Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 788
1.
PLoS One ; 19(5): e0302870, 2024.
Article En | MEDLINE | ID: mdl-38776345

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Genome, Plant , Genotype , INDEL Mutation , Lens Plant , Quantitative Trait Loci , Lens Plant/genetics , Lens Plant/growth & development , Genetic Markers , Polymerase Chain Reaction/methods , Chromosome Mapping/methods
2.
Sci Rep ; 14(1): 10215, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702403

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Herbicide Resistance , Herbicides , Lens Plant , Polymorphism, Single Nucleotide , Lens Plant/genetics , Lens Plant/drug effects , Lens Plant/growth & development , Herbicides/pharmacology , Herbicides/toxicity , Herbicide Resistance/genetics , Genome-Wide Association Study , Genes, Plant , Quantitative Trait Loci
3.
Food Res Int ; 183: 114212, 2024 May.
Article En | MEDLINE | ID: mdl-38760140

This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.


Emulsions , Hot Temperature , Lens Plant , Particle Size , Plant Proteins , Lens Plant/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Food Handling/methods , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Circular Dichroism , Rheology , Ultrasonics/methods , Sonication/methods
4.
Int J Biol Macromol ; 267(Pt 1): 131468, 2024 May.
Article En | MEDLINE | ID: mdl-38599432

In this work, the changes in the composition of the flours and in the morphological, structural, thermal, vibrational, rheological, and functional properties of the isolated lentil starch during the germination process were investigated. The fiber, fat, and ash content of the flours decreased and the protein content increased, while the apparent amylose content of the starch granules remained constant. Using scanning electron microscopy (SEM), the starch granules remained intact during germination, and no enzymatic activity of α- and ß-amylases was observed. X-ray diffraction shows that the starch has nanocrystals with hexagonal structure which predominate over the nanocrystals with orthorhombic structure and are classified as C-type starch. The most important result is that these nanocrystals do not play an important role during germination. As the germination time progresses, differential scanning calorimetry (DSC) shows a decrease in the gelatinization temperature (Tp) of the starch, ranging from 70.34 ± 0.25 °C for the native lentil starch to values of 67.16 ± 0.37 °C for the starch on the fourth day of germination (ILS4), this transition being related to the solvation of the nanocrystals. On the other hand, the pasting profiles show no significant changes during germination, indicating that no significant changes in starch content occur during germination. Starch degradation is essential for the production of malt for fermented beverages. This fact makes sprouted lentils not a candidate for the short-term fermentation required in the beverage industry.


Germination , Lens Plant , Starch , Lens Plant/chemistry , Starch/chemistry , Starch/metabolism , Chemical Phenomena , Amylose/chemistry , Temperature , Rheology
5.
J Food Sci ; 89(5): 2557-2566, 2024 May.
Article En | MEDLINE | ID: mdl-38578119

Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.


Antioxidants , Germination , Lens Plant , Nutritive Value , Phenols , Phytic Acid , Seeds , Ultraviolet Rays , Lens Plant/chemistry , Lens Plant/radiation effects , Germination/radiation effects , Antioxidants/analysis , Antioxidants/pharmacology , Phytic Acid/analysis , Seeds/chemistry , Seeds/radiation effects , Phenols/analysis , Food Handling/methods , Flour/analysis , Ultrasonics/methods
6.
Int J Biol Macromol ; 268(Pt 1): 131576, 2024 May.
Article En | MEDLINE | ID: mdl-38636764

This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.


Amylose , Rheology , Starch , Starch/chemistry , Amylose/chemistry , Amylose/analysis , Chemical Phenomena , Viscosity , X-Ray Diffraction , Lens Plant/chemistry , Crops, Agricultural/chemistry , Cicer/chemistry , Calorimetry, Differential Scanning
7.
Food Res Int ; 184: 114259, 2024 May.
Article En | MEDLINE | ID: mdl-38609239

The potential to produce protein-structured vegan yogurts with legumes was explored to offer an alternative to conventional polysaccharide-based varieties. Glucono-δ-lactone (GDL) was employed as a slow acidifying agent and was investigated for its ability to generate cold-set, yogurt-like gels using soy and lentil milks made using minimal processing steps. Soy (5.3 % protein) and lentil (6.1 % protein) milks were successfully gelled by GDL at concentrations of 0.5 % and 1 % w/w. Soy and lentil milks experienced similar acidification profiles and demonstrated good fits with double-exponential decay models. The physical properties of these legume gels were evaluated and compared to a commercial stirred dairy yogurt. Penetration tests were carried out on intact gels, then repeated after stirring. All intact soy samples demonstrated significantly stronger gel structures compared to the commercial yogurt, and most experienced greater amounts of brittleness. Results showed that the stirring of gels caused a notable decrease in firmness and brittleness in the soy gels, making them more similar to the control. Power-law modelling of viscosity curves demonstrated that all samples experienced non-Newtonian flow behavior (n < 0.29). Susceptibility to syneresis was measured by the degree of liquid loss following centrifugation. The optimization of protein type and GDL concentration to replicate the physical properties of dairy-based yogurts can enhance their consumer acceptance and provide a more customizable and controlled approach alternative to traditional fermentation methods.


