avium-intracellulare Infection/microbiology , Mycobacterium avium Complex/genetics , Dog Diseases/genetics , Dog Diseases/microbiology , Sequence Deletion , Pedigree , Female , Male , Whole Genome Sequencing , Homozygote , Lectins, C-Type/genetics
4.
Scand J Immunol ; 99(6): e13364, 2024 Jun.
Article En | MEDLINE | ID: mdl-38720521

Mucosal-associated invariant T-cells (MAIT) are unconventional T-cells with cytotoxic and pro-inflammatory properties. Previous research has reported contradictory findings on their role in cancerogenesis with data being even scarcer in haematological malignancies. Here, we report the results of a systematic analysis of MAIT cells in treatment-naïve patients with a broad range of haematological malignancies. We analysed peripheral blood of 204 patients and 50 healthy subjects. The pool of haematological patients had a statistically significant lower both the absolute value (median values, 0.01 × 109/L vs. 0.05 × 109/L) of MAIT cells and their percentage (median values 0.94% vs. 2.56%) among T-cells compared to the control group. Separate analysis showed that the decrease in the absolute number of MAIT cells is significant in patients with acute myeloid leukaemia, myeloproliferative neoplasms, plasma cell myeloma, B-cell non-Hodgkin lymphomas, otherwise not specified, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma compared to the control population. Furthermore, in haematological malignancies, MAIT cells overexpress PD-1 (average values, 51.7% vs. 6.7%), HLA-DR (average values, 40.2% vs. 7%), CD38 (average values, 25.9% vs. 4.9%) and CD69 (average values, 40.2% vs. 9.2%). Similar results were obtained when comparing patients with individual malignancies to the control population. Our data show that the depletion of circulating MAIT cells is a common observation in a broad spectrum of haematological malignancies. In addition to their reduced numbers, MAIT cells acquire an activated/exhausted phenotype.


Hematologic Neoplasms , Mucosal-Associated Invariant T Cells , Programmed Cell Death 1 Receptor , Humans , Mucosal-Associated Invariant T Cells/immunology , Hematologic Neoplasms/immunology , Male , Female , Middle Aged , Aged , Adult , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Antigens, CD/metabolism , Aged, 80 and over , Antigens, Differentiation, T-Lymphocyte/metabolism , Lymphocyte Count , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/immunology , Immunophenotyping , Young Adult , Membrane Glycoproteins/immunology , Lectins, C-Type
5.
J Immunol Res ; 2024: 5582151, 2024.
Article En | MEDLINE | ID: mdl-38690552

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Antigens, CD , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Uterus , Female , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , Uterus/immunology , Antigens, CD/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Integrin alpha Chains/metabolism , Memory T Cells/immunology , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Immunologic Memory
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732232

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Aeromonas hydrophila , Bass , Cell Adhesion Molecules , Lectins, C-Type , Receptors, Cell Surface , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Aeromonas hydrophila/immunology , Bass/immunology , Bass/metabolism , Bass/microbiology , Bass/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Immunity, Innate , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology
7.
Nat Commun ; 15(1): 3926, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724513

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


CD18 Antigens , Candidiasis , Fungal Proteins , Lectins, C-Type , Macrophages , Animals , Mice , beta-Glucans/metabolism , beta-Glucans/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , CD11b Antigen/metabolism , CD11b Antigen/immunology , CD18 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fungal Proteins/metabolism , Fungal Proteins/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Macrophages/immunology , Macrophages/metabolism , Signal Transduction
8.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38612837

Hashimoto's thyroiditis (HT) and Graves' disease (GD) are common autoimmune endocrine disorders in children. Studies indicate that apart from environmental factors, genetic background significantly contributes to the development of these diseases. This study aimed to assess the prevalence of selected single-nucleotide polymorphisms (SNPs) of Il7R, CD226, CAPSL, and CLEC16A genes in children with autoimmune thyroid diseases. We analyzed SNPs at the locus rs3194051, rs6897932 of IL7R, rs763361 of CD226, rs1010601 of CAPSL, and rs725613 of CLEC16A gene in 56 HT patients, 124 GD patients, and 156 healthy children. We observed significant differences in alleles IL7R (rs6897932) between HT males and the control group (C > T, p = 0.028) and between all GD patients and healthy children (C > T, p = 0.035) as well as GD females and controls (C > T, p = 0.018). Moreover, the C/T genotype was less frequent in GD patients at rs6897932 locus and in HT males at rs1010601 locus. The presence of the T allele in the IL7R (rs6897932) locus appears to have a protective effect against HT in males and GD in all children. Similarly, the presence of the T allele in the CAPSL locus (rs1010601) seems to reduce the risk of HT development in all patients.


