Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150057, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718568

RESUMEN

Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.


Asunto(s)
Leptospira , Lipoproteínas , Lipoproteínas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Leptospira/metabolismo , Leptospira/química , Factor sigma/metabolismo , Factor sigma/química , Factor sigma/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Leptospirosis/metabolismo , Leptospirosis/microbiología
2.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580013

RESUMEN

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Asunto(s)
Proteínas Bacterianas , Proteínas de Choque Térmico , Leptospira , Multimerización de Proteína , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimología , Leptospira interrogans/enzimología , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Unión Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteolisis
3.
Microbes Infect ; 26(4): 105299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224944

RESUMEN

This study aimed to develop aptamers targeting LipL32, a most abundant lipoprotein in pathogenic Leptospira, to hinder bacterial invasion. The objectives were to identify high-affinity aptamers through SELEX and evaluate their specificity and inhibitory effects. SELEX was employed to generate LipL32 aptamers (L32APs) over 15 rounds of selection. L32APs' binding affinity and specificity for pathogenic Leptospira were assessed. Their ability to inhibit LipL32-ECM interaction and Leptospira invasion was investigated. Animal studies were conducted to evaluate the impact of L32AP treatment on survival rates, Leptospira colonization, and kidney damage. Three L32APs with strong binding affinity were identified. They selectively detected pathogenic Leptospira, sparing non-pathogenic strains. L32APs inhibited LipL32-ECM interaction and Leptospira invasion. In animal studies, L32AP administration significantly improved survival rates, reduced Leptospira colonies, and mitigated kidney damage compared to infection alone. This pioneering research developed functional aptamers targeting pathogenic Leptospira. The identified L32APs exhibited high affinity, pathogen selectivity, and inhibition of invasion and ECM interaction. L32AP treatment showed promising results, enhancing survival rates and reducing Leptospira colonization and kidney damage. These findings demonstrate the potential of aptamers to impede pathogenic Leptospira invasion and aid in recovery from Leptospira-induced kidney injury (190 words).


Asunto(s)
Aptámeros de Nucleótidos , Proteínas de la Membrana Bacteriana Externa , Leptospira , Leptospirosis , Lipoproteínas , Técnica SELEX de Producción de Aptámeros , Animales , Ratones , Aptámeros de Nucleótidos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Modelos Animales de Enfermedad , Riñón/microbiología , Riñón/patología , Leptospira/efectos de los fármacos , Leptospira/patogenicidad , Leptospira/metabolismo , Leptospirosis/microbiología , Leptospirosis/tratamiento farmacológico , Lipoproteínas/antagonistas & inhibidores , Lipoproteínas/metabolismo
4.
J Biol Chem ; 300(1): 105506, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029965

RESUMEN

Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.


Asunto(s)
Inmunidad Innata , Leptospira , Lipopolisacáridos , Proteínas Recombinantes , Humanos , Escherichia coli/genética , Lipopolisacáridos/toxicidad , Proteínas Recombinantes/metabolismo , Leptospira/metabolismo
5.
J Proteome Res ; 22(11): 3447-3463, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37877620

RESUMEN

Leptospirosis, a remerging zoonosis, has no effective vaccine or an unambiguous early diagnostic reagent. Proteins differentially expressed (DE) under pathogenic conditions will be useful candidates for antileptospiral measures. We employed a multipronged approach comprising high-resolution TMT-labeled LC-MS/MS-based proteome analysis coupled with bioinformatics on leptospiral proteins following Triton X-114 subcellular fractionation of leptospires treated under physiological temperature and osmolarity that mimic infection. Although there were significant changes in the DE proteins at the level of the entire cell, there were notable changes in proteins at the subcellular level, particularly on the outer membrane (OM), that show the significance of subcellular proteome analysis. The detergent-enriched proteins, representing outer membrane proteins (OMPs), exhibited a dynamic nature and upregulation under various physiological conditions. It was found that pathogenic proteins showed a higher proportion of upregulation compared to the nonpathogenic proteins in the OM. Further analysis identified 17 virulent proteins exclusively upregulated in the outer membrane during infection that could be useful for vaccine and diagnostic targets. The DE proteins may aid in metabolic adaptation and are enriched in pathways related to signal transduction and antibiotic biosynthesis. Many upregulated proteins belong to protein export systems such as SEC translocase, T2SSs, and T1SSs, indicating their sequential participation in protein transport to the outer leaflet of the OM. Further studies on OM-localized proteins may shed light on the pathogenesis of leptospirosis and serve as the basis for effective countermeasures.