Fabaceae , Gluconates , Lactones , Lens Plant , Animals , Milk , Yogurt , Vegetables , Gels
8.
Physiol Plant ; 176(3): e14298, 2024.
Article En | MEDLINE | ID: mdl-38685770

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Aluminum , Lens Plant , Plant Proteins , Plant Roots , Proteomics , Lens Plant/drug effects , Lens Plant/physiology , Lens Plant/genetics , Lens Plant/metabolism , Aluminum/toxicity , Proteomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Genotype , Seedlings/drug effects , Seedlings/physiology , Seedlings/genetics , Seedlings/metabolism , Gene Expression Regulation, Plant/drug effects , Proteome/metabolism , Antioxidants/metabolism
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612611

Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1ß, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation's harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.


Lens Plant , Humans , Caco-2 Cells , Lipopolysaccharides/toxicity , Acetonitriles , Flavonoids , Inflammation/drug therapy
10.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38587812

Lentil is one of the most important legumes cultivated in various provinces of Iran. However, there is limited information about the symbiotic rhizobia of lentils in this country. In this study, molecular identification of lentil-nodulating rhizobia was performed based on 16S-23S rRNA intergenic spacer (IGS) and recA, atpD, glnII, and nodC gene sequencing. Using PCR-RFLP analysis of 16S-23S rRNA IGS, a total of 116 rhizobia isolates were classified into 20 groups, leaving seven strains unclustered. Phylogenetic analysis of representative isolates revealed that the rhizobia strains belonged to Rhizobium leguminosarum and Rhizobium laguerreae, and the distribution of the species is partially related to geographical location. Rhizobium leguminosarum was the dominant species in North Khorasan and Zanjan, while R. laguerreae prevailed in Ardabil and East Azerbaijan. The distribution of the species was also influenced by agroecological climates; R. leguminosarum thrived in cold semiarid climates, whereas R. laguerreae adapted to humid continental climates. Both species exhibited equal dominance in the Mediterranean climate, characterized by warm, dry summers and mild, wet winters, in Lorestan and Kohgiluyeh-Boyer Ahmad provinces.


DNA, Bacterial , Lens Plant , Phylogeny , Rhizobium , Lens Plant/microbiology , Iran , Rhizobium/genetics , Rhizobium/classification , Rhizobium/isolation & purification , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Climate , DNA, Ribosomal Spacer/genetics , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , RNA, Ribosomal, 23S/genetics , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/classification , Rhizobium leguminosarum/isolation & purification , Symbiosis , Bacterial Proteins/genetics , Polymerase Chain Reaction
11.
J Nutr ; 154(5): 1686-1698, 2024 May.
Article En | MEDLINE | ID: mdl-38458577

BACKGROUND: In many low-income countries, iron deficiency (ID) and its anemia (IDA) pose significant health challenges, particularly among females and girls. Finding sustainable and effective solutions to address this issue is critical. OBJECTIVES: This study aimed to evaluate the efficacy of incorporating iron-fortified lentils (IFLs) into the diets of rural Bangladeshi adolescent girls on their body iron (Fe) status. METHODS: A community-based, double-blind, cluster-randomized controlled trial involved n = 1195 girls aged 10-17 y. A total of 48 adolescent clubs (n = ∼27 girls each) were randomized into 3 groups: 1) 200 g cooked IFLs, 2) 200 g cooked noniron-fortified lentils (NIFLs), and 3) a control group with no lentils (usual dietary intake). The intervention, administered 5 days a week for 85 feeding days, provided ∼8.625 mg Fe from each serving of IFLs and 2.625 mg from NIFLs. Blood samples collected at baseline, midpoint (42 feeding days), and endpoint (85 feeding days) assessed key Fe and inflammation biomarkers. Statistical analyses were filtered for inflammation. RESULTS: Although all groups experienced a decline in Fe status over time, the IFL group exhibited a significantly reduced decline in serum ferritin (sFer -7.2 µg/L), and total body iron (TBI -0.48 mg/kg) level compared with NIFL (sFer -14.3 µg/L and TBI -1.36 mg/kg) and usual intake group (sFer -12.8 µg/L and TBI -1.33 mg/kg). Additionally, those in the IFL group had a 57% reduced risk of developing clinical ID (sFer <15 µg/L) compared with the usual intake group. CONCLUSIONS: Our findings suggest that incorporating IFLs into the diet can help mitigate a decline in sFer, indicating a positive impact on the body Fe status of adolescent girls. This research underscores the potential role of fortified foods in addressing ID and IDA in vulnerable populations, emphasizing the significance of food-based interventions in public health. TRIAL REGISTRATION NUMBER: This trial was registered at the clinicaltrials.gov on May 24, 2018 (https://clinicaltrials.gov/study/NCT03516734?locStr=Bangladesh&country=Bangladesh&distance=50&cond=Anemia&intr=Iron%20fortified%20lentils&rank=1) as NCT03516734.