Autoimmune Diseases , Graves Disease , Hashimoto Disease , Child , Female , Male , Humans , Adolescent , Prevalence , Alleles , Hashimoto Disease/genetics , Polymorphism, Single Nucleotide , Graves Disease/genetics , Receptors, Interleukin-7/genetics , Monosaccharide Transport Proteins , Lectins, C-Type/genetics
9.
Int Immunopharmacol ; 133: 112115, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652959

BACKGROUND: Human T cells play an important role in immunity against tuberculosis (TB) infection. Activating receptor HLA-DR and inhibitory receptor KLRG1 are critical regulators of T cell function during viral infection and tumorigenesis, but they have been less studied in TB infection. METHODS: In this study, we explored the relationship between CD3+ T cell expression of HLA-DR and KLRG1 receptors and function against TB infection. Flow cytometry was conducted to assess the immunomodulatory effects of HLA-DR and KLRG1 receptors on CD3+ T cells in patients with different TB infection status. RESULTS: We found activating receptors HLA-DR, NKG2C, CD57 and NKP46, and inhibitory receptors KLRG1 and KIR on CD3+ T cells in different TB infection status showed different distribution patterns; the cytotoxic potential and cytokine secretion capacity of CD3+ T cells after Mtb-specific antigen stimulation were significantly enhanced in TB infection groups. Further studies revealed HLA-DR+ T and KLRG1+ T cells expressed higher activating and inhibitory receptors than the negative population. In addition, the expression of cytotoxic potential and cytokine secretion capacity of HLA-DR+ T and KLRG1+ T cells was significantly higher than that of HLA-DR- T and KLRG1- T cells. CONCLUSIONS: Expression of HLA-DR and KLRG1 enhances the cytotoxic potential and cytokine secretion capacity of CD3+ T cells in TB patients, suggesting CD3+ T cells expressing HLA-DR and KLRG1 are important effector cell phenotypes involved in the host anti-TB infection. HLA-DR and KLRG1 expressed by CD3+ T cells may be potential predictive markers of TB disease progression and clinical immune assessment.


CD3 Complex , Cytokines , HLA-DR Antigens , Lectins, C-Type , Mycobacterium tuberculosis , Receptors, Immunologic , Tuberculosis , Humans , Receptors, Immunologic/metabolism , HLA-DR Antigens/metabolism , HLA-DR Antigens/immunology , Tuberculosis/immunology , Male , Lectins, C-Type/metabolism , Female , Cytokines/metabolism , CD3 Complex/metabolism , CD3 Complex/immunology , Adult , Middle Aged , Mycobacterium tuberculosis/immunology , Cytotoxicity, Immunologic , Young Adult , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cells, Cultured
10.
Mol Med Rep ; 29(6)2024 06.
Article En | MEDLINE | ID: mdl-38639174

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Inflammation , Mycobacterium tuberculosis , Animals , Mice , Inflammation/metabolism , Immunity, Innate , Mycobacterium tuberculosis/metabolism , NF-kappa B , Fibrosis , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mice, Inbred C57BL
11.
Front Immunol ; 15: 1383110, 2024.
Article En | MEDLINE | ID: mdl-38650930

Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet better outcome in autoimmunity. Building on our past findings of increased TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is stable within an individual but differs across individuals in both T1D and healthy control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis (RA), and cancer subjects, expresses multiple inhibitory receptors, and is hyporesponsive in vitro, together suggesting co-expression of TIGIT and KLRG1 may broadly define human peripheral exhausted cells. In HC and RA subjects, lower levels of EOMES transcriptional modules and frequency of TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404, 0405, 0408, 1001) even when considering disease status and cytomegalovirus (CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was significantly increased in RA HLA risk but not non-risk subjects treated with abatacept (CTLA4Ig). The DR4 association and selective modulation with abatacept suggests that therapeutic modulation of TEX may be more effective in DR4 subjects and TEX may be indirectly influenced by cellular interactions that are blocked by abatacept.


Abatacept , Alleles , Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Receptors, Immunologic , Humans , Abatacept/therapeutic use , Abatacept/pharmacology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , Male , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Adult , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , HLA Antigens/genetics , HLA Antigens/immunology , Middle Aged , Antirheumatic Agents/therapeutic use , Genetic Predisposition to Disease , T-Cell Exhaustion
12.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38649988

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Azadirachta , CARD Signaling Adaptor Proteins , Dendritic Cells , Lectins, C-Type , Mice, Inbred C57BL , NF-kappa B , Plant Leaves , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Azadirachta/chemistry , Mice , CARD Signaling Adaptor Proteins/metabolism , NF-kappa B/metabolism , Protein Binding
13.
Front Immunol ; 15: 1370511, 2024.
Article En | MEDLINE | ID: mdl-38596675

Introduction: SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective: This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results: Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion: Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.