Asunto(s)
Leptospira , Leptospirosis , Vacunas , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Temperatura , Cromatografía Liquida , Espectrometría de Masas en Tándem , Leptospira/metabolismo
6.
Int J Biol Macromol ; 244: 125445, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37336372

RESUMEN

Leptospiral immunoglobulin-like (Lig) protein family is a surface-exposed protein from the pathogenic Leptospira. The Lig protein family has been identified as an essential virulence factor of L. interrogan. One of the family members, LigA, contains 13 homologous tandem repeats of bacterial Ig-like (Big) domains in its extracellular portion. It is crucial in binding with the host's Extracellular matrices (ECM) and complement factors. However, its vital role in the invasion and evasion of pathogenic Leptospira, structural details, and domain organization of the extracellular portion of this protein are not explored thoroughly. Here, we described the first high-resolution crystal structure of a variable region segment (LigA8-9) of LigA at 1.87 Å resolution. The structure showed some remarkably distinctive aspects compared with other closely related Immunoglobulin domains. The structure illustrated the relative orientation of two domains and highlighted the role of the linker region in the domain orientation. We also observed an apparent electron density of Ca2+ ions coordinated with a proper interacting geometry within the protein. Molecular dynamic simulations demonstrated the involvement of a linker salt bridge in providing rigidity between the two domains. Our study proposes an overall arrangement of Ig-like domains in the LigA protein. The structural understanding of the extracellular portion of LigA and its interaction with the ECM provides insight into developing new therapeutics directed toward leptospirosis.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Humanos , Leptospira/metabolismo , Proteínas de la Membrana/metabolismo , Leptospira interrogans/metabolismo , Antígenos Bacterianos/metabolismo
7.
FEBS J ; 290(18): 4513-4532, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243454

RESUMEN

Leptospirosis is a commonly overlooked zoonotic disease that occurs in tropical and subtropical regions. Recent studies have divided the Leptospira spp. into three groups based on virulence, including pathogenic, intermediate, and saprophytic species. Pathogenic species express a protein family with leucine-rich repeat (LRR) domains, which are less expressed or absent in nonpathogenic species, highlighting the importance of this protein family in leptospirosis. However, the role of LRR domain proteins in the pathogenesis of leptospirosis is still unknown and requires further investigation. In this study, the 3D structure of LSS_01692 (rLRR38) was obtained using X-ray crystallography at a resolution of 3.2 Å. The results showed that rLRR38 forms a typical horseshoe structure with 11 α-helices and 11 ß-sheets and an antiparallel dimeric structure. The interactions of rLRR38 with extracellular matrix and cell surface receptors were evaluated using ELISA and single-molecule atomic force microscopy. The results showed that rLRR38 interacted with fibronectin, collagen IV, and Toll-like receptor 2 (TLR2). Incubating HK2 cells with rLRR38 induced two downstream inflammation responses (IL-6 and MCP-1) in the TLR2 signal transduction pathway. The TLR2-TLR1 complex showed the most significant upregulation effects under rLRR38 treatment. Inhibitors also significantly inhibited nuclear factor κB and mitogen-activated protein kinases signals transduction under rLRR38 stimulation. In conclusion, rLRR38 was determined to be a novel LRR domain protein in 3D structure and demonstrated as a TLR2-binding protein that induces inflammatory responses. These structural and functional studies provide a deeper understanding of the pathogenesis of leptospirosis.