Anemia, Iron-Deficiency , Food, Fortified , Lens Plant , Humans , Female , Adolescent , Bangladesh/epidemiology , Double-Blind Method , Child , Anemia, Iron-Deficiency/prevention & control , Iron/administration & dosage , Iron/blood , Nutritional Status , Ferritins/blood , Diet , Iron, Dietary/administration & dosage
12.
Food Funct ; 15(7): 3539-3551, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38465882

There has been an increase in the use of adoptable bioprocessing methods for the development of high-quality leguminous ingredients. The potential use of germinated green Altamura lentils as a food ingredient is closely related to the resulting properties. The objective of this study was to evaluate the impact of three germination times - 0 (C), 24 (G) and 48 (H) hours - on the physicochemical, microstructural, flavour, functional, and nutritional features of lentil flour samples (CF, GF and HF). Lentil flour samples were obtained by grinding both whole green seeds (C) and germinated seeds (G and H), and then sifting them to obtain a particle size < 300 µm. The germinated samples - GF (24 h) and HF (48 h) - exhibited differences (P < 0.05) in the physicochemical and bioactive properties of CF (control). Similarly, compared with those in the control sample, the total starch, amylose and total phenolic contents in the GF and HF samples decreased, while the protein content increased (p < 0.05). A decrease in the presence of intact starch granules was observed via SEM in the germinated samples. The germination time had a significant (P < 0.05) effect on the colour indices, L*, a*, and b* of the samples. Flavour attributes were significantly influenced by the germination time. Overall, a total of 14 (CF) and 17 (GF and HF) aromatic compounds were identified. The technological characteristics of the CF, GF and HF dough samples were studied using a Brabender farinograph. Germination time affects the flour properties, leading to a significant decrease in farinographic parameters such as water absorption (WA), dough development time (DT), and dough stability (DS) and an increase in the degree of dough weakening (DOS). Differential scanning calorimetry was employed to examine the gelatinization transition of the samples. Germination strongly influenced all the thermal properties of the samples. It also had a significant impact on the in vitro starch digestibility, starch fraction and glycaemic index (eGI) of the samples. In particular, the eGI of germinated lentils was lower than that of the CF. In conclusion, the germination time could be a key factor modulating some crucial lentil flour properties.


Lens Plant , Lens Plant/metabolism , Flour/analysis , Starch/chemistry , Chemical Phenomena , Seeds/chemistry , Flavoring Agents/metabolism , Germination
13.
Food Chem ; 448: 139104, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38547711

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Lens Plant , Phenols , Plant Proteins , Lens Plant/chemistry , Phenols/chemistry , Phenols/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Amyloid/chemistry , Chemical Fractionation/methods
14.
Food Chem ; 447: 138882, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38452537

The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P < 0.05). Using these two non-thermal techniques, the water solubility and digestibility of T-CPs increased significantly (P < 0.05) by 85 to 89 % and 80 to 85 %, respectively. The results of this study suggested that these non-thermal techniques could enhance the surface and protein structure properties, improving water solubility and digestibility.


Caseins , Lens Plant , Solubility , Caseins/metabolism , Lens Plant/chemistry , Trehalose , Water/chemistry
15.
Food Chem ; 447: 138896, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38458133

Dehulled pea, lentil, and faba bean grains were milled into flours with 0.5- to 2.5-mm sieves. As the particle size decreased, damaged-starch contents of the flours from the same pulse crop increased. At a holding temperature of 95 °C in RVA, peak and final viscosities and gelling ability of the flours generally increased as the particle size decreased. When the holding temperature increased from 95 to 140 °C, pasting viscosities of pea and lentil flours and gel hardness of lentil flours gradually decreased. In contrast, pasting viscosities and gel hardness of faba bean flours reached the highest values at 120 °C. The comparison of the pulse flours varying in particle size across the three market classes revealed that coarse particles comprising agglomerated starch, protein, and dietary fiber (i.e., particles of the second peak in the bimodal particle-size distribution curves) showed significant correlations with certain important functional properties of pulse flours.