Acute Lung Injury , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Disease Models, Animal , Lectins, C-Type , Pulmonary Surfactant-Associated Protein A/genetics , SARS-CoV-2
14.
Front Immunol ; 15: 1366096, 2024.
Article En | MEDLINE | ID: mdl-38596689

Background: The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method: Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results: Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion: The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , CD8-Positive T-Lymphocytes , Nomograms , Lung Neoplasms/genetics , Tumor Microenvironment , Lectins, C-Type
15.
BMC Cancer ; 24(1): 399, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561690

BACKGROUND: Podoplanin (PDPN) expressed on tumour cells interacts with platelet C-type lectin-like receptor 2 (CLEC-2). This study aimed to investigate the role of the PDPN-platelet CLEC-2 interaction in melanoma pulmonary metastasis. METHODS: Murine melanoma B16-F0 cells, which have two populations that express podoplanin, were sorted by FACS with anti-podoplanin staining to obtain purified PDPN + and PDPN- B16-F0 cells. C57BL/6J mice transplanted with CLEC-2-deficient bone marrow cells were used for in vivo experiments. RESULTS: The in vivo data showed that the number of metastatic lung nodules in WT mice injected with PDPN + cells was significantly higher than that in WT mice injected with PDPN- cells and in WT or CLEC-2 KO mice injected with PDPN- cells. In addition, our results revealed that the platelet Syk-dependent signalling pathway contributed to platelet aggregation and melanoma metastasis. CONCLUSIONS: Our study indicates that the PDPN-CLEC-2 interaction promotes experimental pulmonary metastasis in a mouse melanoma model. Tumour cell-induced platelet aggregation mediated by the interaction between PDPN and CLEC-2 is a key factor in melanoma pulmonary metastasis.


Lung Neoplasms , Melanoma , Animals , Mice , Blood Platelets/metabolism , Lectins, C-Type/metabolism , Lung Neoplasms/metabolism , Melanoma/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Platelet Aggregation
16.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Article En | MEDLINE | ID: mdl-38685211

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Immunity, Cellular , Immunity, Humoral , Insect Proteins , Lectins, C-Type , Staphylococcus aureus , Tribolium , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Tribolium/immunology , Tribolium/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Hemocytes/immunology , Hemocytes/metabolism , Escherichia coli , Phagocytosis , Larva/immunology , Larva/microbiology
17.
Viruses ; 16(4)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38675840

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.


COVID-19 , Interleukin-6 , Lectins, C-Type , Leukocytes, Mononuclear , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Mannose-Binding Lectins/metabolism , Interleukin-6/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Cells, Cultured , Polysaccharides/metabolism , Healthy Volunteers , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Concanavalin A/metabolism
18.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38599166

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Lectins, C-Type , Neoplasms , Humans , Lectins, C-Type/metabolism , Immunity, Innate , Myeloid Cells/metabolism , Signal Transduction , Neoplasms/metabolism , Receptors, Pattern Recognition/metabolism
19.
In Vivo ; 38(3): 1042-1048, 2024.
Article En | MEDLINE | ID: mdl-38688646

BACKGROUND/AIM: Oral epithelial cells serve as the primary defense against microbial exposure in the oral cavity, including the fungus Candida albicans. Dectin-1 is crucial for recognition of ß-glucan in fungi. However, expression and function of Dectin-1 in oral epithelial cells remain unclear. MATERIALS AND METHODS: We assessed Dectin-1 expression in Ca9-22 (gingiva), HSC-2 (mouth), HSC-3 (tongue), and HSC-4 (tongue) human oral epithelial cells using flow cytometry and real-time polymerase chain reaction. Cell treated with ß-glucan-rich zymosan were evaluated using real-time polymerase chain reaction. Phosphorylation of spleen-associated tyrosine kinase (SYK) was analyzed by western blotting. RESULTS: Dectin-1 was expressed in all four cell types, with high expression in Ca9-22 and HSC-2. In Ca9-22 cells, exposure to ß-glucan-rich zymosan did not alter the mRNA expression of chemokines nor of interleukin (IL)6, IL8, IL1ß, IL17A, and IL17F. Zymosan induced the expression of antimicrobial peptides ß-defensin-1 and LL-37, but not S100 calcium-binding protein A8 (S100A8) and S100A9. Furthermore, the expression of cylindromatosis (CYLD), a negative regulator of nuclear factor kappa B (NF-κB) signaling, was induced. In HSC-2 cells, zymosan induced the expression of IL17A. The expression of tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a negative regulator of NF-κB signaling, was also induced. Expression of other cytokines and antimicrobial peptides remained unchanged. Zymosan induced phosphorylation of SYK in Ca9-22 cells, as well as NF-κB. CONCLUSION: Oral epithelial cells express Dectin-1 and recognize ß-glucan, which activates SYK and induces the expression of antimicrobial peptides and negative regulators of NF-κB, potentially maintaining oral homeostasis.


Epithelial Cells , Lectins, C-Type , NF-kappa B , Signal Transduction , Syk Kinase , Humans , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , NF-kappa B/metabolism , Syk Kinase/metabolism , Syk Kinase/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Zymosan/pharmacology , Cytokines/metabolism , Cytokines/genetics , Phosphorylation , Mouth Mucosa/metabolism , Mouth Mucosa/immunology , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism
20.
Neurobiol Dis ; 195: 106481, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38527708

Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.


Disease Models, Animal , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Transgenic , Microglia , Parkinson Disease , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Microglia/pathology , Microglia/metabolism , Microglia/ultrastructure , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Mice , Mutation , Mice, Inbred C57BL , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Male
...