Asunto(s)
Leptospira , Leptospirosis , Humanos , Leptospira/genética , Leptospira/química , Leptospira/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Transducción de Señal , Leptospirosis/genética , Leptospirosis/metabolismo
8.
J Infect Dis ; 228(7): 944-956, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37166078

RESUMEN

Leptospirosis is a recurring but neglected zoonotic disease caused by pathogenic Leptospira. The explicit underlying mechanism of necroptosis and its role in Leptospira infection have not yet been elucidated. Here we reported that leptospiral pathogen-associated molecular patterns, lipopolysaccharide, and glycolipoprotein activate the necroptotic RIPK1-RIPK3-MLKL cascade through the TLR4 signaling pathway in mouse macrophages. Using the murine acute leptospirosis model, we reveal that abolition of necroptosis exhibited significantly improved outcomes in acute phases, with enhanced eradication of Leptospira from liver, mild clinical symptoms, and decreased cytokine production. RIPK3 was also found to exert a necroptosis-independent function in CXCL1 production and neutrophil recruitment, with the consequence of improved Leptospira control. These findings improve our understanding of the mechanism of Leptospira-macrophage interactions, indicating potential therapeutic values by targeting necroptosis signaling pathways.


Asunto(s)
Leptospira , Leptospirosis , Ratones , Animales , Lipopolisacáridos , Necroptosis , Leptospirosis/patología , Leptospira/metabolismo , Macrófagos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
9.
Biomed J ; 46(4): 100595, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37142093

RESUMEN

Leptospirosis is a neglected bacterial disease caused by leptospiral infection that carries a substantial mortality risk in severe cases. Research has shown that acute, chronic, and asymptomatic leptospiral infections are closely linked to acute and chronic kidney disease (CKD) and renal fibrosis. Leptospires affect renal function by infiltrating kidney cells via the renal tubules and interstitium and surviving in the kidney by circumventing the immune system. The most well-known pathogenic molecular mechanism of renal tubular damage caused by leptospiral infection is the direct binding of the bacterial outer membrane protein LipL32 to toll-like receptor-2 expressed in renal tubular epithelial cells (TECs) to induce intracellular inflammatory signaling pathways. These pathways include the production of tumor necrosis factor (TNF)-α and nuclear factor kappa activation, resulting in acute and chronic leptospirosis-related kidney injury. Few studies have investigated the relationship between acute and chronic renal diseases and leptospirosis and further evidence is necessary. In this review, we intend to discuss the roles of acute kidney injury (AKI) to/on CKD in leptospirosis. This study reviews the molecular pathways underlying the pathogenesis of leptospirosis kidney disease, which will assist in concentrating on potential future research directions.


Asunto(s)
Lesión Renal Aguda , Leptospira , Leptospirosis , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Riñón/microbiología , Riñón/patología , Leptospira/metabolismo
10.
Arch Microbiol ; 205(5): 180, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031284

RESUMEN

C-di-GMP is a bacterial second messenger with central role in biofilm formation. Spirochete bacteria from Leptospira genus present a wide diversity, with species of medical importance and environmental species, named as saprophytic. Leptospira form biofilms in the rat's reservoir kidneys and in the environment. Here, we performed genomic analyses to identify enzymatic and effector c-di-GMP proteins in the saprophytic biofilm-forming species Leptospira biflexa serovar Patoc. We identified 40 proteins through local alignments. Amongst them, 16 proteins are potentially functional diguanylate cyclases, phosphodiesterases, or hybrid proteins. We also identified nine effectors, including PilZ proteins. Enrichment analyses suggested that c-di-GMP interacts with cAMP signaling system, CsrA system, and flagella assembly regulation during biofilm development of L. biflexa. Finally, we identified eight proteins in the pathogen Leptospira interrogans serovar Copenhageni that share high similarity with L. biflexa c-di-GMP-related proteins. This work revealed proteins related to c-di-GMP turnover and cellular response in Leptospira and their potential roles during biofilm development.