Lens Plant , Vicia faba , Temperature , Heating , Flour/analysis , Starch , Particle Size , Gels
16.
Food Chem ; 447: 138965, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38513482

An analytical approach has been developed to verify the authenticity of premium lentils originating from Eglouvi, Lefkada, Greece. The method relies on the digestion of samples followed by the analysis of their rare earth elements (REEs) content. Lentils originating from Eglouvi exhibit higher content in most REEs compared to lentils from other regions as well as distinct Sc/Y and Sc/Yb concentration ratios. Principal component analysis effectively segregates "Eglouvi" lentils into a distinct cluster. Soft Independent Modelling of Class Analogy (SIMCA) successfully models "Eglouvi" lentils. Significant enhancement in model specificity was achieved upon inclusion of Sc/Y and Sc/Yb concentration ratios as additional variables. The model is capable of detecting adulteration in blends of Eglouvi lentils, with a minimum rejection threshold of 4.6% w/w for Greek lentil adulterants and 6.0% w/w for imported lentil adulterants.


Lens Plant , Greece , Chemometrics
17.
Pest Manag Sci ; 80(6): 2626-2638, 2024 Jun.
Article En | MEDLINE | ID: mdl-38343001

BACKGROUND: Montana accounts for approximately 45% of US dry pea production and the pea leaf weevil (PLW; Sitona lineatus (L.)) is the most common insect pest in this region. After crop emergence adult PLW feed on the foliage to mature and subsequently mate, and the soil-dwelling larvae feed and develop on the nitrogen-fixing root nodules. Producers commonly apply prophylactic insecticide treatments to the seed at planting as well as one or two post-emergent insecticide sprays to control PLW damage. To develop alternative management strategies based on integrated pest management (IPM), this field study evaluated pulse crops grown in Montana for adult feeding preference and larval development. Ten different field pea varieties, along with two faba bean, lentil and chickpea varieties, were evaluated during the 2020 and 2021 field seasons at the Montana State University Arthur H. Post Agronomy Farm. RESULTS: Significant PLW pest pressure was observed within the research plots during both experimental years. Field pea and faba bean were preferred by the foliage feeding adult stage, with all but one variety averaging 39.2 to 86.3 average notches per plant. The pea variety Lifter was significantly preferred over all other comparisons, averaging 142.4 and 95.0 notches per plant in 2020 and 2021, respectively. Adult PLW feeding on lentil and chickpea was minimal, averaging 3.3 to 8.2 and 0.5 to 1.6 notches per plant, respectively. Numbers of larvae were highest on the roots of pea varieties, a known reproductive host, and almost nil on lentil and chickpea roots. Faba bean is also known as reproductive host, but, unexpectedly, larval populations were also low on the two faba bean varieties. CONCLUSIONS: The results from this study provide some limited evidence for alternative IPM strategies for field peas based on host plant tolerance or resistance within the range of varieties tested. Adult preference and larval development of PLW varied between the different pulse crops with field peas and faba beans being the most susceptible and lentils and chickpeas being the least susceptible. Host plant resistance against PLW could provide more sustainable IPM approaches in the future. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Larva , Pisum sativum , Weevils , Animals , Weevils/growth & development , Weevils/physiology , Larva/growth & development , Larva/physiology , Pisum sativum/growth & development , Montana , Lens Plant/growth & development , Cicer/growth & development , Crops, Agricultural/growth & development , Vicia faba/growth & development , Feeding Behavior
18.
J Food Sci ; 89(4): 2040-2053, 2024 Apr.
Article En | MEDLINE | ID: mdl-38391095

Utilizing lentil protein as a novel ingredient for producing texturized vegetable proteins (TVPs) can provide new opportunities for the production of next-generation hybrid meat products. TVPs from lentil protein isolate were manufactured using low-moisture extrusion cooking at different combinations of screw speed (SS), feed moisture content (MC), and barrel temperature (BT) profile. In total, seven different combinations of processing treatments were tested, and the resulting TVPs were characterized for their physical (rehydration ratio, texture profile analysis, color, and bulk density), techno-functional (oil and water holding capacities), and microstructural properties. The processing conditions of higher SS and lower MC resulted in increased values of several textural profile attributes (springiness, cohesiveness, and resilience), increased water holding capacity (WHC), and decreased bulk density. Compared to raw lentil protein, TVPs showed enhanced oil holding capacity, though WHC either decreased or remained constant. The extrusion response parameters (die pressure, torque, and specific mechanical energy) showed positive correlations with several physical properties (texture, WHC, and total color change), revealing their potential for serving as important TVP quality indicators. TVPs produced at SS, MC, and BT of 450 rpm, 30%, and 140°C, respectively, showed relatively better overall physical and techno-functional quality and can be used as meat extenders in hybrid meat patties. Overall, this research evidenced the viability of lentil protein as a potential ingredient for producing low-moisture TVPs.