Asunto(s)
Proteínas de Escherichia coli , Leptospira , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Spirochaetales/metabolismo , Proteínas de Escherichia coli/genética , Bacterias/metabolismo , Leptospira/genética , Leptospira/metabolismo , Genómica , Biopelículas , Regulación Bacteriana de la Expresión Génica
11.
Int J Biol Macromol ; 229: 803-813, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36587638

RESUMEN

The genome of pathogenic leptospira encodes a plethora of outer surface and secretory proteins. The outer surface or secreted α/ß hydrolases in a few pathogenic organisms are crucial virulent factors. They hydrolyze host immune factors and pathogen's immune-activating ligands, which help pathogens to evade the host's innate immunity. In this study, we report biochemical characterizations, substrate and stereoselectivity of one of the leptospiral outer surface putative α/ß hydrolases, IQB77_09235 (LABH). Purified LABH displayed better kinetic parameters towards small water-soluble esters such as p-nitrophenyl acetate and p-nitrophenyl butyrate. The LABH exhibited moderate thermostability and displayed a pH optimum of 8.5. Remarkably, a phylogenetic study suggested that LABH does not cluster with other characterized bacterial esterases or lipases. Protein structural modeling revealed that some structural features are closely associated with Staphylococcus hycus lipase (SAH), a triacylglycerol hydrolase. The hydrolytic activity of the protein was found to be inhibited by a lipase inhibitor, orlistat. Biocatalytic application of the protein in the kinetic resolution of racemic 1-phenylethyl acetate reveals excellent enantioselectivity (E > 500) in the production of (R)-1-phenylethanol, a valuable chiral synthon in several industries. To our knowledge, this is the first detailed characterization of outer surface α/ß hydrolases from leptospiral spp.


Asunto(s)
Leptospira , Leptospira/metabolismo , Filogenia , Esterasas/química , Lipasa/química , Hidrólisis , Especificidad por Sustrato
12.
J Biomol Struct Dyn ; 41(20): 10347-10367, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510668

RESUMEN

Leptospirosis is one of the neglected zoonosis, affecting human and animal populations worldwide. Reliable effective therapeutics and concerns to look for more research into the molecular analysis of its genome is therefore needed. In the genomic pool of the Leptospira interrogans many hypothetical proteins are still uncharacterized. In the current research, we performed extensive in silico analysis to prioritize the potential hypothetical proteins of L. interrogans serovar Copenhageni via stepwise reducing the available hypothetical proteins (Total 3606) of the assembly to only 15, based on non-homologous to homosapien, essential, functional, virulent, cellular localization. Out of them, only two proteins WP_000898918.1 (Hypothetical Protein 1) & WP_001014594.1 (Hypothetical Protein 2) were found druggable and involved in protein-protein interaction network. The 3 D structures of these two target proteins were predicted via ab initio homology modeling followed by structures refinement and validation, as no structures were available till date. The analysis also revealed that the functional domains, families and protein-protein interacting partners identified in both proteins are crucial for the survival of the bacteria. The binding cavities were predicted for both the proteins through blind and specific protein-ligand docking with their respective ligands and inhibitors and were found to be in accordance with the druggable sites predicted by DoGSiteScorer. The docking interactions were found within the active functional domains for both the proteins while for Hypothetical Protein 2, the same residues were involved in interactions with Cytidine-5'-triphosphate in blind and specific docking. Furthermore, the simulations of molecular dynamics and free binding energy revealed the stable substrate binding and efficient binding energies, and were in accordance to our docking results. The work predicted two unique hypothetical proteins of L. interrogans as a potential druggable targets for designing of inhibitors for them.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Humanos , Serogrupo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Leptospirosis/tratamiento farmacológico , Leptospirosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Leptospira/química , Leptospira/metabolismo
13.
Front Cell Infect Microbiol ; 12: 966370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081769

RESUMEN

Extracellular proteolytic enzymes are produced by a variety of pathogenic microorganisms, and contribute to host colonization by modulating virulence. Here, we present a first characterization of leptolysin, a Leptospira metalloprotease of the pappalysin family identified in a previous exoproteomic study. Comparative molecular analysis of leptolysin with two other pappalysins from prokaryotes, ulilysin and mirolysin, reveals similarities regarding calcium, zinc, and arginine -binding sites conservation within the catalytic domain, but also discloses peculiarities. Variations observed in the primary and tertiary structures may reflect differences in primary specificities. Purified recombinant leptolysin of L. interrogans was obtained as a ~50 kDa protein. The protease exhibited maximal activity at pH 8.0 and 37°C, and hydrolytic activity was observed in the presence of different salts with maximum efficiency in NaCl. Substrate specificity was assessed using a small number of FRET peptides, and showed a marked preference for arginine residues at the P1 position. L. interrogans leptolysin proteolytic activity on proteinaceous substrates such as proteoglycans and plasma fibronectin was also evaluated. All proteins tested were efficiently degraded over time, confirming the protease´s broad-spectrum activity in vitro. In addition, leptolysin induced morphological alterations on HK-2 cells, which may be partially attributed to extracellular matrix (ECM) degradation. Hemorrhagic foci were observed in the dorsal skin of mice intradermally injected with leptolysin, as a plausible consequence of ECM disarray and vascular endothelium glycocalyx damage. Assuming that leptospiral proteases play an important role in all stages of the infectious process, characterizing their functional properties, substrates and mechanisms of action is of great importance for therapeutic purposes.


Asunto(s)
Leptospira , Metaloproteasas , Animales , Arginina/metabolismo , Leptospira/química , Leptospira/metabolismo , Leptospirosis , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Ratones , Péptido Hidrolasas/metabolismo
14.
OMICS ; 26(5): 280-289, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35446144

RESUMEN

Leptospirosis is one of the most important zoonotic diseases for planetary health. It is caused by Leptospira spp., which poses a formidable challenge in both rural and urban geographies. Discovery of molecular targets is crucial for developing interventions, including vaccines, against leptospirosis. We report here novel systems science insights on Leptospira proteome, posttranslational modifications (PTMs), and pathogen-host interactions, with an eye to bacterial pathophysiology from a functional standpoint. A systematic reanalysis of unassigned spectra from our previous total proteome identification was used for a multi-PTM search. Notably, we identified 3693 unique high-confidence PTM sites corresponding to 1266 proteins (PTM-profiling probability cutoff value ≥75%). The majority of the phosphorylated peptides were found to be GroEL molecular chaperones. Notably, the molecular docking of PTM-GroEL with STAT3, an important signaling protein in cytokine production, resulted in the prediction of druggable "hotspots." These energetically significant smaller subsets of amino acids (hotspot residues) offer promise for practical applications in planetary health, rational drug design, and peptide engineering. Furthermore, the prediction strategies described here could serve as a starting point for narrowing down the more extensive interface in protein-protein interactions that currently exist. Going forward, systems science approaches and the new insights reported here offer veritable prospects for innovation in preventing and treating leptospirosis.


Asunto(s)
Leptospira , Leptospirosis , Interacciones Huésped-Patógeno , Humanos , Leptospira/metabolismo , Leptospirosis/microbiología , Simulación del Acoplamiento Molecular , Péptidos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
15.
J Inorg Biochem ; 228: 111707, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990970

RESUMEN

Alkane monooxygenase (AlkB) is a non-heme diiron enzyme that catalyzes the hydroxylation of alkanes. It is commonly found in alkanotrophic organisms that can live on alkanes as their sole source of carbon and energy. Activation of AlkB occurs via two-electron reduction of its diferric active site, which facilitates the binding, activation, and cleavage of molecular oxygen for insertion into an inert CH bond. Electrons are typically supplied by NADH via a rubredoxin reductase (AlkT) to a rubredoxin (AlkG) to AlkB, although alternative electron transfer partners have been observed. Here we report a family of AlkBs in which both electron transfer partners (a ferredoxin and a ferredoxin reductase) appear as an N-terminal gene fusion to the hydroxylase (ferr_ferrR_AlkB). This enzyme catalyzes the hydroxylation of medium chain alkanes (C6-C14), with a preference for C10-C12. It requires only NADH for activity. It is present in a number of bacteria that are known to be human pathogens. A survey of the genome neighborhoods in which is it found suggest it may be involved in alkane metabolism, perhaps facilitating growth of pathogens in non-host environments.