Lens Plant , Meat Products , Temperature , Cooking/methods , Meat
19.
Nutrients ; 16(3)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38337705

Lentils have potential to improve metabolic health but there are limited randomized clinical trials evaluating their comprehensive impact on metabolism. The aim of this study was to assess the impact of lentil-based vs. meat-based meals on fasting and postprandial measures of glucose and lipid metabolism and inflammation. Thirty-eight adults with an increased waist circumference (male ≥ 40 inches and female ≥ 35 inches) participated in a 12-week dietary intervention that included seven prepared midday meals totaling either 980 g (LEN) or 0 g (CON) of cooked green lentils per week. Linear models were used to assess changes in fasting and postprandial markers from pre- to post-intervention by meal group. Gastrointestinal (GI) symptoms were assessed through a survey randomly delivered once per week during the intervention. We found that regular consumption of lentils lowered fasting LDL (F = 5.53, p = 0.02) and total cholesterol levels (F = 8.64, p < 0.01) as well as postprandial glucose (ß = -0.99, p = 0.01), IL-17 (ß = -0.68, p = 0.04), and IL-1ß (ß = -0.70, p = 0.03) responses. GI symptoms were not different by meal group and all symptoms were reported as "none" or "mild" for the duration of the intervention. Our results suggest that daily lentil consumption may be helpful in lowering cholesterol and postprandial glycemic and inflammatory responses without causing GI stress. This information further informs the development of pulse-based dietary strategies to lower disease risk and to slow or reverse metabolic disease progression in at-risk populations.


Lens Plant , Lens Plant/metabolism , Glucose , Blood Glucose/metabolism , Fasting , Cholesterol , Meals , Postprandial Period/physiology , Insulin/metabolism , Cross-Over Studies
20.
PeerJ ; 12: e16370, 2024.
Article En | MEDLINE | ID: mdl-38188166

The imidazolinone group of herbicides generally work for controlling weeds by limiting the synthesis of the aceto-hydroxy-acid enzyme, which is linked to the biosynthesis of branched-chain amino acids in plant cells. The herbicide imazethapyr is from the class and the active ingredient of this herbicide is the same as other herbicides Contour, Hammer, Overtop, Passport, Pivot, Pursuit, Pursuit Plus, and Resolve. It is commonly used for controlling weeds in soybeans, alfalfa hay, corn, rice, peanuts, etc. Generally, the herbicide imazethapyr is safe and non-toxic for target crops and environmentally friendly when it is used at low concentration levels. Even though crops are extremely susceptible to herbicide treatment at the seedling stage, there have been no observations of its higher dose on lentils (Lens culinaris Medik.) at that stage. The current study reports the consequence of imazethapyr treatment on phenolic acid and flavonoid contents along with the antioxidant activity of the phenolic extract. Imazethapyr treatment significantly increased the activities of several antioxidant enzymes, including phenylalanine ammonia lyase (PAL), phenol oxidase (POD), glutathione reductase (GR), and glutathione-s-transferase (GST), in lentil seedlings at doses of 0 RFD, 0.5 RFD, 1 RFD, 1.25 RFD, 1.5 RFD, and 2 RFD. Application of imazethapyr resulted in the 3.2 to 26.31 and 4.57-27.85% increase in mean phenolic acid and flavonoid content, respectively, over control. However, the consequent fold increase in mean antioxidant activity under 2, 2- diphenylpicrylhdrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay system was in the range of 1.17-1.85 and 1.47-2.03%. Mean PAL and POD activities increased by 1.63 to 3.66 and 1.71 to 3.35-fold, respectively, in agreement with the rise in phenolic compounds, indicating that these enzyme's activities were modulated in response to herbicide treatment. Following herbicide treatments, the mean thiol content also increased significantly in corroboration with the enhancement in GR activity in a dose-dependent approach. A similar increase in GST activity was also observed with increasing herbicide dose.


Herbicides , Lens Plant , Phenol , Antioxidants , Seedlings , Phenols , Crops, Agricultural , Flavonoids , Herbicides/pharmacology , Glutathione
...