Asunto(s)
Alcanos/metabolismo , Citocromo P-450 CYP4A/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Alcanos/química , Citocromo P-450 CYP4A/química , Transporte de Electrón , Electrones , Ferredoxinas/metabolismo , Humanos , Hidroxilación , Leptospira/metabolismo , Oxigenasas de Función Mixta/química , NADH NADPH Oxidorreductasas/metabolismo , Oxígeno/química , Pseudomonas aeruginosa/metabolismo , Rubredoxinas/metabolismo
16.
Microb Pathog ; 162: 105315, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826552

RESUMEN

Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira. Inflammatory storms induced by Leptospira are the reason to induce immunoparalysis and organ failures. Antibiotics are still the current mainstream treatment for leptospirosis. In addition to their antibacterial action, the immunomodulatory function of antibiotics has been paid more and more attention. In this study, the role of norfloxacin on Leptospira-induced inflammation was investigated. Treatment with norfloxacin down-regulated Leptospira-induced IL-1ß and TNF-α both in vivo and vitro models. Further study showed that norfloxacin inhibited Leptospira-induced phosphorylation of p65 and ERK. Norfloxacin also inhibited the Leptospira-induced NLRP3 inflammasome activation with the increased level of Na/K-ATPase Pump ß1 subunit and decreased level of Kcnk6. These results indicated that norfloxacin suppressed Leptospira-induced inflammation through inhibiting p65 and ERK phosphorylation and NLRP3 inflammasome activation. Norfloxacin may be a potential candidate for suppressing inflammatory storms caused by Leptospira.


Asunto(s)
Leptospira , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo , Leptospira/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Norfloxacino/farmacología , Fosforilación , Factor de Transcripción ReIA
17.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884937

RESUMEN

Approximately 1 million cases of leptospirosis, an emerging infectious zoonotic disease, are reported each year. Pathogenic Leptospira species express leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic Leptospira species. The LRR domain-containing protein family is vital for the virulence of pathogenic Leptospira species. In this study, the biological mechanisms of an essential LRR domain protein from pathogenic Leptospira were examined. The effects of Leptospira and recombinant LRR20 (rLRR20) on the expression levels of factors involved in signal transduction were examined using microarray, quantitative real-time polymerase chain reaction, and western blotting. The secreted biomarkers were measured using an enzyme-linked immunosorbent assay. rLRR20 colocalized with E-cadherin on the cell surface and activated the downstream transcription factor ß-catenin, which subsequently promoted the expression of MMP7, a kidney injury biomarker. Additionally, MMP7 inhibitors were used to demonstrate that the secreted MMP7 degrades surface E-cadherin. This feedback inhibition mechanism downregulated surface E-cadherin expression and inhibited the colonization of Leptospira. The degradation of surface E-cadherin activated the NF-κB signal transduction pathway. Leptospirosis-associated acute kidney injury is associated with the secretion of NGAL, a downstream upregulated biomarker of the NF-κB signal transduction pathway. A working model was proposed to illustrate the crosstalk between E-cadherin/ß-catenin and NF-κB signal transduction pathways during Leptospira infection. Thus, rLRR20 of Leptospira induces kidney injury in host cells and inhibits the adhesion and invasion of Leptospira through the upregulation of MMP7 and NGAL.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Leptospirosis/metabolismo , FN-kappa B/metabolismo , beta Catenina/metabolismo , Antígenos CD/genética , Cadherinas/genética , Regulación de la Expresión Génica , Humanos , Leptospira/metabolismo , Leptospira/patogenicidad , Leptospirosis/microbiología , Proteínas Repetidas Ricas en Leucina/genética , Proteínas Repetidas Ricas en Leucina/metabolismo , Lipocalina 2/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Transporte de Proteínas , Transducción de Señal , beta Catenina/genética
18.
Virulence ; 12(1): 2798-2813, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719356

RESUMEN

Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.


Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Humanos , Leptospira/metabolismo , Lipoproteínas/metabolismo , Plasminógeno
19.
Mol Microbiol ; 116(5): 1392-1406, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34657338

RESUMEN

Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Leptospira/genética , Leptospira/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Microscopía por Crioelectrón , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Humanos , Leptospira/citología , Leptospirosis/microbiología , Mutación , Spirochaetales/genética , Spirochaetales/metabolismo , Virulencia
20.
BMC Microbiol ; 21(1): 99, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789603

RESUMEN

BACKGROUND: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.


Asunto(s)
Chaperonina 60/inmunología , Citocinas/inmunología , Interacciones Huésped-Patógeno/inmunología , Leptospira/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA